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Abstract
The determination of shear wave speed is an important subject in the field 
of elastography, since elevated shear wave speeds can be directly linked to 
increased stiffness of tissues. MRI and ultrasound scanners are frequently used 
to detect shear waves and a variety of estimators are applied to calculate the 
underlying shear wave speed. The estimators can be relatively simple if plane 
wave behavior is assumed with a known direction of propagation. However, 
multiple reflections from organ boundaries and internal inhomogeneities and 
mode conversions can create a complicated field in time and space. Thus, 
we explore the mathematics of multiple component shear wave fields and 
derive the basic properties, from which efficient estimators can be obtained. 
We approach this problem from the historic perspective of reverberant fields, 
a conceptual framework used in architectural acoustics and related fields. 
The framework can be recast for the alternative case of shear waves in a 
bounded elastic media, and the expected value of displacement patterns in 
shear reverberant fields are derived, along with some practical estimators of 
shear wave speed. These are applied to finite element models and phantoms 
to illustrate the characteristics of reverberant fields and provide preliminary 
confirmation of the overall framework.

Keywords: elastography, shear waves, tissue stiffness, reverberant fields, 
shear wave speed estimators, MRE, ultrasound
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1. Introduction

There has been a robust development of techniques to estimate and image the biomechani-
cal properties of tissues (Parker et al 2011). One way to categorize the more widely used 
approaches is by the class of applied stimulus: quasi-static, transient, or continuous waves. 
Each one of these has unique mathematics and techniques for inverse solutions (Doyley 
2012), but all lie on a continuum of biomechanical responses (Parker et al 2005, Parker 2013). 
Shear wave propagation has received significant attention, but an inherent problem in many 
approaches is the presence of reflected waves from organ boundaries and internal inhomoge-
neities. These reflections are responsible for modal patterns (Parker and Lerner 1992, Taylor 
et al 2000) in continuous wave applications and also for backwards travelling waves in tran-
sient experiments (Ringleb et al 2005). Directional filtering can be used to eliminate some 
types of reflections (Manduca et al 2003, McLaughlin and Renzi 2006, Deffieux et al 2011, 
Hah et al 2012, Pengfei et al 2012, Engel and Bashford 2015, Castaneda et al 2009).

Many continuous shear wave inversion approaches have been developed to estimate the 
unknown tissue stiffness. These would include inversions of the Helmoltz equation in magn-
etic resonance elastography (MRE) (Romano et al 2000, Sinkus et al 2000, Oliphant et al 
2001, Van Houten et al 2001, Ringleb et al 2005) and sonoelastography (Parker and Lerner 
1992, Fai et al 1998, Fu et al 1999). Another class of estimations has been developed for 
underwater acoustics and geomechanics using random signals (Roux et al 2005) and these 
have been extended to noise correlation measurements in soft tissues (Catheline et al 2008, 
Gallot et al 2011, Brum et al 2015). These involve spatial coherence of noise functions meas-
ured at two points, and can be recast as Green’s functions and time reversal solutions.

Furthermore, an approach using a mechanical vibration source to produce multiple 
wave directions in a large organ such as the liver, has been developed by Tzschatzsch et al 
(2014, 2015, 2016). Using a probability approach, they characterize the shear wave speed 
(SWS) by finding the minimum wavenumber as a function of direction.

In this work we take an alternative path, applying the concept of a narrow-band reverberant 
field of many waves within tissue. These are naturally established (even unavoidable) in prac-
tical situations, and can be reinforced by utilizing multiple shear sources near the tissues of 
interest. This particular approach leads to simple solutions, facile implementation, and rapid 
estimation of local tissue shear wavelength or SWS.

2. Theory

The complex pressure P� at a position ε in a reverberant chamber can be thought of as the 
superposition of plane waves incident from all directions (Pierce 1981, Parker and Maye 1984)

( ) [ ( )]∑ε ε ω= ⋅ −� �P t P j k tn, exp ,
q

q q 0 (1)

where the index q represents direction, nq are unit vectors uniformly distributed around 4π 
solid angle, k and ω are the wave number and radial frequency of the plane waves, and Pq� 
are independent, identically distributed variables of random magnitude and phase. The corre-
sponding velocity at a point is thereby given as

t j k tv n n, exp ,
q

q q q 0( ) [ ( )]∑ε ευ ω= ⋅ −�
 (2)

where from the plane-wave impedance relations
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n P c,q q q/υ ρ=� � (3)

where ρ is the media density, and c the speed of sound.
In order to calculate the autocorrelation function, we write the x component of velocity 

at some position ε within the tissue:

( )( ) ( ) ∑ε ε ε ωυ υ= ⋅ = ⋅ −⎡⎣ ⎤⎦� �n j k te v nexp ,x x
q

xq q q 0 (4)

where ex
^  is a unit vector in the x direction and

n n e .xq q x
^= ⋅ (5)

The summation on q is understood to be taken over 4π solid angle.
By writing the correlation function definition then substituting equation (4), we obtain:

∑

∑
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(6)

where E{} represents an ensemble average and the asterisk represents conjugation. The 
 product of the two series will include cross terms of the form:

E n n exq q xq q
...{ }( )υ υ∗′ ′� � (7)

But since the nxq and qυ�  are independent and the qυ�  are uncorrelated, this term vanishes. Thus:

∑ε ευ υ υ ω∆ ∆ = ∆ − ⋅ ∆
⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎡⎣ ⎤⎦
⎫
⎬
⎭

B t E n j t kn, exp .x x
q

xq q q
2 2

0( )( ) (8)

Taking the real part of the equation (8), we obtain:

∑ε ευ υ ω∆ ∆ = ∆ − ⋅ ∆
⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎫
⎬
⎭

B t V E n t kn, cos ,x x
q

xq q
2

avg
2

0( )( ) ( ) (9)

where, since the Vq are independent of the nqx and cosine terms; we have taken the mean 
squared value of the velocity out from the curly braces. Since an ideal, diffuse field is assumed 
to be present in the reverberant chamber, then the ensemble or spatial averaging will assign 
equal weighting to all directions of incident sound. Thus, the average of the summation over 
discrete directions becomes the average over all directions of incident waves (Cook et al 1955, 
Pierce 1981), around the polar coordinates of figure 1:

∫ε ευ υ
π

ω∆ ∆ = ∆ − ⋅ ∆ ΩB t
V

n t kn,
2

cos d .x x xq q

2
avg

sphere

2
0( )( )

( )
 (10)

Without loss of generality, we align the vector ε∆  with the z axis in figure 1. Using  spherical 
coordinates:

ε ε θ⋅ ∆ = ∆n cos , andq z z (11)
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n n e sin cos ,xq q x
2 2 2( ) ( ^ ) ( )θ φ= ⋅ = (12)

and the differential solid angle is

d sin d d ,θ θ φΩ = (13)

so

∫ ∫ε ευ υ
π

θ φ ω θ θ θ φ∆ ∆ = × ∆ − ∆
φ

π

θ

π

= =
B t

V
t k,

2
sin cos cos cos sin d d .x x z z

2
avg

0

2

0

2
0( )

( )
( ) ( )

 (14)
Integrating first over φ and expanding the cosine term yields

( ) ( )ε
ε

π ω=
∆
∆

∆
⎛
⎝
⎜

⎞
⎠
⎟V

j k

k
t2 cosavg

z

z

2 1
0 (15)

where j x1( ) is the spherical Bessel function of the first kind, of order 1. This result is commen-
surate with the role of spherical Bessel functions in solutions to the Helmholtz equation via 
Fourier and Hankel transformations (Baddour 2011). Also, equation (15) can be written in 
terms of trigonometric functions or Bessel functions of order 3 2/  (Abramowitz and Stegun 
1964, Parker and Maye 1984).

Now, switching to shear waves, the major difference is that the direction of propaga-
tion is perpendicular to the direction of displacement. Thus, if nq is taken as the direction of 
propagation, nqp is a perpendicular direction of shear displacement and velocity. Therefore, 
n n 0q qp⋅ = .

To account for the perpendicular relation in the case of shear wave, we add 90° or 2/π  to the 
angle formed by q and x (the detected direction). Thus, equation (12) becomes

Figure 1. Schematic for the orientation of the imaging transducer (right), and the object 
that has an isotropic random distribution of shear waves propagating through the interior, 
consistent with the theory of reverberant fields. The x-axis of the coordinate system is 
aligned with the axial direction of the imaging transducer, and it is assumed that the 
imaging system detects motion in the x-direction. The nq

⇀  are the direction vectors of the 
individual plane waves that are distributed throughout the reverberant interior.
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and, following the same logical progression as before, equation (14) becomes
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In the case where ε∆  is taken along the x-axis (the direction of the detected velocity), then  
n e sin cosq x x x

^ ε ε θ φ⋅ ∆ = ∆ , the argument in equation  (17) becomes ( εω ∆ − ∆t kcos x0  
θ φsin cos ), and the integration results in
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 (18)
The two functions from equations (17) and (18) are shown in figure 2.

The simplicity of equations  (17) and (18), basically ‘sinc’ and ‘jinc’ spatial functions, 
leads to a useful practical implementation. An ultrasound or magnetic resonance imaging 
(MRI) scanner is used to track tissue motion within a region of interest (ROI). This generates 
a function v x( ) along some ROI. The tissue is subjected to multiple shear wave sources that 
are operating at a frequency typically in the range of 30–1000 Hz. The correlation function 
Bvv is calculated and fit to equation (17) or (18) to estimate the unknown parameter k. Local 
estimates of k are used to create a map, typically displayed in color, representing the SWS, a 
measure of the stiffness of the tissue, at different locations.

An efficient estimator for the unknown k in equation  (17) is realized by examining the 
Fourier transform of the autocorrelation function:

Figure 2. The autocorrelation ( )ε= ∆υυB t 0,  depends on the relative direction of ε∆  
with respect to the detected component of the velocity vector. In these derivations, 
the detected direction of motion is taken as the x-axis. The thick line gives the 
autocorrelation with respect to x, the thin line shows the autocorrelation when ε∆  is 
taken in the perpendicular z-direction. The wavenumber k is set to unity for these curves.
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and s is the spatial transform variable. This is a strictly bandlimited function with upper limit 
of spatial frequency set by k, the unknown wavenumber. The second moment m2 of the trans-
form is therefore similarly determined by k. From Bracewell, chapter 8, page 143 (1965):
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Similarly, the Fourier transform of equation (18)’s spatial term is:

s s k

k
s k

2
for 0 ,x 3

{ } ( )
I ⋅ =

−
< < (21)

and the function is a real and even function of s. The second moment for this case is:

m
k

5
,s

2
2

= (22)

Furthermore, it is well known that the second moment of a transform is precisely related to 
the second derivative of the function at the origin (Bracewell 1965). This can be approximated 
by a finite difference. Thus:

k C B B xRe 0 Re ,
2

[ { ( )} { ( )}]υυ υυ≅ − ∆� (23)

where k� is the estimate, C is a constant equal to x B10 02/( ( ))υυ∆ ⋅ , and the x∆  lag and zero 
lag values of the real part of the autocorrelation at t 0∆ =  from some segment of data are 
used. A similar expression applies to the estimate using z∆ . Since the autocorrelation var-
ies as tcos 0( )ω ∆ , if desired for noise reduction the data can be taken at integer multiples of 

t N 0/π ω∆ =  and results can be averaged.

3. Methods

3.1. Numerical simulations

Numerical simulations using finite element analysis were conducted using Abaqus/CAE ver-
sion 6.14-1 (Dassault Systems, Vélizy-Villacoublay, France) in order to corroborate the gela-
tin phantom experiments (shell-element analysis), and the breast phantom (3D solid finite 
element analysis) described in later sections.

3.1.1. Shell-element analysis. The profile of a 3D mesh model of a breast (figure 3(a)) is 
used to create a 2D geometrical solid model of a homogeneous breast with a hard inclusion 
simulating a tumor. In order to ensure a full complement of shear waves across different ori-
entations, the boundary conditions were set to have 16 surface traction loads of 10−8 Newtons 
and random initial phase located in approximately equidistant segments of the breast model 
(figure 3(b)). The model was meshed using approximately 1500 000 hybrid and quadratic shell 
elements (figure 3(c)). Power law frequency dependent viscoelastic material properties were 
chosen to represent tissue. The elastic modulus, density, and viscoelastic parameters assigned 
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to the background and the inclusion are described in table 1. These parameters are in the range 
of gelatin phantom values extracted using the mechanical testing described in section 3.2. 
The type of simulation was selected to be steady-state dynamic direct solution for a range of 
frequencies between 100 Hz and 1000 Hz. This type of analysis calculates the 3D complex 
sinusoidal steady state solution of displacement and particle velocity of the breast when the 
defined loads introduce vibrations in the model.

After the simulation was conducted, the complex values of particle velocity were stored for 
a posterior post-processing step. Figures 3(d)–(f) shows reverberant vector fields within the 
background and inclusion for different frequencies.

Figure 3. (a) 3D mesh of a breast model. (b) Geometrical model of the breast shaped 
as a 2D profile of the mesh model in (a) with boundary conditions and loads indicated 
in Abaqus/CAE. (c) Finite shell-element mesh of (b) with material properties definition 
in the background and inclusion (diameter  =  17 mm), and delimitation of the region 
on  interest. (d)–(f) Displacement field in the x-axis for the frequencies of operation: 
400 Hz, 500 Hz, and 600 Hz, respectively.

Table 1. Viscoelastic material parameters of the background and inclusion in the 2D 
finite element model. The power law frequency-dependent model is g g f a

1( )ω∗ = ∗ − , 
where g ( )ω∗  is the Fourier transform of the non-dimensional shear relaxation function, 
g1
∗ is a complex constant, a is a real constant, and f 2/ω π= .

Density, ρ 
(kg m−3)

Poisson’s 
ratio, v

Young’s 
modulus, 
E (Pa)

Power law frequency- 
dependent parameters

Real g1{ }∗ Imag g1{ }∗ a

Background 998 0.499 5227.2 0.01730 −0.1715 0.936
Inclusion 998 0.499 18 154.8

K J Parker et alPhys. Med. Biol. 62 (2017) 1046
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3.1.2. 3D solid finite element analysis. A 3D geometrical solid model of a homogeneous breast 
with a hard inclusion was created and meshed using approximately 400 000 hybrid and quadratic 
tetrahedral elements using the shape of the mesh model in figure 3(a). The material properties 
were chosen according to the specifications of the zerdine breast phantom (model 509, CIRS 
Inc., Norfolk, Virginia) assigned to the background and inclusion part as described in table 2.

The type of simulation selected was a steady-state dynamic direct solution for two frequen-
cies of operation 450 Hz and 500 Hz. The boundary conditions were set to be zero displace-
ment in the sector that represents the chest wall. In addition, eight surface traction loads were 
located in approximately equidistant locations across of the breast model in order to produce 
shear displacement at the frequency of operation. The complex values of particle velocity 
were stored for post-processing. A profile cut of the model shows reverberant vector fields 
within the background and inclusion for the frequencies of operation of 450 Hz and 500 Hz 
(figures 4(a) and (b)).

3.2. Ultrasound experiments

A power amplifier (model 2718, Bruel and Kjaer, Naerum, Denmark), and a digital power 
amplifier (model LP-2020 A+, Lepai, Bukang, China) driven by a dual channel function gen-
erator (model AFG3022B, Tektronix, Beaverton, OR, USA) provided input signals to two 
mechanical vibration sources (model 4810, Bruel and Kjaer, Naerum, Denmark), and two 
miniature vibration sources (model NCM02-05-005-4 JB, H2W, Linear Actuator, Santa Clara, 

Table 2. Viscoelastic material parameters of the background and inclusion in the 3D 
finite element model. The power law frequency-dependent model is g g f a

1( )ω∗ = ∗ − , 
where g ( )ω∗  is the Fourier transform of the non-dimensional shear relaxation function, 
g1
∗ is a complex constant, a is a real constant, and f 2/ω π= .

Density, ρ  
(kg m−3)

Poisson’s  
ratio, v

Young’s  
modulus, E (Pa)

Power law frequency- 
dependent parameters

Real g1{ }∗ Imag g1{ }∗ a

Background 998 0.499 20 000 0.004 521 −0.044 82 0.936
Inclusion 998 0.499 40 000

Figure 4. 3D finite element solid model in Abaqus/CAE of the breast with magnitude 
displacement field of the complex sinusoidal steady-state solution within an interior plane. 
(a) and (b) Displacement field in the z-axis for the frequencies of operation of 450 Hz and 
500 Hz, respectively, in the background and inclusion (diameter  =  13 mm) regions.

K J Parker et alPhys. Med. Biol. 62 (2017) 1046
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CA, USA) vibrating at frequencies between 400 and 500 Hz in contact with a gelatin-based 
and a zerdine breast phantom (model 509, CIRS Inc., Norfolk, Virginia). Inside the gelatin-
based phantom, a stiffer cylindrical inclusion 12.6 mm in diameter, embedded in an otherwise 
homogeneous background, was constructed following the procedure used by Hah et al (2012). 
The phantom with gelatin (300 Bloom Pork Gelatin, Gelatin Innovations Inc., Schiller Park, 
IL, USA) concentrations of 4% for the background and 7% for the inclusion, was created 
by heating a mixture of gelatin, 0.7 l of degassed water, 6.3 g of Na-Cl and 1.05 g of agar to 
50 °C. The mixture was then cooled to approximately 30 °C and poured into a cubic mold 
(14 × 10 × 10 cm3) and was then allowed to rest at 4 °C overnight. Before the experiment, this 
phantom was taken out of its molds and left at room temperature for 3 h. The size and shape 
of the zerdine phantom simulates a patient in the supine position, and it contains several solid 
masses that are at least two times stiffer than the background. Lesions range in size from 3 to 
10 mm in diameter and are randomly positioned throughout the background. Figure 5 shows 
the schematic setup using the zerdine breast phantom. Additionally, a Verasonics ultrasound 
system (V-1, Verasonics Inc., Kirkland, WA, USA), which enables high frame rate acquisi-
tion and a coherent plane wave compounding acquisition scheme, and a linear array ultra-
sound transducer (Model L7-4, Verasonics Inc., Redmond, WA, USA) were used to track the 
induced displacements using Loupas’ estimator (Loupas et al 1995). A 3D matrix of IQ data 
was stored for post-processing. The axial displacements are computed from frame-to-frame 
analysis of the acquired 3D IQ data. A movie is made and the amplitude and phase of displace-
ment at each pixel are estimated. In all the experiments the center frequency was 5 MHz and 
the tracking pulse repetition frequency (PRF) is set to acquire at least 20 samples per cycle, 
i.e. PRF  =  20 times the vibration frequency.

3.3. Mechanical measurements

For the gelatin-based phantom materials, compression tests (Zhang et  al 2007) were per-
formed on three cylindrical samples (approximately 38 mm in diameter and 33 mm in length) 
made with the same mixtures used to construct the gelatin-based media. A QT/5 mechanical 
device (MTS Systems Co., Eden Prairie, MN, USA) with a 5 N load cell was used to measure 
the stress–strain response. The compression rate was adjusted to 0.5 mm s−1. These conven-
tional mechanical measurements were considered the reference when assessing the elasticity 
properties of the cylindrical phantom.

Figure 5. Schematic setup using four external vibration sources to generate a 
reverberation field inside the breast tissue mimicking phantom.

K J Parker et alPhys. Med. Biol. 62 (2017) 1046
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4. Results

4.1. Numerical simulations

4.1.1. Shell-element analysis. Complex-value displacement frames of the reverberation pat-
tern within an anterior ROI containing the lesion were stored for analysis. Figure 6(a) shows 
the real part of the displacement pattern for an excitation frequency of 400 Hz in which the 
background and inclusion can be identified by the global separation size of the peaks and val-
leys of the interference. Figure 6(b) shows a 2D SWS map obtained by applying our approach 
to an autocorrelation window (1.3 × 1.3 cm2, equivalent to 150 × 150 sample points) which is 
moved to cover the entire ROI. Profiles in the x and y direction are taken from the 2D correla-
tion, which are in good agreement with theory when compared to the equations (17) and (18) 
in figures 6(c) and (d), respectively. Subsequently, the second moment approach described 
in equation (23) is applied to the correlation profiles taking into account the scale factor C 
obtained previously from simulations. The estimation of k� in both axes is averaged and used 
in the calculation of the SWS by c ks ave/ω= � .

Results obtained at different frequencies are used to generate average values of SWS in the 
background and inclusion with respect to the percentage ratio between the wave number λ and 
the diameter of the inclusion d. Then, as shown by figure 7(a), estimations of shear speed tend 
to approximate ground truth values for smaller d/λ  rates. This behavior is expected since the 
estimation improves as more displacement cycles are used in the cross correlation calculation. 
In figure 7(b), SWS profiles depicting the background and inclusion values are shown for dif-
ferent values of d/λ  rate.

4.1.2. 3D solid finite element analysis. Complex-value displacement frames of the reverbera-
tion at 450 Hz and 500 Hz were obtained during simulations. Figure 8(a) shows a profile of 
the real part of the displacement pattern for 450 Hz excitation frequency. The effects of the 
viscosity (attenuation) and the boundary conditions influence the quality of the reverberation 
pattern. The same approach for the calculation of SWS on the shell-element simulation data 
is applied for the 3D finite element case as shown in figures 8(b) and (c). Average values of 
SWS reports cs  =  2.45  ±  0.1 m s−1 in the background (ground truth cs  =  2.58 m s−1) and 
cs  =  3.49  ±  0.26 m s−1 in the inclusion (ground truth cs  =  3.65 m s−1).

Some artifacts are seen near the outer boundaries where the assumptions of the isotropic 
reverberant fields may not hold.

4.2. Ultrasound experiments

4.2.1. Gelatin-based phantom. Figure 9(a) shows the reverberation displacements from the 
gelatin-based phantom at 400 Hz. Figure 9(b) presents the phase map obtained by the Fou-
rier transform of the displacement pattern through time at each (axial-lateral) location. The 
B-mode and the SWS images (obtained by applying our approach to a correlation window 
1.3 × 1.3 cm2 in size, equivalent to 85 × 85 sample points) are shown in figures 9(c) and (d), 
respectively. A ROI (7 × 7 mm2) was taken from the background and the inclusion in order 
to obtain a mean value of each region: 1.22  ±  0.01 m s−1, 2.15  ±  0.13 m s−1, respectively. 
The SWS result for both regions are in agreement with the elasticity properties obtained 
with mechanical measurements: 1.32  ±  0.16 m s−1, 2.46  ±  0.21 m s−1, respectively. Finally,  
figure 9(e) shows the SWS profile for a fixed depth corresponding to figure 9(d).

K J Parker et alPhys. Med. Biol. 62 (2017) 1046



1056

4.2.2. Zerdine breast phantom. Figure 10 shows the reverberation results from the CIRS 
breast phantom. The displacement patterns using a vibration frequency of 450 Hz is shown 
in figure 10(a). Figure 10(b) presents the phase map of the reverberation pattern at 450 Hz; it 
can be noticed that there are two different wavelengths between 2 and 3 cm depth, which is 
the region where the inclusion is located (see B-mode image (figure 10(c)). The SWS maps, 
(obtained by applying our approach to a correlation window 1.3 × 1.3 cm2 in size) overlaying 
the B-mode image, are shown in figure 10(d). A ROI (7  ×  7 mm2) was taken from the back-
ground and the inclusion in order to obtain a mean value for each region: 2.28  ±  0.14 m s−1, 

Figure 6. (a) Displacement pattern at 400 Hz obtained using shell-element simulation 
model in Abaqus/CAE. (b) SWS map calculated from (a) using the second moment 
algorithm. (c) and (d) Auto correlation pattern extracted from (b) in the x- and y-axis, 
respectively.

Figure 7. (a) Comparison of SWS estimation using the second moment algorithm in 
the background and inclusion for various values of d/λ , where m( )λ  is the wavelength 
of the excitation, and d m( ) is the diameter of the inclusion. (b) SWS profiles showing 
the background and inclusion for various d/λ .
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Figure 8. (a) 2D profile of the 3D displacement pattern of the breast interior at 450 Hz, 
obtained using Abaqus/CAE. (b) and (c) SWS map obtained from (a) using the second 
moment algorithm for frequencies of 450 Hz and 500 Hz, respectively.

Figure 9. (a) Displacement pattern at 400 Hz obtained from the gelatin phantom. 
(b) Phase map of (a). (c) B-mode image. (d) SWS map calculated from (a) using the 
second moment algorithm; the red dotted line illustrates the depth of the SWS profile. 
(e) SWS profile across the lesion.
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Figure 10. (a) Displacement pattern at 450 Hz, obtained from the zerdine breast 
phantom. (b) Phase map of (a). (c) B-mode image. (d) SWS map calculated from (a) 
using the second moment algorithm at 450 Hz; the red dotted line illustrates the location 
of the SWS profile. (e) SWS profile at a fixed depth through the lesion across the lateral 
direction from (d).

Figure 11. Violin plots showing the SWS estimate summary for the background and 
inclusion ROI. (a) and (b) SWS summary for the gelatin-based phantom at 400 Hz and 
the zerdine breast phantom at 450 Hz, respectively.
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3.43  ±  0.18 m s−1 for 450 Hz, respectively. The SWS result for the background is in agree-
ment with the elasticity properties specified by the CIRS manufacturer: 2.58  ±  0.32 m s−1. 
For the SWS result at the inclusion, the phantom manufacturer only reported that the inclusion 
stiffness is, at least, two times higher than the background. Thus, the SWS result for the inclu-
sion is in agreement with that information as well. Finally, figure 10(e) shows the SWS profile 
for a fixed depth corresponding to figure 10(d).

Figure 11 shows a SWS estimate summary, background and inclusion ROI for the gelatin-
based and breast phantoms. The width of the violin plots shows the probability density of 
the data at different values. The black and red dashed lines represent the mean and median 
of the data.

5. Discussion

There are a number of advantages to utilizing the framework of reverberant fields. First, 
the presence of reflections from boundaries and internal inhomogeneities is unavoidable in 
some common elastographic approaches, and these reflections plus the application of mul-
tiple sources and mode conversions can all contribute to the creation of the reverberant shear 
wave field. Once established, the characteristics can be exploited to estimate the underlying 
shear wave phase velocity. Secondly, the expected value of the autocorrelation function has 
been derived assuming only one vector component of detected velocity. This represents the 
simplest and most rapid data acquisition for both ultrasound and MRI, as additional transmit 
directions (in ultrasound) or additional phase encoding (in MRI) are required to determine 
additional vector components of shear wave velocity, and these are unnecessary in the frame-
work developed herein. Thirdly, the need to verify a principle direction of wave propaga-
tion is eliminated in the reverberant framework as the underlying mathematics account for a 
superposition of waves. Fourthly, the need for explicit knowledge of boundary conditions or 
second derivatives that are essential in some inverse approaches (Doyley 2012) are avoided in 
the reverberant approach.

A practical issue for clinicians concerns the time required for data acquisition and process-
ing of the estimator images, particularly for ultrasound systems that are intended for real time 
operation. High frame rate ultrasound scanning and high complexity shear wave algorithms 
are already implemented on a number of ultrasound systems, so the limiting factor may be 
the time required to acquire a satisfactory estimate of the reverberant autocorrelation func-
tion. For 100 Hz shear waves, capturing one cycle of displacements takes 1/100 s, of course 
more or less could be necessary depending on noise and unwanted tissue motion, however this 
illustration points to the possibility of reverberant elastography frame rates that are perceived 
as real time.

Since the reverberant shear wave framework is at an early stage and the results are preliminary, 
a number of issues are left for further research. One practical issue concerns the behavior of esti-
mates in situations where the field fails to approach the diffuse or reverberant ideal. An extreme 
deviation would be where waves exist along only one axis, for example with a pair of interfering 
plane waves aligned with the z-axis of figure 1. In this extreme case the autocorrelation func-
tion would be a k zcos( )∆  function, the Fourier transform a delta function pair at k± , and the 

second moment equal to k2 instead of k 2 52( )/π  as in equation (20). In this case the estimate 

of k would be overestimated by a factor of 2, and correspondingly c would be underestimated. 
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However, the exact amount of error depends on the precise orientation of the standing wave in 
this simple example. A more comprehensive determination of the degradation or deviation from 
the model as a function of organ size, attenuation, frequency, and shear wave sources, remains 
to be quantified. In addition, the performance of estimators of SWS as a function of the same 
parameters requires detailed assessment. Furthermore, the ideal reverberant field as expressed in 
equations (4)–(18) does not consider a number of wave phenomena which could exist in prac-
tice, including longitudinal shear waves. These can be created along the axis of symmetry near 
a translating source (Carstensen et al 2008, Catheline and Benech 2015) and would add a local-
ized vector component to the displacement. The presence of an absorbing surface also degrades 
the isotropic diffuse field assumption near that surface (Pierce 1981). Finally, multi-frequency 
versions of the approach can be implemented to assess the frequency dependence of SWS and 
hence the dispersion and viscoelastic properties. These practical issues can be assessed within 
the framework of the reverberant shear wave field and are left for future research.
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