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Application of Numerical Methods to Elasticity Imaging
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Abstract: Elasticity imaging can be understood as the intersection of the study
of biomechanical properties, imaging sciences, and physics. It was mainly moti-
vated by the fact that pathological tissue presents an increased stiffness when com-
pared to surrounding normal tissue. In the last two decades, research on elasticity
imaging has been an international and interdisciplinary pursuit aiming to map the
viscoelastic properties of tissue in order to provide clinically useful information.
As a result, several modalities of elasticity imaging, mostly based on ultrasound
but also on magnetic resonance imaging and optical coherence tomography, have
been proposed and applied to a number of clinical applications: cancer diagnosis
(prostate, breast, liver), hepatic cirrhosis, renal disease, thyroiditis, arterial plaque
evaluation, wall stiffness in arteries, evaluation of thrombosis in veins, and many
others. In this context, numerical methods are applied to solve forward and inverse
problems implicit in the algorithms in order to estimate viscoelastic linear and non-
linear parameters, especially for quantitative elasticity imaging modalities. In this
work, an introduction to elasticity imaging modalities is presented. The work-
ing principle of qualitative modalities (sonoelasticity, strain elastography, acoustic
radiation force impulse) and quantitative modalities (Crawling Waves Sonoelas-
tography, Spatially Modulated Ultrasound Radiation Force (SMURF), Supersonic
Imaging) will be explained. Subsequently, the areas in which numerical methods
can be applied to elasticity imaging are highlighted and discussed. Finally, we
present a detailed example of applying total variation and AM-FM techniques to
the estimation of elasticity.

Keywords: Elasticity imaging, inverse problems, FEM, total variation, shear ve-
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1 Introduction

Current medical imaging techniques generate representations of a physical parame-
ter of the tissue being scanned. For example, ultrasound (US) represents the acous-
tic scattering and reflections within tissue, Magnetic Resonance Imaging (MRI)
represents the proton density and relaxation times of the tissue, and X-ray imag-
ing represents the attenuation of this type of radiation due to the tissue it traverses.
Although these medical images are standardly used in current healthcare, there are
still several medical applications to which they cannot be directly applied. For ex-
ample, in the case of prostate or breast cancer, tumors could be invisible to US or
MRI imaging [1].

Several studies have shown that changes in biomechanical properties of tissues are
correlated to pathological changes [2]. In order to detect these changes, experts
have performed manual palpation of the tissue for hundreds of years. This method
can only be performed on lesions close to the surface of the human body. Small and
deep tumors are typically missed [3].In this context, various techniques have been
investigated and developed to estimate and image the elastic properties of tissue.
The method in which stiffness of soft tissue is displayed as a parameter is termed
elastography, or elasticity imaging [4]. The objective of elastography is to show the
differences in tissue elasticity qualitatively and quantitatively. These techniques
add new information which can be clinically useful to differentiate normal from
abnormal tissue types [4].

These techniques have used different algorithms and applications of numerical
methods to solve forward and inverse problems implicit in the algorithms to es-
timate different viscoelastic properties of soft tissues. Doyley et al [5] describe
inversion schemes for each elastographic modality (quasi-static, harmonic and tran-
sient) and Barbone et al [6] focused their review on the mathematical structure and
its computational solution for different biomechanical imaging.

In this article, we provide a review of current elasticity techniques (Section 2) and
the application of numerical methods in this type of imaging (Section 3). In Section
4, we present the application of total variation and AM-FM algorithms to estimate
locally the shear velocity of tissue in a particular type of elasticity imaging: Crawl-
ing Waves Sonoelastography.

2 Elastographic techniques

In the last 20 years, several groups have contributed to the field of elasticity imag-
ing. While there are a variety of available techniques, they all share the following
basic elements : (i) A mechanical force is applied to the tissue, (ii) the local motion
provoked in the tissue is measured, and (iii) an elasticity parameter is estimated
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from the measurements.

The different elastographic techniques can be classified by the type of information
they provide (qualitative or quantitative), by the way the force is applied to the
tissue (mechanical or acoustic radiation force), and by the modality used (US, MRI,
or optical coherence tomography). In this paper, we only focus on ultrasound based
elasticity imaging modalities. Table 1 shows a summary of these techniques.

Table 1: Summary of elasticity imaging modalities

Technique Qualitative
or quanti-
tative

Force ap-
plied

Parameter
measured

Authors First pub-
lication

Reference

Sonoelasto-
graphy

Qualitative Mechanical Vibration
Amplitude

Lerner et
al.

1987 [7]

Compression
Elastogra-
phy

Qualitative Mechanical Strain Ophir et al. 1991 [8]

Shear Wave
Elasticity
Imaging

Quantitative Radiation
Force

Shear
wave
speed

Sarvazyan
et al.

1998 [9]

Vibroacousto-
graphy

Quantitative Radiation
Force

Local
acoustic
response

Fatemi et
al.

1999 [10]

Transient
Elastogra-
phy

Quantitative Mechanical Shear
wave
speed

Catheline
et al.

1999 [11]

Acoustic
Radia-
tion Force
Impulse

Qualitative Radiation
Force

Peak dis-
placement

Nightingale
et al.

1999 [12]

Crawling
Wave
Sonoelas-
tography

Quantitative Mechanical Shear
wave
speed

Wu et al. 2004 [13]

Supersonic
Shear
Imaging

Quantitative Radiation
Force

Shear
wave
speed

Bercoff et
al.

2004 [14]

SMURF Quantitative Radiation
Force

Shear
wave
speed

McAleavey
et al.

2007 [15]

2.1 Vibration amplitude sonoelastography

Lerner et al. proposed the idea of particle vibration displacement estimation us-
ing Doppler ultrasound [7]. Sonoelastography uses external mechanical sources to
apply a low-frequency (20-1000 Hz) and low amplitude (20 to 100 µm) excitation
to generate internal sinusoidal vibrations in the tissue under inspection. The low
amplitude of excitation ensures a safe, non-invasive method and the low frequency
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reduces the shear wave attenuation to enable deeper penetration in the tissue. The
motion is then detected by Doppler ultrasound using a simple relationship between
the Doppler spectral variance and the sinusoidal vibration amplitude of particles in
the tissue.

Although, the main clinical focus of sonoelastography has been prostate cancer
detection [16, 17, 18, 19], it has also been used in liver [16, 20], breast [21, 22] and
kidney [16]. Vibration sonoelastography has shown better sensitivity and predictive
values than B-mode imaging for in vitro results in prostate cancer [23].

The advantage of this technique is that it is compatible and easy to implement
in commercially available US scanners. The main disadvantage is the need for an
external vibration source which can introduce variability in the measurements. Fig-
ure 1 shows matching B-mode and sonoelastographic images of an in vivo human
prostate. A cancerous tumor is shown in both images. The lack of vibration (rep-
resented by the void in the green background) in the sonoelastographic image is
characteristic of a hard lesion adding to the diagnostic value of the B-mode image.

(a)                                                                          (b) 

Figure 1: (a) B-mode US and (b) sonoelastographic images from an in vivo prostate
study. The sonoelastographic image reveals a stiff (cancerous) mass (denoted by
arrows) in the middle of the image.

2.2 Compression elastography

This is arguably the most extensively used elastographic technique in clinical prac-
tice. In 1991, Ophir et al. [8] introduced an ultrasound technique for imaging soft
tissue and strain profiles due to a compressive force applied to the medium. In this
technique, radio-frequency (RF) signals from the same regions are compared be-
fore and after a small, quasistatic compression applied to the tissue. Displacement
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between the two data sets is estimated using cross-correlation techniques. After
that, the spatial derivative of the displacement is estimated to obtain a strain profile.

In this technique, the soft tissue can be understood as a simple union of 1-D springs.
With this idea, the strain (ε) can be related to the internal stress (σ ) using Hooke’s
law:

σ = Eε (1)

Where E is the Young’s modulus of the tissue. In order to simplify the estimation
of the elasticity modulus, the internal stress distribution is typically assumed to be
constant (σ ≈ 1). Using this assumption, an approximate and relative estimation of
Young’s modulus is computed from the measured strain.

Compression elastography uses a transducer to produce the compression near the
region of interest, which is very simple to implement in commercial US scanners.
However, the quality of the image depends on the skill of the operator. There are
also difficulties in compressing deeper organs and there is a tendency for objects
to move out of plane during compression. Clinical applications include breast [24]
and prostate [25] cancer detection, arterial plaque detection, treatment of lesions by
High Intensity Focused US [26] and RF ablation in liver [27].

Figure 2 shows a compression (or strain) elastography image of a two layer phan-
tom next to its matching B-mode image. The image shows that the upper part of
the phantom is harder than the bottom. The image was taken with a Sonix Touch
scanner (Ultrasonix, British Columbia, Canada) using a L14-5/38 probe at 10MHz
in the Medical Image Research Laboratory at the Pontificia Universidad Católica
del Perú.

2.3 Elasticity Imaging based on Acoustic Radiation Force

In addition to applying an external vibration or compression in the tissue, it is
possible to create motion within tissue using acoustic radiation force (ARF). ARF
is a phenomenon related to the attenuation of acoustic waves in a medium or tissue.
Ultrasound waves transfer part of their momentum to the tissue and consequently
push the local tissue from the inside and along the wave propagation direction [28].

In the case of soft tissue, absorption is the predominant attenuation mechanism in
the medium. In this case, radiation force generated from an acoustic plane wave
can be expressed as follows [12]:

F =
2αI

c
(2)

Where F is the acoustic radiation force, α is the absorption coefficient of the tissue,
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(a)                                                              (b) 

Figure 2: (a) Compression (or strain) elastography image superimposed onto a B-
mode image, and (b) B-mode image of a two layer gelatin phantom. The image
shows that the upper part of the phantom is stiffer than the bottom.

I is the time-averaged acoustic beam intensity, and c is the speed of sound in the
medium.

The spatial distribution of this radiation force is dependent on the focal configu-
ration of the transducer, which is often characterized by the transducer f-number
(F/#), and the spatial distribution absorption coefficient of the material.

As seen in Table 1, there are different elastography techniques which use ARF.
In the case of quantitative techniques based in ARF, they estimate the shear wave
speed (cs) within the tissue. This parameter can be obtained by equation (3):

cs =

√
G
ρ

(3)

Where G is the shear modulus and ρ is the density of the material.

In order to obtain a relationship between shear wave speed and the elasticity mod-
ulus, it is assumed that soft tissues are nearly incompressible, and, therefore, their
Poisson’s ratio (v) is approximately 0.5. The shear modulus can be related with the
elasticity modulus by:

G =
E

2(1+ v)
≈ E

3
(4)

Therefore, for a nearly incompressible biomaterial, a measurement of the shear
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wave speed can be related with elasticity modulus as:

cs ≈

√
E
3ρ

(5)

We can use (5) to obtain information about the stiffness of the material. For that
reason, in elastographic imaging experiments (based on ARF or external forces),
there has been increased attention on imaging shear wave properties.

Here, some of the elasticity techniques based on ARF are briefly explain:

2.3.1 Shear wave elasticity imaging

Shear wave elasticity imaging (SWEI) is used to image and characterize tissue
structures using shear waves induced by ARF from a focused ultrasonic beam.
Therefore, SWEI can use the same US transducer to generate the motion and the
corresponding image.

In SWEI, the induced strain in the tissue can be highly localized because the in-
duced shear waves are completely attenuated within a very limited region near the
focal point of a focused ultrasound beam. In order to capture sufficient detail of
the shear waves, frame rates of a few thousand images per second are needed. The
shear wave propagation is tracked at different points adjacent to the focal point and
the shear wave speed is obtained using cross-correlation algorithms. However, it is
possible to increase the temperature of the tissue [9].

2.3.2 Acoustic Radiation Force Impulse (ARFI)

Nightingale et al. [12] proposed this technique. ARFI imaging uses a series of
high intensity pushing beams of short duration (0.03-0.4 ms) to generate local-
ized displacements (between 1 and 20 µm), and these displacements are tracked
by ultrasound pulses of low pulse repetition frequencies (3 to 12 kHz) [29]. The
response of the tissue to these forces is monitored to obtain images depicting the
peak displacement or the time of recovery.

The same US transducer is used to generate the ARF and to track the resulting
displacements. Thus, ARFI does not require additional hardware. However, as a
disadvantage, the repetitive use of ARF increases the temperature of the tissue. For
this reason, the intensity and the duration of the push pulses are limited to avoid
heating and cavitation [29].

2.3.3 Supersonic Shear Imaging

Supersonic Shear Imaging (SSI) is an ultrasound-based technique that can visual-
ize viscoelastic properties of soft tissue in real time [14]. It generates mechanical
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vibration sources radiating at low-frequency using ultrasonic focused beams at dif-
ferent focal points in the axial direction. The resulting shear waves will interfere
constructively along a cone shape, creating two intense plane shear waves (See Fig-
ure 3). These waves propagate through the medium and are affected by the tissue
[14]. An ultrafast scanner (> 5000 frames/s) is able to both generate this supersonic
source and image the propagation of the resulting shear waves. The shear elasticity
is mapped quantitatively from this propagation movie. SSI enables tissue elasticity
estimation in less than 20 ms.

Figure 3: Radiation force pushes are induced by the transducer at different loca-
tions. As a result, shear waves are amplified in a cone shape (in orange), which
increases the propagation distance of shear waves while acoustic power is mini-
mized.

2.3.4 Spatially Modulated Ultrasound Radiation Force

In Spatially Modulated Ultrasound Radiation Force (SMURF), an acoustic radi-
ation force with a well-defined intensity is used to generate shear waves with a
known wavelength, λ , and then measures the frequency of the wave, f . [15]. The
frequency of this wave, tracked along a single A-line, and λ are then used to es-
timate the shear modulus of the tissue. The advantage of this method is that it
only requires a single location for measuring the displacement of the tissue and
also gives quantitative information [30]. In Figure 4, a brief scheme of SMURF is
presented. The shear speed can be estimated by forcing a known spatial frequency
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and estimating the arrival time of the shear wave generated. Therefore, the shear
modulus can be obtained from (6) and, subsequently, the elasticity modulus using
equations (3) and (4).

cs = f λ (6)

Figure 4: Brief scheme of SMURF. The red arrow indicates the direction of the
generated shear wave. The tracking pulse is shown in green. SMURF generates
shear waves of known source separation (λ ). It measures the arrival time difference
(∆T ) of the induced shear waves in an elastic medium.

Figure 5 presents the B-mode and the SMURF images obtained using a phan-
tom. This phantom consisted of two layers, the upper layer stiffer than the bottom
one.The color bar indicates the shear modulus of the material. The image was ob-
tained using a Siemens Antares scanner in the McAleavey Laboratory at University
of Rochester (Rochester, NY, USA).

ARF-based images have been applied to artery characterization [31, 32], colorectal
tumor imaging [33], breast lesion detection [34], diagnosis of liver fibrosis [35],
and guidance of RF ablation procedures for heart [36], liver [37], cornea stiffness
[38], the elasticity time variation of the myocardium in the heart [39] and in tissue-
mimicking phantoms [40].
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                                 (a)                                                                 (b) 

Figure 5: (a) B-mode and (b) SMURF image of a gelatin phantom. The yellow
circle indicates the boundary between region 1 and region 2 in the B-mode. We can
see the elasticity contrast between the two regions in the SMURF image. The axial
and lateral dimensions are in cm.

2.4 Transient Elastography

The concept of transient elastography was introduced in 1999 by Catheline et al.
[11]. It is different from other elastographic techniques in that it uses an ultrafast
ultrasound scanner to capture the propagation of shear waves generated by an exter-
nal piston source. The rapid speed of transient elastography allows the separation
of the transmitted wave from reflected waves. Thus, the technique is less sensitive
to boundary conditions than other elastographic techniques. In addition, the ac-
quisition time is short (less than 100 ms), which enables measurements on moving
organs [11].

This technique has been applied to nonlinear elasticity measurements [41], liver
fibrosis [11, 42], and breast tumor detection [43]. From this technology, the French
company Echosens created the product Fibro scan which has become part of the
standard of care for liver fibrosis [44].

2.5 Crawling Waves Sonoelastography

Crawling Wave Sonoelastography (CWS) is an elasticity imaging technique pro-
posed by Wu et al. [13]. In this technique, two opposing shear wave vibration
sources are operated at slightly offset frequencies and produce a slowly moving
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interference pattern, termed Crawling Waves (CW), which is imaged in real time
using vibration sonoelastography. The apparent velocity of CW is proportional to
the underlying shear velocity of the tissue and can be used to estimate locally its
elasticity modulus. This technique offers a quantitative estimation of the elastic
properties of the tissue. In addition, the use of two vibration sources drives more
mechanical energy into the tissue improving the Signal-to-Noise Ratio (SNR) [45].

The shear wave velocity can be estimated in different ways. Local frequency esti-
mators were proposed by Wu et al. [13]. McLaughlin et al. [46] presented a method
in which features of the CW and arrival times at points in the image plane are used
to calculate the local shear velocity distribution in the image. Hoyt et al. [47] pro-
posed a real-time estimator based on autocorrelation methods. In this technique,
the shear wave velocity is estimated using (6). Here, f is the vibration frequency
controlled and given by the vibration sources and λ is the shear wave wavelength
measured from the image. In soft tissue, the relationship between Young’s modulus
(E) and shear wave velocity can be approximated using equation (5) and assuming
that the material is incompressible.

Crawling wave sonoelastography has been successfully applied to detect radio fre-
quency ablated hepatic lesions in vitro [48], to characterize human skeletal muscle
in vivo [49, 50] and to characterize human prostate tissue ex vivo [45].

In Figure 6, we can see a crawling wave image of a gelatin phantom with a central
stiffer inclusion. The interference pattern shows a different shear wave speed inside
the red circle (a longer wavelength of the interference pattern) due to the stiffer
material. This image was taken at the Sonoelasticity Laboratory of the University
of Rochester using a GE Logiq 9 (GE Healthcare, Wauwatosa, WI, USA) scanner.

3 Numerical Methods in Elasticity Imaging

Numerical methods can be used to solve forward and inverse problems implicit
in the algorithms to estimate the anisotropy, viscoelastic linear and non-linear pa-
rameters within soft tissues. Several groups have developed various elastographic
approaches that examine first order approximation (methods based on stress uni-
formity [8] or local frequency estimation [7]), the direct problem elasticity imaging
using Finite Elements Methods (FEM) and more complex models that cover the
nonlinear viscoelasctic behavior [5]. Here we summarize how these methods have
been applied to the different elastography modalities.

In compression elastography, the interpretation of the internal strain as a measure
for the elasticity modulus (E) has several problems. First, the spatial derivative am-
plifies high frequency noise and, thus, the image quality is affected by the variance
of the displacement estimation. Second, the assumption of a uniform stress distri-
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Figure 6: Crawling wave image of a gelatin phantom with a vibration frequency of
290Hz and0.35 Hz offset. The red circle shows an area of longer wavelength in the
pattern and, therefore, of higher shear velocity.

bution can lead to strain image artifacts and diagnostic misinterpretations. Third,
the tissue strain is a qualitative measure that cannot be compared quantitatively
[51].

To overcome these drawbacks, Kallel et al. [52] proposed the reconstruction of
elastic properties using elasto-mechanic models. In this work, a regularized inverse
problem was formulated for only the axial component of the 3-D displacement
vectors as a nonlinear least squares problem. Several groups have extended the re-
construction approach to use two or three components of the displacement vectors
and have also modified the solver for the nonlinear problem [53, 54]. The reason
to work with volumetric data is because 3-D motion tracking will significantly re-
duce echo signal decorrelation induced by tissue motion and deformation in the
elevational direction that cannot be accurately tracked in 2-D echo data. Initial re-
sults using tissue-mimicking phantom have demonstrated that full 3D tracking can
provide significantly higher quality strain images compared to 2D acquisition data.

In [55], Hall et al. show a review on their current status and recent developments
to image in vivo nonlinear strain and tissue mechanical properties. They show the
benefits using optimization approaches and different strain estimators (least squares
strain estimator, total variational differentiation (TVD) strain estimator and two-
point forward finite difference method). They mention that both the least squares
and the TVD strain estimator produce less noisy strain estimates, whereas the two-
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point finite difference method amplify the noise in the displacement estimates. Ap-
plications of their progress are illustrate in breast disease diagnosis and tumor ab-
lation monitoring.

Eder et al. [51] reformulated the inverse reconstruction problem as an optimization
problem and proposed the trust region reflective Newton solver to achieve a fast
convergence of the reconstruction process. They computed the gradient informa-
tion using the adjoin method [56] and used regularization to reduce the influences
of the variance of the displacement estimation. The static external compression in
the tissue generates a displacement u. They found u as a solution of a boundary
value problem modeling the elasticity modulus as a parametric function e. Solving
the problem for u yields a mapping e→ u, which they termed the forward problem
of the reconstruction. They chose to implement a FEM solver based on a uniform
rectangular grid, approximating e by a piecewise constant function, represented by
a vector E (elasticity-modulus).

Thus, the FEM solver implements a mapping (E → U = Φ(E))by solving a lin-
ear system of equations. For the estimation of internal tissue displacement using
ultrasound echo signals, they chose the block-matching algorithm [57] which is
applied to the envelopes of the pre- and post-compressed US echo signals. They
estimated the elasticity modulus (EM) by solving the inverse problem UM = Φ(EM)
with the consideration that displacement estimates (UM) always have a certain es-
timation variance. To find an optimal E-modulus (Eρ ) which maps Φ(E) close to
UM, regularization was applied:

Eρ = argmin{G(E);E} (7)

G(E) = ||W · (Φ(E)−UM)||22 +ρR(E) (8)

Where R(E) is a regularization measure and || · ||22 denotes the L2-norm of a vec-
tor. The regularization parameter ρ and the weights W determine the relative im-
portance given to data fidelity versus regularity. W is the inverse of the standard
deviation (σ ) of the displacement estimation errors for each estimate (W = 1/σ ).

To measure its regularity, they use the total variation of a function. However, the
regularization process compromises the spatial resolution and contrast of the re-
constructed result.

Pavan et al. [58] used FEM to show that elastic properties and the nonlinear
strain/stress behavior have influence in the changes of image contrast as the material
deforms due to compression. They simulated stress/strain data using the Vernda-
Westmann constitutive hyperelastic model [59]. This model proved to be a good
alternative to fit phantom [60] and breast tissue [61] stress/strain data. The strain
contrast between inclusion and background was analyzed for different amounts of
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strain using materials with different stiffness and nonlinearity. The strain contrast
behavior with applied compression was affected by the nonlinearity of the inclu-
sions. The clinical relevance of this work was that nonlinear elasticity provided
information which could be used to distinguish various tissues.

Erkamp et al.[62] could increase differentiation between different materials types,
modeling its nonlinear elastic properties. They performed simulations and mea-
surements in agar-gelatine phantoms and fitted the data using a 3-D second order
polynomial model. Their results show the potential to both increase the Contrast-
to-Noise Ratio (CNR) in elasticity imaging and provide a new independent mecha-
nism for tissue diferentiation without any sacrifice in spatial resolution.

Numerical methods were also applied to elasticity modalities based on ARF. Palmeri
et al [63] evaluated the effect of temperature increase under several pushing schemes
in ARFI imaging. For that, they developed a FEM to simulate the heating associ-
ated with ARFI imaging. They assumed that the change in the speed of sound with
respect to temperature is linear for temperature changes less than 6◦C [64]. The
model was implemented using two steps:(i) the spatially distributed acoustic in-
tensity field was computed and the associated heat source function was estimated
using equation (9), and (ii) FEM was used to determine the thermal response of the
tissue.

qv = 2αI (9)

Where qv[J/cm3] is the rate of heat production per unit volume, α[N p/cm] is the
absorption coefficient for soft tissue and I[W/cm2] is the acoustic beam intensity.

This work found that the temperature increase is greater for less-absorbing tissues,
and more-absorbing tissues distribute the thermal energy over greater volumes in
the near field. They also found that ARFI images can suffer from artifacts due to
sound speed changes in the transducer and the tissue.

Bouchard et al. [65] described and evaluated various beam sequencing schemes
which were designed to reduce acquisition time and heating. These techniques re-
duced the total number of radiation force impulses needed to generate an image and
minimize the time between impulses. Tissue and transducer face heating which
resulted from these schemes were assessed through FEM modeling and thermo-
couple measurements. They could reduce frame acquisition time incorporating a
new beam sequencing (multiplexed and multi-time techniques) and parallel-receive
beam forming into ARFI imaging. Results indicated that heating issues can be mit-
igated by employing ARFI acquisition sequences that utilize the highest track-to-
excitation ratio.

Recently, Dhanaliwala et al. [66] proposed a new 1.5-D ARF transducer to reduce
echo decorrelation and improve ARF image signal-to-noise. Echo decorrelation
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improvements are achieved using the 1.5-D design in [67], and dedicated elements
for each of the pushing and tracking functions. The model was validated and eval-
uated using FEM in terms of SNR and CNR. When compared to a conventional
1-D array, simulations showed that the 1.5-D ARFI array provided significantly
improved displacement estimation, SNR, and CNR.

In crawling wave sonoelastography, McLaughlin et al. [68] used numerical meth-
ods to calculate the speed of the moving interference pattern using the arrival times
of these same patterns. A geometric optics expansion was used to obtain equations
(10) and (11), which are called the Eikonal equations:

|∇φ(x)|=
√

ρ/µ = 1/Cs (10)

|∇φ(x)|=
√

ρ/(λ +2µ) = 1/Cp (11)

Where φ(x) is the phase of the ultrasound wave, ρ is the density material, λ , µ

are the Lamé constants, Cs and Cp are the shear and compression wave speeds,
respectively.The Eikonal equations are related to the moving interference pattern
arrival times, to the moving interference pattern speed, and then to the shear wave
speed. To find the arrival times, they employed a cross-correlation technique and
an inverse Eikonal solver, called the Level Curve Method, to compute the speed of
the interference pattern.

To estimate the interference pattern speed (V ), they used the spatially varying com-
ponent of the phase, which is ϕ(x) = ω1φ1 +ω2φ2 for crawling waves, so:

V =
ω1−ω2

|∇ϕ(x)|
=

∆ω

|∇ϕ(x)|
(12)

The goal in [67] was to calculate V α|∇ϕ(x)|−1 avoiding the essentially unstable
calculation of dividing by derivatives of noisy data. To do that, a robust second
order method approximated the speed of the moving interference pattern using the
elementary idea that speed is distance divided by time. Thus, the interference pat-
tern speed, V , was calculated with the inverse level curve method for the Arrival
Time algorithm. With this parameter they showed the image as a function of 2ω1F

∆ω
.

Hoyt et al. [69] proposed a viscoelastic approach based on sonoelastography imag-
ing. A viscoelastic Voigt model was fitted using nonlinear least-squares techniques
to determine the frequency-independent shear modulus and shear viscosity esti-
mates using crawling wave sonoelastography. They validated their technique using
simulations, phantom studies and human studies. The phantom studies revealed
a 1% error in shear modulus in comparison to results from a mechanical testing
system. Investigations in healthy human skeletal muscles revealed that voluntarily



58 Copyright © 2013 Tech Science Press MCB, vol.10, no.1, pp.43-65, 2013

contracted muscles exhibit increases in both shear modulus and shear viscosity es-
timates as compared to relaxed muscles. The authors also observed an increase in
shear speed with frequency.

4 AM-FM techniques and Crawling Waves Sonoelastography applied to the
estimation of elasticity

4.1 Current estimation of shear wave speed in CWS

Hoyt et al. [47] proposed a real-time estimator based on autocorrelation methods.
One of the main advantages of this method is its computational simplicity compared
with color flow processing available in commercial US scanners.

The shear velocity in both axes, axial (x) and lateral (y), are computed as:

cx =
∣∣∣2π( fs+∆ fs)Tx

∆θx

∣∣∣
cy =

∣∣∣2π( fs+∆ fs)Ty
∆θy

∣∣∣ (13)

Where fs is the vibration frequency, ∆ fs is the offset in frequency between the two
vibration sources, Tx and Ty are the spatial spacing in the axial and lateral axes
respectively and ∆θx, ∆θy are the variation of the analytic signal phase in the axial
and lateral axes respectively.

In practice, boundary conditions or slight misplacements in the experimental setup
change the direction of the CW. Therefore, both estimations can be combined to
obtain a single and more accurate estimate of the shear velocity of the sample,
which was named a 2-D shear velocity estimate:

cs2D =
cx√(

cx
cy

)2
+1

(14)

The result is an image which represents the local shear velocity of the tissue which
is termed shear velocity sonoelastogram.

This method was applied to estimate the viscoelastic properties in human prostates
[69], ex vivo thermal ablated lesions in liver [48], and human skeletal muscles [49].
However, this method is affected by wave reflections and results from the estima-
tion show a bias depending on the initial phase of the signal in the local kernel.

4.2 AM-FM demodulation

The AM-FM representation of images allows us to model non-stationary image
content in terms of amplitude and phase functions. The elements presented in the
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image can be represented using [70]:

I(ξ ) =
L

∑
n=1

an(ξ )cos(ϕn(ξ )) (15)

Where I(ξ ) : R2→ R is the analyzed image, ξ = (ξ1,ξ2) ∈ R2, L ∈ N, an : R2→
[0,∞) and ϕn : R2→ R.

Equation (15) suggests that the L AM-FM component images, an(γ)cos(ϕn(γ)),
model the essential image modulation structure, the amplitude functions an(γ) can
be understood as the intensity of the region in the image, and the FM components
cos(ϕn(γ)) capture fast-changing spatial variability in image intensity [70].

Given the image I(ξ ), the computation of the AM-FM components involves the
estimation of the instantaneous amplitude function an(ξ ), the instantaneous phase
function ϕn(ξ ) and the instantaneous frequency ωn = ∇ϕn(ξ ).

Standard reconstructions of I(ξ ) included the AM-FM Dominant and Channelized
Component Analysis (DCA and CCA, respectively). In both methods, a filter bank
is applied to the Hilbert-tranformed image, and then, the AM-FM demodulation
of each band-pass filtered image is performed. In AM-FM reconstructions based
on the CCA, a reasonably small number of locally coherent components are used.
Those based on DCA only use one component from the channel with the maxi-
mum amplitude estimate. Nevertheless, both types of reconstructions are known to
produce noticeable visual artifacts [71].

In [70], Rodriguez et al. proposed a method based on a regularized optimization
of the estimates from the CCA, which obtained a small number of locally coher-
ent components and simultaneously enforced a piece-wise smooth constraint for
the amplitude functions. This method showed higher quality reconstructions than
standard CCA and DCA reconstructions.

4.3 Crawling waves and AM-FM demodulation

As previously explained, in CWS, two opposing sources create an interference pat-
tern imaged with Sonoelastography.

Under the plane wave assumption and considering a homogenous sample, the shear
waves introduced by the right and left vibration sources can be described as follows
[45]:

Wright = e−α(x+D
2 ) · e−i(k1(x+D

2 )−w1t) (16)

Wle f t = e−α(D
2−x) · e−i(k2(

D
2−x)−w2t) (17)
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Where α is related to the attenuation of the wave in the sample, D is the distance
between the sources, k1 and k2 are the wave numbers and w1 and w2 are the fre-
quencies of the vibration sources.

The resulting pattern is the superposition of the two waves. Sonoelastography will
image the squared signal of the envelope:

|u(x, t)|2 = 2e(−αD)[cosh(2αx)+ cos(2kx)] (18)

The CWS image represented in (18) can be understood as a signal with amplitude
and frequency modulation. Therefore, we propose to apply AM-FM demodulation
to estimate the local spatial frequency of the signal, and consequently, the shear
wave velocity. Based on [70], we perform a Total Variation denoising with a non-
standard exponent which enforces a non-negativity constraint [72] since the noise
in the image is neither salt-and-pepper nor Gaussian. Finally, we generate a recon-
structed image via [72] to perform the spatial frequency estimation.

Figure 7 shows some preliminary results of this technique. Matching (a) B-mode,
(b) histological, (c) crawling waves, and (d) shear velocity images of an ex vivo
prostate acquired just after radical prostatectomy. The acquisition was performed
with a specially modified Logiq 9 US scanner (GE Healthcare, Milwaukee, WI,
USA) and two external mechanical sources (Model 2706, Brüel & Kjaer, Naerum,
Denmark) vibrating at 120 Hz and 0.25 Hz offset. The shear velocity estimation
shows a stiffer region to the left of the gland which coincides with the outlined
cancer in the histological image. However, it is also apparent that there is a visual
artifact to the right side of the prostate. Although promising, it is necessary to
validate this technique with more cases of study.

5 Conclusion

This article aims to present an introduction to elasticity imaging and the applica-
tion of numerical methods in this topic. The working principle and clinical appli-
cations of qualitative modalities (sonoelasticity, strain elastography, acoustic radia-
tion force impulse) and quantitative modalities (Crawling Waves Sonoelastography,
SWEI, SMURF, Supersonic Imaging) are described. In this context, numerical
methods can be used to solve forward and inverse problems implicit in the algo-
rithms to estimate viscoelastic linear and nonlinear parameters. In particular, the
Finite Element Method stands out as one of the most widespread approaches to
solve the partial differential equations involved. We conclude by proposing a new
technique which combines total variation and AM-FM demodulation techniques to
estimate the shear velocity from crawling wave sonoelastography images.
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Figure 7.Matching (a) B-mode, (b) histology, (c) crawling waves, and(d) shear velocity images of an ex-vivo 
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