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Abstract
Elastography of the brain is a topic of clinical and preclinical research,
motivated by the potential for viscoelastic measures of the brain to provide
sensitive indicators of pathological processes, and to assist in early diagnosis.
To date, studies of the normal brain and of those with confirmed neurological
disorders have reported a wide range of shear stiffness and shear wave
speeds, even within similar categories. A range of factors including the shear
wave frequency, and the age of the individual are thought to have a possible
influence. However, it may be that short term dynamics within the brain may
have an influence on the measured stiffness. This hypothesis is addressed
quantitatively using the framework of the microchannel flow model, which
derives the tissue stiffness, complex modulus, and shear wave speed as a
function of the vascular and fluid network in combination with the elastic
matrix that comprise the brain. Transformation rules are applied so that any
changes in the fluid channels or the elastic matrix can be mapped to changes in
observed elastic properties on a macroscopic scale. The results are preliminary
but demonstrate that measureable, time varying changes in brain stiffness are
possible simply by accounting for vasodynamic or electrochemical changes in
the state of any region of the brain. The value of this preliminary exploration
is to identify possible mechanisms and order-of-magnitude changes that may
be testable in vivo by specialized protocols.
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1. Introduction

While elastography of different organs is growing in terms of technology and clinical
applications (Parker et al 2011), a particular area of research emphasis is the brain and pos-
sible links between neuropathology and altered viscoelasticity. A common clinical goal across
elastography is to determine what clinical conditions can be detected or followed progres-
sively by measurable changes in tissue stiffness and shear wave speed. In the brain, research
studies have assessed the elastic properties of the normal brain including regional and grey/
white matter differences, and for pathologies including Alzheimer’s disease, and multiple
sclerosis. A recent summary of many magnetic resonance elastography (MRE) studies is
given in Hiscox ef al (2016). In addition to MRE, ultrasound studies of brain elasticity are
under investigation. A transcranial assessment of brain pulsatility has shown correlations with
disease states (Desmidt et al 2011, Ternifi et al 2014). Furthermore, shear wave elastography
has shown promising utility for intraoperative uses (Chan et al 2014, Chauvet et al 2016).

One feature of brain elastography research is the wide range of values measured and reported
within categories, and Hiscox ef al conclude that ‘providing standardized baseline values for
the brain is very challenging’. Methodology plays a role here as does choice of parameters
including the shear wave frequency, commonly in the range of 50 - 80 Hz. However, there
is a possibility that the unique structure and function of the brain enable dynamic changes
in regional elasticity (viscoelastic properties, complex modulus, and shear wave speed) over
a time scale from many seconds to minutes (Patz et al 2016). For example, at shear wave
frequencies of 1kHz in the mouse brain, Patz et al (2017a) have reported regional increases
of 14% in shear modulus during neuronal activation. If dynamic changes are possible and
are of significant magnitude, then they could influence experiments where these effects are
not recognized and are not controlled, thus contributing to a wide variation in experimental
results. Conversely, if dynamic changes in brain elasticity are possible and are of significant
magnitude, then they may be experimentally activated or controlled, and the resulting effects
could add useful clinical information.

For this reason, an examination of hypothetical dynamic changes in brain elasticity is
warranted. This paper provides a preliminary assessment of three conditions that could, in
principle, rapidly alter elastic measures: vasodilation within an organ that is unconfined, vaso-
dilation within a strictly confined volume (such as the skull), and changes in the elastic matrix
of the tissue. All three cases are examined using the microchannel flow model and a general
transformation rule that gives an expression for the elastic response of tissue in a modified
state.

2. Theory

2.1. Review of theory

The microchannel flow model (Parker 2014) begins with consideration of a block of tissue,
comprised of a multi-scale interlocking of cells, connective tissue, and a variety of fluid chan-
nels. To analyze the structural element, an idealized cube of tissue with only one vessel of radius
r is supported at the base and subjected to uniaxial loading. If the fluid within a microvessel of
length L experiences a pressure drop due to the applied stress o, then under Poiseuille’s Law
for incompressible fluids in pipes, a volumetric flow rate Q will result (Sutera 1993):
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Figure 1. The microchannel flow model of perfused soft tissue begins with parallel
elements (Parker 2014). Each dashpot corresponds to a fluid-filled vessel or channel,
with the smallest microchannel yielding the largest time constant, via Poiseuille’s Law.
In the continuing limit, the aggregate sum over the fractal size distribution yeilds the
microchannel flow model. Reproduced from Parker er al 2014. © 2014 Institute of
Physics and Engineering in Medicine. All rights reserved.

where C is a constant, r is the radius of the microvessel, and 7 is the viscosity of the fluid. Accounting
for the loss of fluid from the vessel and combining elastic and fluid outflow strains as additive leads
to a Maxwell model of a series spring and dashpot, therefore the stress relaxation (SR) curve is
a simple exponential decay. If (1) = eoU(¢), where U(¢) is the unit step function, then

O'SR(I) = EoEe_r/T fort >0, 2)
where E is the Young’s modulus of the elastic parenchyma and the time constant 7 is:

_nc
E*
The inverse dependence of 7 on radius to the fourth power makes the time constant exquisitely
sensitive to changes in vessel radius.

Next, we assume there are n multiple microchannels of unequal radius r, and therefore
unequal flow rates Q,. In this case, if each contributes to the stress relaxation at their respec-
tive time constant 7, then the simplest model for this looks like a parallel set of Maxwell
elements (figure 1).

This configuration of multiple parallel elements and an optional single spring element is
the generalized Maxwell-Weichert model (Ferry 1970, Fung 1981), with the time constants
of each element determined by equation (3) and therefore sensitive to 1/ rﬁ. Generally, we can
write the stress relaxation solution for N Maxwell elements as a Prony series (Lakes 1999),
the sum of components with characteristic relaxation time constant 7. In the limit, as we
allow a continuous distribution of time constants 7, the summation becomes an integral and
A (1) is the relaxation spectrum, which can be either discrete or continuous, depending on the
particular medium under study (Fung 1981). Given a material’s A (7), we can write:

T

3

osr(t) = / A (1) e/ dr. 4)
0
Now consider a specific power law distribution:

A(T)=Ar™" 1<b<2. &)

The power law distribution is naturally occurring in many natural structures including normal
and pathological circulatory systems (West ef al 1997, Risser et al 2007). Substituting equa-
tion (5) into equation (4) and solving yields the solution:
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osr(t)=A¢ - ' PT[b—1] forl <b<2,t>0 (6)

where T is the Gamma function. The stress relaxation response is characterized by 1/— decay
for t > 0. For values of 1 < b < 2 this tends to have a sharp initial drop and then a slow
asymptomatic decay. It can also be shown that the frequency dependence of the complex
modulus is given by a power law:

AO a
Ew)|=—==T[al'[1 —dq]|w 7
E@)] = Tl (1 —a] o] ™
where a = b — 1. This response is dominated by the steady increase with frequency to the

power of a.

In practical cases it is more realistic to place limits on the range of 7 for a material, reflect-
ing the longest and shortest time constraints that pertain to the smallest to largest vessels and
microchannels. In this case, the integration of equation (4) has limits 7y, and Tyax and

osu(t) = / " A(r)e 7 dr ®)

min

and assuming the power law form of equation (5), then

o] o]
Tmax Tmin
1

fora>0,7>0, and 0 < Tiin < Tmax 9

USR(I) = AO

where I [a,/; ] is the incomplete Gamma function (upper-tailed). This version of the micro-
channel flow model is a four parameter model since Tyax and Tmin Must be determined as
material-specific parameters in addition to a and Ag. A different closed form solution exists
for cases where a < 1. The complex modulus |E (w)] for the material of equation (9) is given
in Parker, Ormachea et al (2016), basically this approaches a power law of equation (7), but
only gradually as Timax and Tmin are widely separated.

In summary, if a tissue has a power law relaxation spectrum A (7) = Ao7 %, then the stress
relaxation response will show a oggr >~ Apt' b = Ap/t" response. The tissue stress—strain
transfer function in the frequency domain is |E (w)| & Ag|w|“, and shear wave phase velocity
Cph (W) w”2. In prostate and liver (Zhang et al 2007, Parker 2014, Ormachea et al 2016),
0 < a < (1/4 ) for many normal specimens.

2.2. Mapping changes from r to T to A(7) to osg(t)

Given a fractal distribution of blood vessels of radius » where ryax > ¥ > Fmin, and a corre-
sponding A (1) = Ag/7? from Tymin < T < Tmax, Where the relationship between 7 and r is
influenced by Poiseuille’s Law (equation (3)), we now examine the new relaxation spectrum
A, () if all the vessel radii are increased or decreased by a factor of r, = yr where x > 1
represents vasodilation and x < 1 vasoconstriction. To map the changes to the relaxation spec-
trum function A (1), we use the general transformation rule from probability theory (Papoulis
1987). Given a monotonic distribution A(r) and a transformation 7, = C/(xr)* = 7/x* then
the transformed density function A, (72) is given by:
A(T
Ay (1) = d(T‘) (10)
dr
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Substituting and taking the derivative we have

A (1) = X"A (x*'m) . (11)

However, assuming A (1) = Ag/7?, then

(4-4b) 4 4(1 _b)A
Ap(m) =X 20X 00 (12)
) )

and this also preserves the total area under the relaxation spectrum:

Tmax T2max
/ A(r)dr = / A; (1) dms. (13)

‘min 2min

where

Thnax = C/(erin)4 =(1/x )4Tmax and
T2min — C/(erax)4 = (I/X )4Tmin~ (]4)

2.3. Proportional dilation/constriction: unconfined space

In this section we consider the relatively simple case of vasodilation (or vasoconstriction)
within an unconfined tissue such that the extra blood volume associated with enlarged blood
vessels is simply added to the organ volume.

Consider a baseline or resting state with a power law distribution of vessels between r,;,
and r,.x leading to the stress relaxation spectrum

Tmin g T < Tmax

_ or
b (15)
T 'AL <7< 4C

min

A7) = o

and the resulting stress relaxation function is given by equation (9). Next, assume that all ves-
sel radii are increased or decreased by some proportion y, where x = 1 represents the baseline
case and after vasodilation or vasoconstriction:

> 1 impli dilati
r=x { X implies vasodilation (6)

x < 1 implies vasoconstriction

We apply the transformation rule to determine the new stress relaxation spectrum A (73), where
m=C/(n)=c/(xr)* = (1/x)"r,sodn/dr = (1/x )", and applying equation (10):
X4A0 X4(l—b)AO

M) = =T (17)

Now integrating f:"f" A, (1) e~/ dry we find:

00" P40 a1/, ] = Tlact/m,,, ])

) = max (18)
USRz( ) @

where 7, .. and 7 are given by equation (14). Thus, equations (14) and (18) provide the

transformation of elastic properties as a function of vascular changes proportional to y, in an
unconfined space.
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Figure 2. Stress relaxation curves in an unconfined soft tissue. Parameters are taken
from table 1 with y =12 or 0.8 representing vasodilation or vasoconstriction,
respectively.

As an example, figure 2 shows a case where the vessels change with 20% vasodilation
(x = 1.2) and then 20% vasoconstriction (x = 0.8), and using baseline parameters found in
table 1. The parameters chosen are within limits seen in other soft tissues, for example 20%
vasodilation is within the range of cortical blood flow changes measured by laser Doppler
flowmetry during sensory stimulation (Malonek et al 1997).

These shifts in vessel radii create a shift in the relaxation spectrum and then a clearly
observable change in stress relaxation, softening or stiffening the tissue.

The frequency domain or complex modulus is shown in figure 3, demonstrating the same
trend, which would be detected in MRE as a change in shear wave speed and wavelength.

2.4. Partitioning dilation/constriction using perivascular space under constrained volume

In this case, we consider the brain as a confined space such that localized vasodilation and
increased blood volume must result in subtraction of an equal fluid volume. The perivascular
space is one candidate for compensatory volume change (Zhang et al 1990). The anatomical
structure of the perivascular space is shown in figure 4, suggesting an idealization as concen-
tric tubes of negligible wall radius as idealized in figure 5.

The total volume of a vessel segment length [ in figure 5 is:

V=nl(p r)+nl [(ré) - (por)z}
blood (19)

perivascular

= rmlrd,
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Table 1. Baseline parameters used in the microchannel flow model based roughly on
other soft tissue measurements.

Parameter Value Units Comments
A 1 kPa Unitary, also very soft tissue
b, (a) 1.2,(0.2) Dimensionless Power law
power
Tmax 30,000 S Set by rin, C
Tmin 0.3 ms Set by rmax, C
Fmax 0.75 mm Tertiary branches
Fmin 7.5 pm Venules
C 1x 1074 s mm* Scale factor, empirical
X 120r0.8 Ratio Vasodilation or vasoconstriction
XE 1.20r0.8 Ratio Change in elastic matrix due to
electro-chemical activation
Db 0.7 Ratio Perivascular to vascular
concentric radii
9.[ -
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Figure 3. Complex modulus vs. frequency for the three cases shown in figure 2 over a
range of frequency from 27 - 15 Hz to 27 - 1500 Hz, plotted on a log—log scale.

which is independent of p, a necessary constraint in the confined volume of the brain. The
partition p is a fraction 0 < p < 1 and may exceed 0.8 in some segments of mammalian brains
(Harnarine-Singh et al 1972, Mgller et al 1974, Fox and Raichle 1986, Zhang et al 1990).
Note that the relative ratio of fluid in the perivascular space to the fluid in the vascular
space (blood) is (1 — p?) /p*; for example, when p = 0.8, then there is a roughly equal volume
of fluid in the two compartments. We will assume for simplicity that p is a constant over all
branches. In this model, consistent with a constrained volume for the brain, increases in blood
vessel diameters due to vasodilation require an immediate decrease in perivascular fluid to
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Figure 4. Diagram demonstrating the relationships of the pia mater and intracerebral
blood vessels. Subarachnoid space (SAS) separates the arachnoid (A) from the pia mater
overlying the cerebral cortex. An artery on the left side of the picture is coated by a
sheath of cells derived from the pia mater; the sheath has been cut away to show that the
periarterial spaces (PAS) of the intracerebral and extracerebral arteries are in continuity.
The layer of pial cells becomes perforated (PF) and incomplete as smooth muscle cells
are lost from the smaller branches of the artery. The pial sheath finally disappears as the
perivascular spaces are obliterated around capillaries (CAPS). Perivascular spaces around
the vein (right of picture) are confluent with the subpial space and only small numbers
of pial cells are associated with the vessel wall. Diagram reused with permission: Zhang
et al (1990) John Wiley & Sons. © 1990 Developmental Dynamics.

maintain a constant vascular and perivascular total volume. This presumes that the perivascu-
lar fluid is capable of drainage into and beyond the subarachnoidal spaces. Our focus is on the
tissue response as the partitioning fraction p is changed. We postulate the superposition of two
stress relaxation spectra, one for vascular and one for perivascular: A (7) = Ay (7) + Aper (7),
linked by the fraction p as the constraint on total volume. Both are assumed to be character-
ized by the same power law b since they derive from the same fractal branching geometry.
Furthermore, the range of diameters extends from pry,ax to pryi, in the vascular network and
the annular radius Ar of the perivascular network extends from rpay (1 — p) t0 Fmin (1 — p).
Finally, we assume the baseline case Aper (7) is known for the perivascular spaces and Ay, (7)
is known for some resting baseline p,. A more critical and detailed look at the perivascular
model is given in appendix.
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Figure 5. Partition of fluid within the vascular space (radius pry) and perivascular
space (outer radius rp). In vasodilation p increases but the volume of perivascular fluid
must decrease to maintain constant volume in the confined brain.

Furthermore, let us assume a corresponding baseline stress relaxation function governing
the macroscopic tissue either measured or estimated a priori as:

Pom) Tlez) Fois) Tless)
T\’max Tvmin +A Tpefxnax TpeImi"
P per a

OSR, (I) = Avas

(20)
Then for vascular changes in p away from the baseline p;, the transformation rules apply
as in equation (18) where for the vascular space xvy,s = p/pp and for the perivascular space
Xper = (1 = p)/(1 — py), so as one compartment increases, the other decreases. Accordingly,
the new state is

4(1-b) r (a, ‘ ) -T (a, : )
p Tv2max T™V2min
OSR2 = () Ayas

Pb

) (21)

4(1-b) I (o) - T (a )
1-— ® Tper: > Toer2, .
+ ( ( p) ) quer per2max Perimin

(1—p») f“
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Figure 6. (a) Vasodilation under volume constraint with compensatory reduction of
perivascular space dimensions. Note that the result is contrary to those in the case of
an unconfined organ. This is due to the compensatory ‘squeezing’ of the perivascular
space in the model. (b) Magnitude of complex modulus from radial frequencies 2w
1.5 Hz to 271500 Hz, for the baseline case and vasomodulated cases assuming the
perivascular network compensates for changes in the vascular space. Note that in
the case of vasodilation, the ‘squeezing’ of the perivascular space leads to long time
constants and a relatively high modulus at low frequencies. Thus, experimental results
may also depend on shear wave frequency.
where

4 .
72 = (pp/p ) 7 (max,min)
and

Toerz = (1 = pp) /(1 —p) )47',, (max, min). (22)
Consider an example where the vascular radii of interest range as in previous exam-
ples and table 1. Assume p, = 0.7 represents the resting case. Also assume a vasodi-
lation where p =0.85, so (p/p» )" = (1.2)* =2.17. Then for the perivascular space
(1 =p)/(1 —py) )* = (0.5)* = 0.0625. With b = 1.2, and assuming equal contributions for
both compartments, then

o= 2 {02 3550) ¥ (02-5)} - (0 ) T 02 )},

After vasodilation, with x} = 2.17 and x; = 0.0625, then

Y - {r (0.2, W) -r (0.2, Wf/m))} | »

0.2 1
f —"_0.06‘12 {F (0‘2’ (940006/0.06 )) -r (0'2’ (0.0094t/0.06 ))}

This result is shown in figure 6, along with a vasoconstriction case where p/p, = 0.6/0.7,
representing a modest 15% reduction in vessel sizes, compensated by a proportional increase
in perivascular dimensions. These results are directly counter to the previous unconstrained
examples of figures 2 and 3. This happens because in constrained-volume vasodilation there
is a strong opposite effect of squeezing the perivascular fluid space to maintain constant fluid
volume. The distribution of perivascular spaces is shifted to smaller dimensions, leading
to longer time constants and a stiffening component that dominates the two parts (vascular/
perivascular). On the other hand, a modest vasoconstriction simply allocates more space to the
perivascular fluid and has only a small net overall effect.
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Figure 7. (a) Change in stress relaxation response assuming a 20% increase or decrease
in the underlying elastic matrix due to electro-chemical-mechanical effects operating
at a cellular and subcellular level. All vessel diameters remain constant in this example.
(b) Magnitude of complex modulus vs. shear wave frequency from 2715 Hz to 271500
Hz, for the baseline and electrochemical modulated elastic media. Generally, the results
are proportional to the change seen in stress relaxation curves (7(a)), and are relatively
consistent over the frequency range.

It should be noted, however, that the anomalous trend shown in figure 6 has a limited range.
As p and y increase during vasodilation, the outer annulus of figure 5 representing the perivas-
cular space is ultimately closed off and unable to function as a fluid-carrying network. At this
point, the second term of equation (20) is extinguished, and the presumably vasodilation-
softening effect of figures 2 and 3 would then be observed. It must be emphasized that the
results in this section are plausible only when local changes in the partitioning of the vascular/
perivascular spaces are enabled by the flow of perivascular fluid into or out of that region.

2.5. Change in elastic matrix

Now consider the case where the elastic properties of the cellular structures change, with-
out any alteration of vessel diameters. Electro-chemical effects in axons, dendritic spines,
membranes, and even actin filaments have been reviewed by Tyler (2012) and Barnes (2017).
Functional stimuli may incite regional electro-chemical changes (Patz et al 2016).

From equations (2) and (3) we see that some increase in the material’s stiffness E increases
the stress relaxation force osg (#) but also changes the time constant 7 for an idealized struc-
tural element subjected to uniaxial loading. However, the change in time constant is inversely
proportional to E, and therefore is less sensitive than to changes in radius which has a 1/r*
dependence.

Again assuming a baseline case Ep, Ap (T), Tmax, Tmin, and osg, (¢), then if E; = xgE we
can map the resulting changes through the transformation rules as derived in previous sec-
tions. Specifically, 7 = 7/x 5, dm/dr = 1/x g

Az (12) = XA (XT2)

X;Ao
o ((XE;"Z)b
2—b
= X, (25)
and after integrating:
@-b)
Ao ([ [a,1 —Tla,t/m,.
GSR2(I> = XE 0( [a /szax ] [a /szm ]) . (26)

ta
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where 7o, = Tmax/Xe and T2, = Tmin/XE-

Thus, an increase in E (xg > 1) translates into two effects: an increase in the overall stress
relaxation force by a factor of Xg_b), and a down-shifting of time constants by a factor of
1/xg, which has a slight ‘softening’ effect.

For the case of yg = 1.2 (elastic modulus increases 20%) and xg = 0.9 (decrease), see

figure 7.

3. Discussion

It must be noted that the hypothetical scenarios presented have numerous assumptions and
unknowns. All of the assumptions of the microchannel flow model are included, plus the treat-
ment of the perivascular fluid space as the unique compensating compartment for vasodilation
under the strict constraint of confined total volume. Furthermore, many of the parameters
listed in table 1 and used in the scenarios are not well characterized; for example the baseline
value of the ratio p that partitions the vascular to perivascular spaces. Finally, the theory con-
sidered herein are limited to isotropic and linear conditions. Brain anisotropy would produce a
direction-dependent effect, which has been recently considered within the microchannel flow
model (Parker 2017), and nonlinearities in tissues are thought to play a role during large dis-
placements associated with elevated fluid pressures (Rotemberg ef al 2012, Arani et al 2017).

With those caveats, the microchannel flow model predicts a strong response to vasomodu-
lation in an unconfined organ. This effect has some experimental confirmation in other uncon-
fined tissues, specifically vasocontriction in the perfused placenta (McAleavey et al 2016) and
in the excised liver after osmotic swelling (Parker 2015). However, under the constraints of a
fixed total volume of the brain, the microchannel flow model uses the perivascular space as a
compensating fluid volume. Of course, this presupposes that the perivascular fluid can drain
into the subarachnoid space and beyond (figure 4), which is most likely for only localized
vasodilation due to regional activation. Conversely, in the case of whole brain vasodilation, the
squeezing of the entire perivascular space would result in an increased intracranial pressure
(Czosnyka et al 2004) since there is no significant extra space available for the fluid to enter.
This has been dramatically demonstrated in human subjects during carbogen breathing (Rich
et al 1953), and represents a different physical condition from that supposed in section 2.

The electrochemical activation of regions of the brain by a variety of mechanisms (Tyler
2012) may have potential for creating changes in the observed elasticity (Patz et al 2016, Patz
et al 2017b). By comparison, a different specialized tissue that has been studied extensively
is lung tissue, where activation of different cell types can create dynamic changes (Yuan et al
1997), albeit limited, in measured elastic behavior (Suki et al 2011). They concluded that,
‘Stimulation of the contractile machinery of these cells with different agonists induces local
internal stresses in the fiber network of the ECM that can lead to changes in the viscoelastic
properties of the lung tissue. Nevertheless, the viscoelastic properties of the lung parenchyma
are only moderately affected by the active tone of the interstitial cells’ (Suki et al 2011).

In section 2 we have primarily considered changes in complex modulus which would be
assessed through shear wave speed or wavelength estimators in elastography experiments.
Other parameters related to the lossy and frequency-dependent nature of viscoelastic materials
include the loss tangent, the wave speed dispersion, and attenuation. In both the microchan-
nel flow model and the Kelvin—Voigt fractional derivative models, these are all tightly linked
(Parker 2014) to the power law parameter a, which is set to 0.2 in table 1 based on experience
with a number of soft tissues (Zhang et al 2007, Parker et al 2016). In cases where a power
law relationship has been specifically measured in brain, results cover a wide range from
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0.2 < a < 1.2 (Streitberger et al 2011, Sack et al 2013, Testu et al 2017). Additional research
is required to refine these estimates.

In the field of functional magnetic resonance imaging, (fMRI), the neuroactivation of
a region followed by the vasoactive blood oxygenation level-dependent (BOLD) response
(Malonek er al 1997, Buxton et al 1998, Hoge et al 1999, Sheth et al 2004) are present, and in
the microchannel flow model scenarios contained in this paper, this mechanism (vasomodula-
tion) and/or cellular matrix stiffness chemo-modulation could lead to a dynamic and localized
increase in measures of ‘stiffness’. How can these different hypothetical effects be exam-
ined individually? Teasing out the baseline parameters and different mechanisms will require
experimentation under a range of different conditions. For example, different types of anes-
thesias can have different effects on vasodilation, as can the mix of oxygen and carbon dioxide
(Rich et al 1953, Czosnyka et al 2004). Neural activation and non-activation can be tested,
these are already common within many fMRI protocols. In animal experiments, independent
measurements of regional blood flow and perivascular flow will be helpful. Ultimately, the
empirical findings in humans will set the expected values for stiffness measurements in nor-
mal and pathological conditions, however any dynamic response must be either controlled or
elicited and measured as part of the experimental protocols.

4. Conclusion

The brain is a unique organ in many respects and could have dynamic elastic behaviors that are
not replicated in other organs. The microchannel flow model predicts an increased osg and SWS
produced by vasoconstriction (in an unconfined volume), by increasing the E of the cellular
matrix by electro-chemical activation, or by vasodilation in a confined space where extra-vascular
(perivascular) spaces are squeezed to compensate. Decreased osg and SWS are produced in the
converse cases. These effects are dynamic and can be frequency-dependent, thus careful exper-
imental controls are required to determine their relative magnitude and associated time constants.
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Appendix

In modeling the effects of the perivascular space on the elastic behavior of the brain, a sim-
plifying assumption was made. The annulus formed by Ar extending from ryi, t0 prmjax 18
treated in section 2.4, using the microchannel flow model, as equivalent to a vessel of radius
Ar = max (1 — p). This would be reasonable if the flow Q is proportional to Ar* as in equa-
tions (1)—(3), which set the underlying rationale for the microchannel flow model.

However the laminar flow in an annulus is given by Rosenhead (1963):

APm (r2 —pr? ) AP7rt (1 - p2)2
Q = rfnax - prilax - e e = —EX 1 - p4 - >
e [ )
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whereas for a cylindrical vessel (pipe) of radius rmax (1 —p) the conventional Hagen-
Poiseuille’s law yields:

APT
0= mrilax(l —p)t. (A2)

The two expressions are not close except near p — 1 where Q — 0. A Taylor series expansion
of equation (A.1) with respect to p near p = 1 yieldsa r¥, (1 — p)’ term and a rh (1 — )
term, and higher orders which are not significant in our range of interest (0.8 < p < 1). Thus,
the more accurate modeling of the behavior of an annular fluid space like the perivascular
space would require a re-derivation of the microchannel flow model beginning with both a

rh (1= p)3 andard, (1 — p)4 term in equation (1). The consequences of this mixed power
law are left for future research.
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