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Abstract
The microchannel flow model provides a framework for considering the effect 
of the vascular bed on the time domain and frequency domain response of soft 
tissues. The derivation originates with a single small fluid-filled vessel in an 
elastic medium under uniaxial compression. A fractal branching vasculature 
is also assumed to be present in the tissue under consideration. This note 
considers two closely related issues. First, the response of the element under 
compression or shear as a function of the orientation of the fluid-filled vessel 
is considered. Second, the transition from quasistatic (Poiseuille’s Law) to 
dynamic (Womersley equations) fluid flow is examined to better predict the 
evolution of behavior at higher frequencies. These considerations expand the 
conceptual framework of the microchannel flow model, particularly the range 
and limits of validity.
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(Some figures may appear in colour only in the online journal)

1.  Introduction

The microchannel flow model (MFM) is derived from consideration of the outflow of fluid 
from a small vessel during uniaxial compression. A key relationship stems from the use of 
Poiseuille’s Law and the assumption of a power law (fractal) distribution of vessel sizes in 
the continuous limit. Two concerns about the applicability of this model to shear wave disper-
sion experiments in tissue have been raised by astute colleagues (personal communication, 
Carstensen and Mc Aleavey (2015)). First, the use of the MFM model for shear waves in 
tissues assumes the relationship that shear modulus /=G E 3. This is valid for isotropic mat
erials near the incompressible limit, but requires re-examination in the case of a vascularized 
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tissue. Secondly, the MFM model derivation begins with a uniaxial compression, whereas 
shear wave experiments in tissue involve rotational, divergence-free, or equi-voluminal waves 
(Graff 1975). In addition, the dependency on vessel orientation has not been explicitly stated, 
nor has the limit at which inertial terms become non-negligible. These important concerns 
suggest a second look at the derivations of the MFM, considering an element in shear. These 
are examined in this note.

2. Theory

2.1. The basic model

Consider an idealized block of tissue in figure 1 comprised of a purely elastic isotropic mat
erial and a single small vessel, or microchannel, containing fluid. Its action under uniaxial 
compression (a) results in loss of fluid volume and a corresponding component of strain.

Using Poiseuille’s Law to account for the fluid outflow, we previously derived as a first 
approximation one component of strain εx due to outflow of fluid (Parker 2014):
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which is essentially a dashpot equation where σx is the stress, η is the viscosity of the fluid, r is 
the radius of the vessel, A x0 0 is the volume of the cube, and C is a constant.

By combining this with the elastic response of the block element and applying superposi-
tion over all generations of vessel sizes we arrive at the final MFM frequency domain complex 
modulus derived in Parker (2014). For a comparison, we seek an alternative derivation using 
shear and will examine the relationship for similarities.

Figure 1.  Elastic element with single vessel in uniaxial compression (a) or shear (b). In 
(c) and (d) the microchannel is oriented near the diagonal.
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2.2.  Angle dependence of microvessel

Consider the case of figure 1(c) where uniaxial stress is applied but the microchannel is ori-
ented approximately on the diagonal. For simplicity we use the general relations of 2D stress 
transformation (Shames 1967) (figure 2),

( )σ
σ σ σ σ
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+
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Assuming the element of figure 1(c) is small and only σxx is non-zero then with α = 45° as the 
angle of the microchannel, the stress normal to the channel boundary is /σ σ= 2nn xx . Assuming 
negligible flow and low frequency (quasistatic) response, a vessel oriented at angle α would 
have a normal stress on the vessel reduced by a factor of ( )/α−1 cos 2 2 or, equivalently, 

( )αsin2  from the original case (figure 1(a)) but otherwise the derivation of the MFM would 
proceed as before (Parker 2014).

2.3. The element in shear

Consider the elements shown in figures 1(b) and (d) where τxy is applied on the top surface and 
all other applied stresses are zero. The transformation of normal stress depends on angle α as 
αsin 2 . For the microvessel at α = 45° in figure 1(d) the normal stress σnn will be:

( )�σ τ τ= =sin 90 .nn xy xy� (3)

Thus, a normal stress exists on the vessel boundaries resulting in an internal pressure and the 
derivation of the MFM continues as before. For α = 90°, case 1(b), there is no stress normal 
to the vessel boundary. In tissues with numerous vessels, the macroscopic effects of this angle 
dependence would be observable (or not) depending on the statistical anisotropy (or isotropy) 
of orientation of the microvessel in specific tissues.

2.4. The transition from quasistatic to dynamic behavior

Consider next element of figures 1(a), (c) and (d), where forces are applied sinusoidally at fre-
quency ω. The key derivations for sinusoidal fluid behavior in pipes are related to the seminal 
works by Hale et al (1955) and Womersley (1955, 1957), who considered the velocity, flow, 
pressure, and drag relationships in sinusoidal steady state, for laminar flow.

Figure 2.  2D stress transformation diagram where the angle α is measured from the 
vertical (x) axis.
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Womersley’s solution pertains to a stationary pipe with a sinusoidal pressure gradi-
ent ( / )∆ ωP L e j t applied across some length L at frequency ω. In the case of the elements of  
figures 1(a), (c) and (d), we assume that the normal stress field σ ωenn

j t acting on the center of 
the element creates a sinusoidal pressure gradient along the vessels, since the external faces of 
the unconfined element have =P  0.

In this case, assuming ≈ σ∆P

L x
xx

0
, Womersley’s solution for fluid velocity v is:
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where υ is the coefficient of kinematic viscosity ( / )µ ρ , µ is the dynamic viscosity, and ρ is the 
density. The viscous drag on the walls of the vessel is:
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Taking a series expansion of this in terms of ω about the function at ω  =  0, this yields
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The first term is a static term consistent with Poiseuille’s law. The second term is the inertial 
term, which dominates when ( / )ω υ> R482 2 4  or approximately:

( / )ω υ> R7 .2� (7)

We note the strong /R1 2 dependence on the transition to significant inertial terms.
If we take the υ = ×4 10blood

6 m2 s−1, and =R  0.1 mm = × −1 10 4 m (the size associated 
with secondary and tertiary arterial branches (McDonald 1974, Zamir and Phipps 1988)), then 

( )ω> =×
×

−

−7 28004 10

1 10

6

8  rad s−1, or 445 Hz, in the upper range of many acoustic radiation force 

pulse propagation spectra.
Alternatively, in the case of figure 1(b), the vessel walls are oscillating with the elastic ele-

ment and the fluid is responding with no applied internal or external pressure gradient. Let the 
vessel wall velocity be

( ) = =ωv R v r Re at .t
0

i� (8)

The governing differential equation for the fluid is (Zhdanov and Kasemo 2015):

⎜ ⎟
⎛
⎝

⎞
⎠

υ∂
∂
=

∂
∂

∂v

t r r
r

v

rd
.� (9)

The solution is
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The total drag of the fluid on the pipe is given by
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and therefore
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Expanding in a power series of ω around ω = 0 yields:

ρπ υ ω≅−F R xi ,2
0 0� (13)

however ( )υ ω ξ= ⋅ xi0 0  where ξ is the shear strain /τ Gxy  and G is the shear modulus. Thus,
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The force applied at the surface of the element is τ xxy 0
2. Arbitrarily choosing a 1% ratio of 

forces (inertial/applied) as the level at which the inertial term becomes important:
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Choosing = × −R 1 10 4 m, ρ = ×1 103 kg m−3, = ×G 10 103 Pa  =   ×10 103 kg (m · s2)−1:
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or >f  500 Hz, consistent with the previous analysis of the configurations shown in  
figures 1(a), (c) and (d).

3.  Discussion

We considered four cases of an idealized block of tissue with a single microvessel, in uniaxial 
compression and in pure shear, and with horizontal and diagonal orientations of the microves-
sel. The applied stresses will create a stress on the vessel and initiate flow; however there is a 
directional dependency of αsin 2  in the cases where shear is applied (figures 1(b) and (d)), and 
a dependency of ( )/α−1 cos 2 2 for uniaxial compression (figures 1(a) and (c)). Measurements 
of tissues will typically capture an ensemble of vessels over a range of orientations. In some 
soft vascularized tissues and tumors, there is no strong directional orientation of the vascular 
tree at the level of a millimeter. In these cases of statistical isotropy of directionality, the same 
shear wave or stress relaxation responses will be seen independent of the orientation of the 
applied stresses. However, the possibility exists for measureable directional dependence in 
tissues where a strong spatial directionality of microvessels is present.

The transition from quasistatic to high frequency behavior was also examined for cases 
where an oscillating pressure gradient drives the flow (Womersley’s solution) and the case 
where pure shear motion of the vessel walls drives the oscillatory flow. In both cases the 
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solution for an arteriole of radius 0.1 mm suggests that shear wave frequencies of greater than 
500 Hz would require additional inertial terms beyond the MFM solution. This compares 
rather closely to the landmark paper on waves in porous rocks by Biot (1956), where he says 
that ‘the assumption of Poiseuille flow breaks down if the frequency exceeds a certain value’. 
He then suggests that ‘For a porous material we may assume that the Poiseuille flow breaks 
down when this quarter wavelength is of the order of the diameter d of the pores’. Then, in 
an example using water between parallel plates separated by 0.1 mm, he finds a limiting fre-
quency of 100 Hz. If we simply apply a factor of 5 for the shear viscosity of blood compared 
to water (Ozbek 1971, Stammers et al 2003), this converts to 500 Hz for the same dimension, 
which is the transition frequency found in the analyses of section 2 (Theory) of this paper. 
Thus, our results are in agreement with the landmark findings of Biot, despite the very differ-
ent approaches taken.

However, the situation in tissues is not simple since there is no single ‘pore’ size, rather a 
distribution of characteristic dimensions of the fractal branching vasculature and other micro-
channel spaces, and our analysis shows explicitly the dependence of the high frequency trans
ition on vessel radius. For example, the larger arteries and veins will transition to a high 
frequency (Womersley as opposed to Poiseuille) behavior at relatively low frequencies, as 
shown by equations (7) and (15). In elastography experiments using clinical magnetic res-
onance and ultrasound scanners, major vessels are typically excluded from analyses, thus 
the attention to sub-millimeter diameters as key drivers of ensemble averaged behavior is 
appropriate.

4.  Conclusion

We examined the simple model of an elastic block in either uniaxial compression or shear, 
where a single fluid-filled vessel is oriented at different angles. Some commonalities emerge 
but the details are distinct. Both the compression and shear cases will experience a relax-
ation associated with fluid outflow from the vessel. However in the case of compression, the 
normal stress on the vessel walls varies as ( )/α−1 cos 2 2, where α is the angle of the vessel 
orientation with respect to the x-axis, whereas in the case of shear the normal stress on the 
vessel walls varies as αsin 2 . Thus, the peak effect is seen at 90° (figure 1(a)) for uniaxial  
x-compression, and 45° (figure 1(d)) for shear.

Another important issue concerns the transition from quasistatic to dynamic solutions, and 
at what frequency range the dynamic or inertial terms will become important. By applying 
classical solutions related to Womersley derivations, we identify 500 Hz as a transition fre-
quency within the tertiary arterial branches; however, the strong dependence on vessel radius 
makes a more general statement about tissue as a whole difficult to make, since the range of 
vessel diameters is broad. Further research is required to incorporate the effect of the entire 
range of vascularity as a function of frequency and in cases of strong vascular anisotropy.
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