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Abstract
A novel method for estimating the shear wave speed from crawling waves based on the amplitude 
modulation–frequency modulation model is proposed. Our method consists of a two-step 
approach for estimating the stiffness parameter at the central region of the material of interest. 
First, narrowband signals are isolated in the time dimension to recover the locally strongest 
component and to reject distortions from the ultrasound data. Then, the shear wave speed is 
computed by the dominant component analysis approach and its spatial instantaneous frequency 
is estimated by the discrete quasi-eigenfunction approximations method. Experimental results 
on phantoms with different compositions and operating frequencies show coherent speed 
estimations and accurate inclusion locations.
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Introduction

Elastographic imaging conveys the local biomechanical properties of soft tissue and its varia-
tions, and allows the diagnosing of pathological changes and tissue abnormalities in regions of 
interest.1 While the traditional technique of evaluating such parameters is based on local palpa-
tion, its inaccuracy leads to several alternatives.2 This introduces a framework consisting of 
external stimuli capable of causing tissue motion along with a certain imaging modality that 
assures a high-precision measurement.3 Imaging modalities, which include ultrasound and mag-
netic resonance imaging, are applied for this purpose on clinical applications such as cancer 
diagnosis, hepatic cirrhosis, and renal disease, among many others.4 Based on this, several elas-
tographic techniques have been proposed over the last 20 years, both quantitative and qualitative, 
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which require image processing algorithms to compute viscoelastic linear and nonlinear param-
eter estimations and involve ill-posed inverse problems.5

Crawling wave sonoelastography was introduced as a method for quantifying tissue elasticity 
by its relation with the shear wave speed as visualized in the interference patterns of two sources 
oscillating at slightly different frequencies.6 Since its establishment, many information extraction 
methods have been proposed to estimate such mechanical property. Originally, Local Frequency 
Estimators based on the distance between interference pattern stripes were used for this task.6 
Subsequent research included a real-time autocorrelation approach based on the local shear wave 
speed and its relation with the spatial derivative phase function, which allows 2-D speed esti-
mates.7 Also, an overall elasticity estimation method was proposed which applied a cosine fit to 
a region of interest based on a cross optimization process.8

The crawling wave method has been successfully applied at different kinds of human tissue to 
characterize human skeletal muscles in vivo,9,10 human prostate tissue ex vivo,11 and estimate 
human liver steatosis from dispersion estimates.12,13 The latter involves applying the method on 
highly attenuating tissues.

Clearly, the use of a model that allows an accurate computation of the interference patterns 
local properties is crucial for quantifying tissue stiffness. Regarding this matter, nonstationary 
signal modeling is currently a solid field of study applied on a wide variety of tasks. The amplitude 
modulation–frequency modulation (AM–FM) model allows the description of such patterns by 
using a sum of quasi-sinusoidal components, each characterized by an instantaneous amplitude 
(IA) modulation function and an instantaneous frequency (IF) modulation function, which allows 
a more locally coherent and well-defined frequency representation.14-16 The AM–FM model is a 
compelling way to sketch the structure of a dynamic signal as it allows to measure amplitude and 
oscillation rates in a local fashion. For this model, the multidimensional quasi-eigenfunction 
approximation (QEA) for discrete linear systems is introduced as a robust estimator of the IA and 
IF functions.17,18 Furthermore, two multi-component modeling paradigms known as dominant 
component analysis (DCA) and channelized component analysis (CCA) split the signal into mul-
tiple narrowband components to then associate its behavior exclusively to the locally strongest 
component or a sum of components, respectively.17,19 Overall, the AM–FM paradigm has been 
applied in a variety of applications, including medical purposes, with high-quality results.20-25

The present work proposes the use of the AM–FM DCA model as an alternative to locally 
estimate the shear wave speed in the crawling waves technique by using the discrete QEA 
method. Prior to the demodulation task, a constraint is introduced to the ultrasound data to keep 
the oscillatory properties coherent with the model, which allows the rejection of spurious com-
ponents that may affect the estimation accuracy. Then, the local shear wave speed is estimated by 
associating it to the local oscillation rate across the tissue. The rest of the document is organized 
as follows: the “Definition” section introduces the theoretical definitions and methods required 
for establishing the framework of interest, “Proposed Method” section presents the proposed 
method for estimating the shear wave speed from crawling waves based on the AM-FM multidi-
mensional model, “Experimental Results” section shows the performance of the proposed method 
on homogeneous and nonhomogeneous phantoms, and the “Discussion” section presents a dis-
cussion regarding the theoretical and practical features of the proposed approach. Finally, 
“Conclusion” section presents the conclusions and future work details.

Definitions

Crawling Wave Sonoelastography

The crawling wave sonoelastography technique is built on the propagation of interference pat-
terns inside a material via the excitation of two vibration sources. Under the plane wave 
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assumption and considering a homogeneous sample, the shear waves introduced by such vibra-
tion sources, expressed as Wright and Wleft, can be described as follows11:

                                        W e e
iD x k D x w t

right =
− −+( ) +( )−( )α / /

,
2 1 2 1  (1)

                                        W e e
iD x k D x w t

left =
− −−( ) −( )−( )α / /

,
2 2 2 2
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where D is the distance between sources, α the wave attenuation factor, k1 and k2 the spatial fre-
quencies, and w1 = 2πΔf1 and w2 = 2πΔf2 the vibration frequencies. In this particular case, w =  
w1 = w2 and k = k1 = k2. It is important to remark that both waves decay exponentially with α 
because they have the same spatial frequencies.

The interference patterns are the superposition of the two waves, and the corresponding 
squared signal envelope |u(x, t)|2 is established as

                                       u x t W W W W, * *
,( ) = +( ) +( )2

right left right left  (3)

                                        u x t e x kxD, cosh cos .( ) = ( ) + ( ){ }−2
2 2 2α α  (4)

By using oscillation sources with slightly different frequencies (f and f + Δf in Hz), the inter-
ference patterns will slowly move toward the source with lower frequency.6 In this scenario, the 
squared signal envelope |u(x, t)|2 formed by the superposition of both waves is modeled by

                              u x t e D x k k x wt, cosh cos ,( ) = − ( ) + +( ) + { }2
2 2 2α α ∆ ∆  (5)

where k is the local shear wave spatial frequency, and Δw = 2πΔf the frequency difference between 
the vibration sources. Focusing on the central region of the material and assuming weak wave 
attenuations, the hyperbolic cosine becomes constant.11 By discarding the effect of this term, which 
represents a DC frequency component i.e. the constant value of the signal (and thus easily rejected 
in practical scenarios), the squared signal envelope of the interference patterns is approximated by

                                           u x t e
D

k k x wt, cos .( ) ≈
−

+( ) + 
( )2

2 2
α

∆ ∆  (6)

The model establishes that the interference spatial frequency becomes approximately two 
times the true shear wave spatial frequency. Then, the true shear wave speed Vshear and the elastic-
ity modulus E can be computed by

                                                                  V
f

kshear =
⋅2π

,  (7)

                                                                  E V= ( )3
2ρ shear ,  (8)

where f is the operating frequency and ρ the mass density of the material. Figure 1 describes the 
setup for the crawling waves sonoelastography technique, as well as its output data.

If Δf is small compared with f, then Δk is small compared with k. Following Equation (7), the 
relation between the crawling wave speed and the true shear wave speed is given as,2
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According to Equation (9), the shear waves can be “slowed down” one or two orders of mag-
nitude by choosing Δw << w, so that a conventional ultrasonic scanner modified for sonoelastog-
raphy can visualize and track the wave propagation. This condition will be satisfied in the 
experiments covered in “Experimental Results” section. In addition, the value of Δw was chosen 
considering a ratio of Δw/frate, where frate is the ultrasound frame rate, equal or lower than the 
number of samples of the slow-time signal. If this requirement is satisfied, it is possible to recover 
at least one period of the slow-time signal.

AM–FM

The AM–FM model represents an oscillatory signal by a sum of individual components. Its for-
mulation is established by

                                                         t x ai x j i x
i

N
( ) = ( ) ( )( )

=

−
∑ exp ,ϕ

0

1

 (10)

where each AM–FM component ti(x) = ai(x)exp(jϕi(x)) is a complex-valued narrowband signal 
formed by an instantaneous amplitude (IA) function ai, an instantaneous phase (IP) function ϕi, 
and an instantaneous frequency (IF) function ∇ϕi. The AM–FM components are isolated from 
each other on a spatio-spectrally localized basis by multiband filter banks based on Gabor func-
tions,17,26 which obey design requirements to preserve coherent signal features. Refer to the lit-
erature by Bovik26 and Havlicek17 for full design considerations. In practice, given a real-valued 
multi-component signal defined by
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Its complex extension (analytical signal) t(x) may be derived by establishing a unique imaginary 
part based on the Hilbert transform H as

                                                               t x r x jH x( ) = ( ) + ( ) ,  (12)
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Figure 1. Ultrasound setup. (a) crawling waves sonoelastography setup, (b) ultrasound data described 
as a 3-D stack. (i) Ultrasound probe, (ii) mechanical sources oscillating at f and f + Δf, (iii) tissue of 
interest, area within the square indicates the central region.
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Following this, the signal local properties may be described by the DCA and CCA multi-
component paradigms.17 DCA models the signal’s nonstationary behavior at each x coordinate by 
exclusively taking into account the AM–FM component with the strongest response, also known 
as the AM–FM dominant component, which corresponds to the isolated signal with the highest 
signal-to-noise ratio. However, CCA builds a multi-component description based on the sum of 
multiple AM–FM components at each x coordinate. Although the latter model includes more 
compelling signal information, it may also include components that contain exclusively noise 
elements, which may lead to an inaccurate signal representation. Regarding the DCA, the AM–
FM dominant component is defined at each x coordinate by the channel response that maximizes 
the following channel selection criterion17,19:

                                                              ψm x
ym x

Gm
( ) = ( )

( )max | |
,

Ω Ω  (14)

where m indicates the channel, ym(x) the channel response at x, and Gm(Ω) the filter response at 
frequency Ω.

To estimate the instantaneous amplitude and IF functions, a demodulation method is required. 
Among the existing methods, the discrete QEA approach allows an accurate estimation for dis-
crete signals and successfully locates the estimated frequencies in the interval [−π, π].17 AM–FM 
modulating functions based on the QEA method are computed as follows:
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where ei is a unit vector with direction i, y is a narrowband complex signal, and G the filter 
amplitude.

Proposed Method

Pre-processing Procedure

Equation (6) provides a way to analyze the interference patterns at specific frames and lateral 
distance coordinates, which are denoted by t and x, respectively. For a fixed x coordinate, it is 
straightforward to verify that the pattern follows a sinusoidal function along t. As expected, this 
may not hold in practical scenarios where ultrasound data include noise components. Thus, 
recovering the original patterns becomes an ill-posed inverse problem that can be dealt with by 
using the AM–FM approach.

Following this, a more accurate representation of the interference patterns is obtained prior to 
estimating the local shear wave speed. First, a 7 × 3 median filter is applied at each ultrasound 
frame.11 Then, the AM–FM dominant component along t for every lateral distance x is extracted 
from the ultrasound data. Assuming that the strongest AM–FM component corresponds to the 
interference patterns while the rest of components correspond to noise content, the AM–FM 
dominant component along t for a lateral coordinate x0 corresponds to |u(x0, t)|2. For this function, 
the phase argument (2k + Δk)x0 is of particular interest because it contains information about the 
local shear wave spatial frequency, while the frequency argument corresponds to Δw.
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Narrowband components are isolated by applying a well spectrally localized 30-channel unit-
L2 norm Gabor filterbank along t. The filterbank is designed to cover a frequency domain from 
zero to half the frame rate, which depends on the ultrasound setup. It is important to note that the 
goal here is not to demodulate the AM–FM dominant component but to reject the rest of compo-
nents to remove spurious elements from the ultrasound data.

Shear Wave Speed Estimation Procedure

With the noise content attenuated by the previous procedure, an accurate estimation of the local 
shear wave spatial frequency is required to compute the local speed, as established by Equation 
(7). This is achieved by using the AM–FM model along the lateral dimension. To avoid the pres-
ence of noise components that were not fully attenuated by the pre-processing approach and 
assuming the strongest AM–FM component still corresponds to the interference patterns, the 
DCA paradigm is applied. Thus, the dominant component along x for a frame t0 corresponds to 
|u(x, t0)|2 and its IF function corresponds to the frequency argument (2k + Δk). As Δk is much less 
than k, the IF function becomes twice the local shear wave spatial frequency.11

A 6-channel unit-L2 norm Gabor filterbank with half-peak radial bandwidths of 1.5 octaves 
and 1.5 common ratio (r0 = 1 cm−1) is used for the narrowband signal isolation.17 IF estimates are 
then computed for each channel using the QEA method.

Shear wave speed computations are performed once the IF at each frame is estimated via the 
QEA method. For this purpose, the effective IF at each point is established as its median value 
computed across all frames. Figures 2 and 3 describe the pre-processing stage for a fixed lateral 
distance x0 and the demodulation approach for a specific frame t0, respectively.

Experimental Results

The performance of the proposed method is evaluated on a set of three homogeneous phantoms 
with varying gelatin content and a set of four inclusion (nonhomogeneous) phantoms with 

Figure 2. Dominant component recovery along t. Normalized for display purposes. (a) Original signal 
frequency components vs. dominant channel response (dotted line), (b) original signal vs. dominant signal 
(dotted line).
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inclusions of varying diameter. Table 1 describes the phantom set composition. The crawling 
waves setup includes operating frequencies that cover from 140 Hz to 360 Hz in steps of 20 Hz. 
Table 2 describes the equipment used in the crawling waves experiments. The ultrasound data 
collection parameters are as follows. Doppler frequency: 5 MHz, central frequency: 7.5 MHz, 
frame rate: between 9.03 Hz and 10.11 Hz.

The pre-processing approach performance is classified by the dominant component frequency 
and its contrast with Δw, which is known from the experimental setup, for three inclusion (non-
homogeneous) phantoms and three homogeneous phantoms at each operating frequency. The 
local speed estimation performance is classified by its comparison against mechanical measure-
ments for the homogeneous set and by the inclusion localization and inclusion-background con-
trast based on B-mode data for the inclusion set.

Pre-processing

The dominant component extraction performance is examined. Figures 4 and 5 describe a com-
parison between the original signal, its median filtering output, and the proposed approach for the 
homogeneous phantom and inclusion phantom cases, respectively. The proposed approach con-
sists of a median filtering plus the AM–FM dominant component isolation. The comparison is 
made at 240 Hz operating frequency and Δf = 0.35 Hz, and shows a considerable improvement 
in the signal behavior as compared with exclusively applying a median filter. Figure 6 shows the 

Figure 3. DCA along x (Δf = 0.35 Hz). Normalized for display purposes. (a) Pre-processed signal 
frequency components vs. dominant channels response (dotted line), (b) pre-processed signal vs. DCA 
output (dotted line), (c) QEA instantaneous frequency (IF) estimation. DCA = dominant component 
analysis; QEA = quasi-eigenfunction approximation.
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Table 1. Phantom Set Composition.

Degassed 
water (ml) NaCla (g) Gelatinb (g) Graphitec (g)

Nonhomogeneous Inclusion (16% gelatin) 150 1.35 (0.9%) 28.57 18 (12%)
 Background (10 % gelatin) 1800 16.2 (0.9%) 200 36 (2%)
Homogeneous 10% gelatin 1800 16.2 (0.9%) 200 36 (2%)
 13% gelatin 1800 16.2 (0.9%) 269 36 (2%)
 16% gelatin 1700 15.3 (0.9%) 323.8 36 (2.1%)

aPercentages based on the water content.
bGelatin information: 300 Bloom Type A pork 40 mesh. Percentages based on the water plus gelatin content.
cGraphite information: Powder G67-500. Percentages based on the water content.

Table 2. Ultrasound Equipment Used in the Crawling Waves Experiments.

Equipment Model and manufacturer

Amplifier 5530, AE Techron (USA)
Dual channel function generator AFG3022B, Tektronix (USA)
Mechanical vibration sources Brüel & Kjaer, Naerum (Denmark)
Ultrasound system GE Logiq 9, GE Healthcare (USA)
Linear array ultrasound transducer M12L, GE Healthcare (USA)

Figure 4. Pre-processing results for a homogeneous phantom (f = 240 Hz). (a) Original data, (b) 
median filtering output, (c) proposed approach: median filtering plus dominant component extraction.

Figure 5. Pre-processing results for an inclusion phantom (f = 240 Hz). (a) Original data, (b) median 
filtering output, (c) proposed approach: median filtering plus dominant component extraction.
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IF means for the dominant signal for each test phantom at each operating frequency and Δf = 0.35 
Hz. Standard deviations for all cases are below 10−14. Results show that the dominant frequency 
is close to Δw in most cases, which is consistent with the crawling waves model.

Speed Estimation for Homogeneous Phantoms

Spatial frequency estimations based on the proposed method are presented for homogeneous 
phantoms. Figure 7 shows the estimated shear wave average speed and standard deviation for 
10%, 13%, and 16% gelatin phantoms, along with the corresponding mechanical measurements. 
Both statistical properties were computed from a rectangular region with one-third the width and 
height of the frame and located at its center. The average speed vm and standard deviation vsd were 
computed as follows:

                                                                   vm N
vi

i

N
=

=

−
∑

1

0

1
,  (17)

                                                             
vsd N i

N
vi vm=

=

−
∑ −( )1 2

0

1
.
 (18)

Figure 6. Frequency mean for the estimated dominant signal from homogeneous (blue) and inclusion 
(red) phantoms (Δf = 0.35 Hz). (a) 10% gelatin phantom vs. φ = 1.83 cm diameter inclusion phantom, (b) 
13% gelatin phantom vs. φ = 1.35 cm diameter inclusion phantom, (c) 16% gelatin phantom vs. φ = 0.68 
cm diameter inclusion phantom.
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Figure 7. Shear wave average speed and standard deviation contrast between the proposed method 
and mechanical measurements (dotted line) for inclusion phantoms. (a) 10% gelatin phantom, (b) 13% 
gelatin phantom, (c) 16% gelatin phantom.

The average speed is relatively accurate for all three cases, especially for operating frequen-
cies above 200 Hz. For lower operating frequencies, the average speed becomes slightly less 
accurate for the 10% and 13% gelatin phantoms, while considerably less accurate for the 16% 
gelatin phantom. The largest average speed error for the 10% gelatin phantom is at 160 Hz (0.67 
m/s), for the 13% gelatin phantom is at 140 Hz (0.47 m/s), and for the 16% gelatin phantom is at 
180 Hz (0.93 m/s). The estimated speed standard deviation presents the lowest values for operat-
ing frequencies above 200 Hz in all three cases. Also for all three cases, the standard deviation at 
140 Hz is the largest with 0.24 m/s for the 10% gelatin phantom, 0.32 m/s for the 13% gelatin 
phantom, and 1.88 m/s for the 16% gelatin phantom. For display purposes, the shear wave speed 
range on Figure 7 does not include the standard deviations for all operating frequencies.

The previous observations clearly show a strong relation between the speed estimation accu-
racy and two main features: (a) the gelatin content of the phantom, which implies the stiffness of 
the material and (b) the operating frequency, which is directly associated to the local shear wave 
spatial frequency k by Equation (7). Both the increase of gelatin content (i.e., stiffer materials) 
and the decrease of the operating frequency lead to a less accurate speed estimation because the 
resulting shear wave is characterized by a low local spatial frequency, and thus the ultrasound 
data may not include enough information for an adequate reconstruction.

Speed Estimation for Inclusion Phantoms

Spatial frequency estimations based on the proposed method are presented for inclusion phan-
toms. Figures 8 and 9 show the estimated shear wave speed based on the proposed method for 
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Figure 8. Shear wave speed estimation images for the inclusion phantom set at 340 Hz operating 
frequency. The dotted regions describe the inclusion size and their respective diameters (φ) based on 
B-mode images information. (a) φ = 1.54 cm inclusion (Δf = 0.4 Hz), (b) φ = 1.83 cm inclusion (Δf = 0.35 
Hz), (c) φ = 1.35 cm inclusion (Δf = 0.35 Hz), (d) φ = 0.68 cm inclusion (Δf = 0.35 Hz).

four different inclusion diameters at 340 Hz operation frequency and its contrast with B-mode 
images, respectively. Specifically, the evaluation covers the following inclusion diameters: 1.54 
cm (at Δf = 0.4 Hz), 1.83 cm (at Δf = 0.35 Hz), 1.35 cm (at Δf = 0.35 Hz), and 0.68 cm (at Δf = 
0.35 Hz). Results show that high local shear wave speed corresponding to inclusion regions is 
correctly localized for all cases.

However, there is a considerable amount of artifacts that reduces the contrast between inclu-
sion and homogeneous regions. Specifically, due to the shadowing effects shown in the B-mode 
images included in Figure 9, the crawling waves images include artifacts located below the inclu-
sions. This causes a lack of accurate IQ signals at such regions and subsequent inaccurate speed 
estimations, as shown in Figure 8. From the four described scenarios, the one with the smallest 
inclusion diameter (0.68 cm) shows the most inaccurate localization.
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Discussion

While the main contribution of the proposed method is the use of the AM–FM framework for 
estimating tissue elasticity, a crucial step for achieving this lies in its noise rejection procedure 
that isolates the dominant component along frames from the ultrasound data. As there is no 
extensive study in the literature regarding the ultrasound noise distribution under the scenario of 
interest, the efficiency of such a method is based on the premise that the strongest AM–FM 

Figure 9. B-mode images for the inclusion phantom set at 340 Hz operating frequency. (a) φ = 1.54 cm 
inclusion (Δf = 0.4 Hz), (b) φ = 1.83 cm inclusion (Δf = 0.35 Hz), (c) φ = 1.35 cm inclusion (Δf = 0.35 Hz), 
(d) φ = 0.68 cm inclusion (Δf = 0.35 Hz).

 at UNIV OF ROCHESTER LIBRARY on September 24, 2015uix.sagepub.comDownloaded from 

http://uix.sagepub.com/


Rojas et al. 353

component corresponds to the crawling waves, rather than in any a priori information about the 
noise properties.

Another potential source of error is the presence of reflected shear wave components at 
boundaries. The impact of any reflected waves is greatest near boundaries and may affect local 
shear wave speed estimation, especially at low frequencies. However, as the attenuation coeffi-
cient increases with frequency, reflections are rapidly attenuated for high frequencies and their 
impact in the speed estimation is minimized.

However, the crawling waves model adopted in this research is a simplified version of the 
general model valid exclusively in the central region and under weak wave attenuation, as estab-
lished in the “Definitions” section. While the original research included the general superposition 
pattern, this was abandoned for one main reason: the introduction of the cosh(2αx) component 
imposes the requirement to compute the wave attenuation factor α to estimate k. As a conse-
quence, the research focused exclusively on demonstrating the benefits of the AM–FM model 
under the aforementioned conditions as an initial step toward a general framework.

Another important assumption in the estimation technique is a planar shear wave propagation. 
Although this assumption might not hold for nonhomogeneous material such as the inclusion 
phantoms evaluated in the experiments, it was adopted as an initial step toward demonstrating the 
potential of the AM–FM technique. Unquestionably, nonhomogeneous phantoms will show 
shear waves that deviate from plane wave conditions, and in that sense, the proposed estimation 
method is biased. Nonetheless, the experiments show accurate inclusion localizations and give 
enough motivation to extend the use of AM–FM to a multidimensional shear wave speed model 
that provides better results, such as similar approaches in the literature.7

Conclusion

A novel method for estimating the local shear wave speed from crawling waves sonoelastography is 
proposed based on the AM–FM framework. To reject signal distortions, a pre-processing approach 
to reject the nondominant components along frames is applied to the ultrasound data. Following this, 
the local shear wave speed is computed by estimating the IF function along the lateral direction based 
on the DCA multi-component model. Experimental results on homogeneous phantoms show that the 
estimation accuracy varies for different oscillation frequencies, while experimental results for inclu-
sion phantoms show consistent inclusion localizations with a low contrast between inclusions and 
homogeneous regions. Based on the latter, the use of this method requires improvement to be applied 
in medical tasks where precise quantification of small lesions is required.

Future work will focus on three aspects. First, an in-depth study of the noise distribution in the 
ultrasound data will be carried out to define an adequate restoration procedure. Second, a com-
prehensive review of alternative filter types that improve the preservation of the isolated signal 
properties will be performed. Third, an improvement of the estimation method will be proposed 
to compute multidimensional speed estimations and extend its application to different modalities 
such as magnetic resonance elastography (MRE).

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or 
publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publi-
cation of this article: This work was supported by the Peruvian Science and Technology Program (FINCyT), 
contract No. 205-FINCyT-IA-2013.

 at UNIV OF ROCHESTER LIBRARY on September 24, 2015uix.sagepub.comDownloaded from 

http://uix.sagepub.com/


354 Ultrasonic Imaging 37(4) 

References

 1. Parker KJ, Taylor LS, Gracewski S, Rubens DJ. A unified view of imaging the elastic properties of 
tissue. J Acoust Soc Am. 2005;117(5):2705–12.

 2. Wu Z. Shear wave interferometry and holography, an application of sonoelastography. PhD thesis, 
University of Rochester, 2005.

 3. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the 
elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34.

 4. Parker KJ, Doyley M, Rubens D. Imaging the elastic properties of tissue: the 20 year perspective. Phys 
Med Biol. 2011;56(1):R1–29.

 5. Castaneda B, Ormachea J, Rodriguez P, Parker KJ. Application of numerical methods to elasticity 
imaging. Mol Cell Biomech. 2013;10(1):43–65.

 6. Wu Z, Taylor LS, Rubens DJ, Parker KJ. Sonoelastographic imaging of interference patterns for esti-
mation of the shear velocity of homogeneous biomaterials. Phys Med Biol. 2004;49(6):911–22.

 7. Hoyt K, Castaneda B, Parker KJ. Two-dimensional sonoelastographic shear velocity imaging. 
Ultrasound Med Biol. 2008;34(2):276–88.

 8. Zhang M, Castaneda B, Wu Z, Nigwekar P, Joseph JV, Rubens DJ, Parker KJ. Congruence of imaging 
estimators and mechanical measurements of viscoelastic properties of soft tissues. Ultrasound Med 
Biol. 2007;33(10):1617–31.

 9. Hoyt K, Castaneda B, Parker KJ. 5C-6 muscle tissue characterization using quantitative sonoelas-
tography: preliminary results. In: Ultrasonics Symposium, New York, NY, 28–31 October 2007, pp. 
365–68.

 10. Hoyt K, Kneezel T, Castaneda B, Parker KJ. Quantitative sonoelastography for the in vivo assessment 
of skeletal muscle viscoelasticity. Phys Med Biol. 2008;53(15):4063–80.

 11. Castaneda B, An L, Wu S, Baxter LL, Yao JL, Joseph JV, et al. Prostate cancer detection using crawl-
ing wave sonoelastography. SPIE Medical Imaging. 2009; 7265:1–10.

 12. Barry CT, Mills B, Hah Z, Mooney RA, Ryan CK, Rubens DJ, et al. Shear wave dispersion measures 
liver steatosis. Ultrasound Med Biol. 2012;38(2):175–82.

 13. Barry CT, Hah Z, Partin A, Mooney RA, Chuang KH, Augustine A, et al. Mouse liver dispersion for 
the diagnosis of early-stage fatty liver disease: a 70-sample study. Ultrasound Med Biol. 2014;40(4): 
704–13.

 14. Maragos P, Bovik AC. Image demodulation using multidimensional energy separation. JOSA A. 
1995;12(9):1867–76.

 15. Havlicek JP, Harding DS, Bovik AC. Reconstruction from the multi-component AM-FM image repre-
sentation. In: Proceedings of International Conference on Image Processing, Washington, DC, 23–26 
October 1995, 2:280–3.

 16. Lu S, Doerschuk PC. Nonlinear modeling and processing of speech based on sums of AM-FM formant 
models. IEEE Trans Signal Process. 1996;44(4):773–82.

 17. Havlicek JP. AM-FM image models. PhD thesis, University of Texas at Austin, 1996.
 18. Havlicek JP, Harding DS, Bovik AC. Discrete quasi-eigenfunction approximation for AM-FM image 

analysis. In: Proceedings of International Conference on Image Processing, Lausanne, Switzerland, 
16–19 September 1996, 1:633–36.

 19. Havlicek JP, Harding DS, Bovik AC. Multidimensional quasi-eigenfunction approximations and mul-
ticomponent AM-FM models. IEEE Trans Imag Process. 2000;9(2):227–42.

 20. Murray V, Barriga ES, Soliz P, Pattichis MS. Survey of AM-FM methods for applications in medi-
cal imaging. Ibero-American Conference on Trends in Engineering Education and Collaboration 
(CITECI), Albuquerque, NM, 27-28 October 2009. Available from http://www.istec.org/wp-content/
gallery/ebooks/citeci/docs/final_citeci.pdf.

 21. Pattichis MS, Pattichis CS, Avraam M, Bovik A, Kyriacou K. AM-FM texture segmentation in electron 
microscopic muscle imaging. IEEE Trans Med Imaging. 2000;19(12):1253–57.

 22. Elshinawy MY, Zeng J, Lo SC, Chouikha MF. Breast cancer detection in mammogram with AM-FM 
modeling and Gabor filtering. In: Proceedings of 7th International Conference on Signal Processing, 
ICSP’04, Beijing, China, 31 August–4 September 2004, 3:2564–67.

 at UNIV OF ROCHESTER LIBRARY on September 24, 2015uix.sagepub.comDownloaded from 

http://www.istec.org/wp-content/gallery/ebooks/citeci/docs/final_citeci.pdf
http://www.istec.org/wp-content/gallery/ebooks/citeci/docs/final_citeci.pdf
http://uix.sagepub.com/


Rojas et al. 355

 23. Rodriguez P, Pattichis M. Nested random phase sequence sets: a link between AM-FM demodula-
tion and increasing operators with application to cardiac image analysis. In: 6th IEEE Southwest 
Symposium on Image Analysis and Interpretation, Lake Tahoe, NV, 28–30 March 2004, pp. 196–200.

 24. Murray V, Rodriguez P, Pattichis MS. Multiscale AM-FM demodulation and image reconstruction 
methods with improved accuracy. IEEE Trans Imag Process. 2010;19(5):1138–52.

 25. Rodriguez P, Pattichis MS, Goens MB. M-mode echocardiography image and video segmentation based 
on AM-FM demodulation techniques. In: Proceedings of the 25th Annual International Conference of 
the IEEE Engineering in Medicine and Biology Society, Cancun, Mexico, 17–21 September 2003, 
2:1176–79.

 26. Bovik AC. Handbook of Image and Video Processing. Elsevier Academic Press, San Diego, CA, 2nd 
edition, 2005.

 at UNIV OF ROCHESTER LIBRARY on September 24, 2015uix.sagepub.comDownloaded from 

http://uix.sagepub.com/

