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Abstract—Crawling wave sonoelastography enables the mea-
surement of viscoelastic properties of soft tissue. Recently, the
dominant component analysis AM-FM method was proposed
for modeling non-stationary patterns in crawling wave sonoe-
lastography to locally estimate their shear wave speed. Although
evaluations show consistent results for homogeneous and inho-
mogeneous phantoms, high noise levels and few available data
samples do not allow a rigorous spectral analysis by using
a filterbank. We propose a novel method to isolate AM-FM
components based on the null space pursuit algorithm that
alleviates such limitations. Preliminary results for the proposed
method for homogeneous and inhomogeneous phantoms, and a
comparison to alternative methods are presented.

I. INTRODUCTION

Crawling wave sonoelastography is a method for quantify-
ing tissue elasticity whereby shear wave speed is visualized
in the interference patterns of two sources oscillating at
slightly different frequencies [1]. Since its introduction, many
data processing approaches have been proposed, enabling its
application to different types of human tissue [2], [3], [4], [5].

Recently, an information extraction approach proposed the
use of the Amplitude Modulation - Frequency Modulation
model (AM-FM) [6], [7] to characterize the interference
pattern as a sum of quasisinusoidal components with instan-
taneous amplitude and frequency modulation functions. The
proposed shear wave speed estimation method [8] was based
on the Dominant Component Analysis paradigm (DCA) [9],
which employs conjointly spatio-spectrally localized filters to
isolate the strongest component and then demodulate it using
the quasi-eigenfunction approximation (QEA) [10] to compute
the local shear wave speed.

Despite promising results, evaluations showed that the AM-
FM subcomponent isolation using a filterbank has considerable
limitations when applied to crawling wave data. The interfer-
ence pattern is characterized as a narrowband signal with a low
frequency range, which requires highly spectrally localized
filters to isolate it. Also, its local nonstationarities must be
represented by the few available samples in the space domain,
which cover a limited number of interference pattern periods.
These conditions do not permit the proper use of conjointly
spatio-spectrally localized filters capable of reducing cross-
channel interferences and subsequent demodulation errors.

Among the alternatives for signal separation tasks, null
space pursuit is an approach that ”annihilates” a signal sub-

component included in the null space of an adaptive differen-
tial operator by solving a convex optimization problem. This
algorithm has been successfully used to isolate narrowband
subcomponents by an iterative single-channel approach [11].

The present work proposes a method for estimating the
local shear wave speed using the AM-FM model and the
null space pursuit algorithm as an alternative to the filterbank
approach. Furthermore, a denoising stage based on a low-
rank approximation is proposed prior to the demodulation task
to reject spurious components that may affect the estimation
accuracy. Then, the local shear wave speed is estimated by the
local oscillation rate across the tissue. The rest of the document
is organized as follows: Section II introduces the theoretical
definitions required for establishing the framework of interest,
Section III presents the proposed method, Section IV contains
the experimental results, and finally Section V presents the
conclusions and further work details.

II. THEORETICAL BACKGROUND

A. Crawling Waves Sonoelastography

Under a plane wave assumption, the shear waves introduced
by two opposite external vibration sources oscillating with
slightly different frequencies form an interference pattern with
squared signal envelope |u(x, t)|2 modeled by:

|u(x, t)|2 = 2e−αD{cosh(2αx) + cos[(2k + ∆k)x+ ∆ωt]};
(1)

where D is the distance between oscilation sources, α is the
attenuation factor, k is the local shear wave spatial frequency
and ∆ω is the frequency difference between the vibration
sources [1]. Focusing on the central region of the material
and assuming weak wave attenuations, the hyperbolic cosine
becomes constant and (1) approximated by [5]

|u(x, t)|2 ≈ 2e−αD cos[(2k + ∆k)x+ ∆ωt]. (2)

The shear wave speed Vshear and the elasticity modulus E
are then defined as Vshear = f · k−1 and E = 3ρV 2

shear, where
f is the operating frequency in Hz and ρ the mass density of
the material.

978-1-4799-8182-3/15/$31.00 ©2015 IEEE 2015 IEEE International Ultrasonics Symposium Proceedings 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10.1109/ULTSYM.2015.0378



B. Amplitude Modulation - Frequency Modulation Model
The AM-FM model represents an oscillatory signal as a sum

of elements expressed as t(x) =
∑N−1
i=0 ai(x)ejϕi(x), where

each component ti(x) = ai(x)ejϕi(x) is a complex-valued
narrowband signal formed by an instantaneous amplitude (IA)
function ai, an instantaneous phase (IP) function ϕi, and an
instantaneous frequency (IF) function ∇ϕi.

Given a real-valued multi-component signal r(x) =∑N−1
i=0 ai(x) cos[ϕi(x)], its complex extension t(x) is derived

by establishing a unique imaginary part based on the Hilbert
transform H as t(x) = r(x) + jH{r(x)}. Then, the signal lo-
cal properties may be described by the DCA multi-component
paradigm, which models the signal non-stationary behavior at
each x coordinate by exclusively taking into account the AM-
FM component with the strongest response [12].

Finally, the corresponding IF and IA functions can be
accurately estimated with support in the four quadrants by
the discrete QEA algorithm [9].

C. Operator-based Signal Separation: Null Space Pursuit
Null space pursuit (NSP) is a signal separation algorithm

that isolates narrowband elements from a multi-component
input signal using the null space of a differential operator. This
operator is derived from the input signal and its model depends
on the properties of the narrowband signal of interest. NSP
has been successfully used to separate a set of narrowband
subcomponents by an iterative single-channel approach [13].

The method is established as a convex minimization prob-
lem that isolates subcomponent V from the multi-component
signal S. This minimization problem computes the residual
signal R such that S = V +R in the following way:

argmin
R
||TS(S−R)||22 +λ

(
||D(R)||22 +γ||S−R||22

)
+F(TS);

(3)
where TS is the adaptive differential operator established based
on the properties of the subcomponent V , i.e. (S − R) is in
the null space of the operator TS , and D is the differential
operator. The scalar γ defines the amount of information from
subcomponent V retained in the null space of TS , and F(TS)
corresponds to the Lagrange term for TS [11].

A set of subcomponents can be isolated in an iterative
approach by ”annihilating” them from subsequent residual
signals, leading to a multi-component separation approach.
Assuming a 1D real-valued signal composed of a sum of AM-
FM components s(t) =

∑N−1
i=0 ai(t) cos(ϕi(t)), a second-

order differential null space operator is proposed for AM-FM
subcomponents as [14]: TS = d2

dt2 +P (t) ddt+Q(t). Thus, each
component is isolated by the NSP approach by estimating P (t)
and Q(t) such that TS · [a(t) cos(ϕ(t))] = 0. Then, the NSP
approach for isolating AM-FM subcomponents becomes:

argmin
P,Q,R

||TS(S −R)||22 + λ1

(
||R||22 + γ||S −R||22

)
+λ2

(
||D2(Q)||22 + ||P ||22

)
.

(4)

III. PROPOSED METHOD

A. Pre-processing Approach

An average filter is used along the lateral dimension vs.
frames plane to preserve only the non-stationary term. Then,
the slow-time signal behavior is used to remove noise by
applying a linear-phase bandpass filter centered at ∆ω.

Since the interference pattern varies exclusively along the
lateral dimension and along frames, changes along the axial
dimension depend only on the appearance of a material with
different elasticity modulus. Thus, its changes are structured
and coherent rather than abrupt. By taking advantage of
this, we propose to further remove distortions by computing
a low-rank approximation. An alternative representation of
the ultrasound data is obtained by vectorizing each lateral
dimension vs. frames plane and building a column-wise 2D
representation of the ultrasound data. Given the ultrasound
volume f ∈ RM×N×T , the vectorized version of each spatio-
temporal plane f̄yi = vec{f(yi, x, t)} is computed. Then, the
matrix F ∈ RNT×M is defined as F = [f̄y0 , f̄y1 , . . . , f̄yM−1

].
The low-rank approximation of matrix F is then computed

by using a fixed number of its largest eigenvalues. The low-
rank approximation process is performed by a singular value
decomposition routine. Finally, the information comprised in
the low-rank output is reverted to its original dimensions.

B. Signal Isolation and Demodulation Stage

The NSP algorithm is employed to isolate the narrowband
subcomponent with the highest energy. For this purpose, a
fixed number of narrowband signals are isolated and the one
with the highest `2 norm is preserved. Then, its 1D instanta-
neous frequency along the lateral dimension is estimated via
the QEA method for each frame. Finally, the effective instan-
taneous frequency at each point along the lateral dimension
is established as the median of its instantaneous frequency
estimations across frames.

IV. EXPERIMENTAL RESULTS

A. Pre-processing Approach Performance

Inhomogeneous phantom simulations corrupted by speckle
noise are processed using the low-rank approach. The noise
model is defined as b(x) = f(x) + U · f(x), where U
is uniformly distributed with zero mean and variance σ2

ranging from 0.1 to 1 in steps of 0.1. In all cases, the
ground truth local velocities are 8 m/s for the inclusion
and 4 m/s for the background. Table I shows the signal
to noise ratio (SNR) between the noise-corrupted phantoms
and their corresponding noise-free versions. Table II shows
the SNR between low-rank approximations for different rank
values and their corresponding noise-free versions, showing a
considerable similarity improvement with its largest values at
rank 5 in most cases. Figure 1 describes a portion of matrix
F for the σ2 = 0.5 speckle noise corrupted simulation and
its low-rank approximation for a fixed rank value of 5. It
can be observed that the inclusion is modeled as a pattern
with low frequency along rows located in the central region.



TABLE I
SNR (DB) BETWEEN THE NOISE-FREE DATA AND THE NOISE-CORRUPTED

DATA.

σ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4.6 3.7 3.1 2.6 2.2 2.0 1.8 1.7 1.6 1.5

TABLE II
SNR (DB) BETWEEN THE NOISE-FREE DATA AND THE LOW-RANK OUTPUT.

σ2 | rank 3 5 7 9 11 13 15
0.1 18.0 18.6 18.6 18.6 18.5 18.5 18.5
0.2 14.7 14.9 14.9 14.9 14.9 14.9 14.9
0.3 12.8 12.9 12.9 12.9 12.8 12.8 12.8
0.4 11.4 11.5 11.5 11.5 11.5 11.5 11.5
0.5 10.6 10.7 10.7 10.6 10.6 10.6 10.6
0.6 9.9 10.0 10.0 10.0 10.0 9.9 9.9
0.7 9.5 9.6 9.5 9.5 9.5 9.5 9.5
0.8 9.2 9.3 9.2 9.1 9.1 9.1 9.1
0.9 8.9 9.0 8.9 8.8 8.8 8.8 8.8
1 8.7 8.6 8.6 8.6 8.6 8.6 8.5

R
o

w
s

Columns

100 200 300

50

100

150

200

(a)

R
o

w
s

Columns

100 200 300

50

100

150

200

(b)

Fig. 1. F matrix portion for an inhomogeneous phantom: (a) F for the noisy
data. (b) F after the low-rank approximation.

The low-rank approximation removes the large changes while
preserving the low variabilities of the interference pattern.

B. Speed Estimation Performance on Simulated Phantoms

Figure 2 shows the signal isolation process using the NSP
algorithm along an inhomogeneous region. Although the low-
rank approximation results in a consistent reconstruction,
several subcomponents are still included. However, the NSP
method recovers with high accuracy the non-stationary signal,
which is subsequently demodulated. Figure 3 shows shear
wave speed (SWS) maps for inhomogeneous phantoms with
σ2 = 0.1 and σ2 = 0.7 speckle noise. The real inclusion
regions are denoted by a blue circle. Although the noise level
has a strong effect in the inclusion location and contrast,
overall it is accurately located, no considerable artifacts are
created, and the speed estimations are highly accurate.

C. Speed Estimation Performance on Gelatin Phantoms

The proposed method is evaluated on gelatin phantoms at
frequencies ranging from 140 Hz to 360 Hz in steps of 20
Hz. For the homogeneous case, the mean speed and standard
deviation are computed at each frequency and compared with
mechanical measurements obtained by stress relaxation tests.
The relaxation curve is then fit to the Kelvin-Voigt Fractional
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Fig. 2. Pre-processing on an inclusion region: (a) Low-rank output (red)
vs. noise-free data (blue). (b) Normalized NSP output (red) vs. normalized
noise-free data (blue).
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Fig. 3. SWS maps of crawling waves data simulations with a large inclusion.
(a) σ2 = 0.1 speckle noise. (b) σ2 = 0.7 speckle noise.

Derivative. Table III describes the phantom set composition.
The equipment used in the experiments is listed in [8].

Figure 4 shows the estimated shear wave average speed and
standard deviation for an homogeneous 10% gelatin phantom.
Overall, speed estimations below 220 Hz show large devia-
tions, indicating that lower spatial frequencies and fewer inter-
ference pattern periods decrease the estimation accuracy. For
high operating frecuencies, variability consistently decreases.

Figure 5 compares the SWS maps of a 0.68 cm radius
inclusion phantom for the proposed method (NSP AM-FM)
and two alternative methods: phase derivation (CWS PD)
[15] and the dominant component analysis (DCA AM-FM)
[8]. Although the three approaches generate artifacts near the
inclusion, the CWS PD results contains the largest ones. The
DCA AM-FM results show less artifacts but its inclusion
region shortens and its contrast gets penalized. The NSP AM-
FM results show less artifacts than the CWS PD method,
while accurately locating the inclusion region and increasing
its contrast in comparison to the DCA AM-FM method.

V. CONCLUSIONS

A novel method for estimating the local shear wave speed
using crawling waves is proposed based on the AM-FM
model and the NSP algorithm. Its main contribution is the
narrowbank signal isolation process, which does not require
a filterbank to preserve the dominant non-stationary signal
from ultrasound data. Furthermore, its main difference from
previous methods is the use of the entire ultrasound volume to
reject signal distortions while preserving the coherence of the
interference pattern behavior using a low-rank approximation.



TABLE III
PHANTOM SET COMPOSITION.∗ GELATIN: 300 BLOOM TYPE A PORK 40

MESH.∗∗ GRAPHITE: POWDER G67-500.

Inhomogeneous Homogeneous
Inclusion Background 10% Gelatin

Degassed water (ml) 150 1800 1800
NaCl (g) 1.35 16.2 16.2

Gelatin∗ (g) 28.57 200 200
Graphite∗∗ (g) 18 36 36
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Fig. 4. SWS maps for an homogeneous 10% gelatin phantom: Proposed
method (red) vs. mechanical measurements (blue).

Experimental results for the pre-processing approach show
accuracy of volume restoration on artificial phantoms with
different noise levels. Additionally, speed estimations for ho-
mogeneous phantoms show that there is still a large variation at
low operating frequencies, while greater accuracy is achieved
at high operating frequencies. Finally, experimental results
for inhomogeneous phantoms shows an accurate inclusion
location, a contrast improvement, and a reduction in the
artifacts compared with the phase derivation method and the
dominant component analysis AM-FM method.

Further research will focus on the use of principal com-
ponent pursuit to establish the optimal rank value, a more
robust null space operator to increase the signal isolation
performance, and a 2D instantaneous frequency demodulation
method to improve the speed estimation accuracy.
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