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Purpose: The focus of this article is to develop signal and imaging processing methods to derive an

accurate estimation of local tissue elasticity using the crawling wave (CrW) sonoelastography

method. The task is to reduce noise and to improve the contrast of the elasticity map.

Methods: The protocol of the CrW approach was first tested on heterogeneous elastic phantoms as

a model of prostate cancers. Then, the contrast-to-noise ratio of the estimation was calculated itera-

tively with various sequences of algorithms to determine the optimal signal processing settings.

Finally, the optimized signal processing was applied to ex vivo prostate cancer detection. The com-

parison of the segmented elasticity map and the histology tumor outline was made by quadrants to

evaluate the diagnostic performance of the protocol. Furthermore, the CrW approach was combined

with amplitude-sonoelastography to achieve a higher specificity.

Results: This study demonstrated the feasibility of the proposed approach for clinical applications.

In the application to ex vivo prostate cancer detection, the established approach was tested on 43

excised prostate glands. The combination of the CrW approach and amplitude-sonoelastography

achieved an accuracy of over 80% for finding tumors larger than 4 mm in diameter. The elasticity

values and contrast found by the CrW approach were in agreement with the previous results derived

from mechanical testing.

Conclusions: Crawling waves can be applied to detect prostate cancer with accuracy approaching

80% and can quantify the stiffness or shear modulus of both cancerous and noncancerous

tissues. The technique therefore shows promise for guiding biopsies to suspect regions that

are otherwise difficult to identify. VC 2011 American Association of Physicists in Medicine.

[DOI: 10.1118/1.3569578]

Key words: crawling waves, elasticity imaging, shear velocity estimation, shear wave interference

patterns, prostate cancer

I. INTRODUCTION

Elastographic imaging, broadly defined, is a group of noninva-

sive methods in which shear vibrations or strain images of soft

tissue are used to detect or classify tumors. The concept of elas-

tography developed from the medical practice of palpation1–4

(feeling a suspected tumor with the fingers to determine various

characteristics). Elastography qualitatively or quantitatively

maps tissue elasticity, which is normally correlated with the

pathological state of soft tissue, therefore adding new clinical

information to the interpretation of ultrasound, computed to-

mography, or other scans. Elastography offers a much wider

range of detectable parameters than conventional imaging tech-

niques. It is feasible to distinguish between benign and malig-

nant tissues by comparing their elasticity moduli. Elastography

has been found to be helpful in detecting breast,5,6 thyroid,7

prostate,8 and liver abnormalities.9 A variety of elastography

techniques, including vibration sonoelastography, compression

elastography, magnetic resonance elastography, acoustic radia-

tion force impulse imaging, and transient elastography, have

been developed in the field since the late 1980s.10 Compression

elastography, which produces strain images, has been applied

to the prostate in several large clinical trials.11–13 In these trials

the accuracy of cancer detection is found to be in the range

between 70% and 80%.

Wu et al.14 introduced the concept of crawling waves into

the elastography field in 2004. Two shear wave sources are

placed on the two opposite sides of a sample, driven by sinu-

soidal signals with slightly offset frequencies. The shear

waves from the two sources interact to create interference

patterns, which are visualized by the vibration sonoelastog-

raphy technique. Estimations of local shear velocity can be

made from the shear wave propagation pattern and, thus, the

shear modulus.

Several approaches have been proposed to estimate local

shear velocity from the crawling wave (CrW) patterns,15

including a method based on a local spatial frequency esti-

mator,16 estimation by moving interference pattern arrival

times,17 and the local autocorrelation method for both 1D

(Ref. 18) and 2D shear velocity recoveries.19 A study of the
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congruence between the last technique and the mechanical

measurement validated the imaging modality for quantifica-

tion of soft tissue properties.20

The CrW technique has been used to depict the elastic

properties of biological tissues including radiofrequency

ablated hepatic lesions in vitro,18 human skeletal muscle in
vitro,21 and excised human prostate.22 In this paper, we focus

on crawling waves in the prostate.

II. THEORY

II.A. Crawling wave model

Crawling waves are interference patterns set in motion by

creating a relative frequency shift between the two counter-

propagating waves. The discrete version of the detected

vibration amplitude square uj j2 of the interference wave is

u m; n; rð Þj j2 ¼ 2e�aD

"
cosh 2anTnð Þ þ cos 2knTn þ DknTn

�

�Dk
D

2
þ DxrTr

��
; (1)

where a is the attenuation coefficient of the medium; D is the

separation of the two sources; x, the angular frequency meas-

ured in rad/s, is 2p times the frequency (in hertz); k, the wave

number and measured in rad/m, is 2p divided by the wave-

length k (in meters); Dx is the frequency difference; Dk is the

wave number difference between the two waves; m, n, and

r are the spatial vertical index, the spatial lateral (shear wave

propagation direction) index, and the time index, respectively;

and Tn and Tr are the spatial sampling interval along the lateral

direction and the temporal sampling interval, respectively.

II.B. Local autocorrelation estimator

By taking the spatial derivative of the phase argument /
along the lateral direction, the relationship between local

spatial frequency and shear wave velocity is derived for the

discrete model,

xspatial ¼
@/
@n
¼ 2k þ Dkð ÞTn ¼

2p 2f þ Dfð ÞTn

vshear

; (2)

where f is the vibration frequency in units of s�1 and vshear is

the local shear wave speed.

vshear was then calculated based on the following

relationship:

vshear ¼
f

kspatial

; (3)

where kspatial is the spatial frequency in units of m�1. In

nearly incompressible soft tissues, the relationship between

shear wave velocity and elastic moduli is

vshear ¼
ffiffiffiffiffiffi
E

3q

s
; (4)

where E is the Young’s modulus, a measure of the stiffness

of an isotropic elastic material, and q is the density of the

medium.

There are a number of different ways to calculate the

local spatial frequency of a digital signal. Kasai et al.23 pro-

posed an autocorrelation technique to estimate the phase de-

rivative of a complex signal sequence.

The phase derivative equals the phase of the autocorrela-

tion R at one lag,

@/
@n
¼ arctan

= R 1ð Þ½ �
< R 1ð Þ½ �

� �
: (5)

The autocorrelation term is calculated by

R 1ð Þ ¼ 1

N � 1

XnþN�2

i¼n

s�A ið ÞsA iþ 1ð Þ

¼ 1

N � 1

XnþN�2

i¼n

y ið Þx i� 1ð Þ � y i� 1ð Þx ið Þ
x ið Þx i� 1ð Þ þ y ið Þy i� 1ð Þ; (6)

where N is the number of pixels in an estimator kernel and

sA is the analytical signal of u m; n; rð Þj j2.

Combining Eqs. (2) and (5), the 1D shear wave velocity

is estimated by18

vshearh in¼
2p 2f þ Dfð ÞTn

arctan
= R 1ð Þ½ �
< R 1ð Þ½ �

� � : (7)

The 2D shear wave velocity is given by18

vshearh i2D¼
vshearh imffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vshearh im
vshearh in

� �2

þ1

r : (8)

In theory, taking the derivative of a phase can provide a very

high resolution, but it is very sensitive to noise. Noise reduc-

tion is needed before calculating the gradient.

II.C. Amplitude sonoelastography

Crawling wave movies (or video sequences) can be proc-

essed to generate conventional vibration sonoelastographic

images. A general expression for the heterogeneous medium

is obtained by adding the stiffness factor A xð Þ to the plane

wave interference pattern in the homogeneous medium,

u x; tð Þj j2¼ 2A2 xð Þ 1þ cos 2kxþ Dxtð Þ½ �: (9)

By searching through the movie, which includes one or more

cycles in slow-time (Dxt covers the range of 2p ), peak in-

tensity values for each location can be found as

u x; tð Þj j2p ¼ 2A2 xð Þ 1þ cos 2kxþ Dxtð Þmax

� 	
¼ 2A2 xð Þ 1þ 1ð Þ ¼ 4A2 xð Þ: (10)

This peak intensity image maps stiffness as does the sonoe-

lasticity image. It is called the amplitude-sonoelastographic

image. In experiments, the peak value of the slow-time data

sequence is obtained after the sequence is fitted to a slow-

time cosine model.

As is the case with sonoelastography, amplitude-sonoe-

lastography provides qualitative information regarding tissue

elasticity. It differentiates soft and stiff regions in tissues and

reveals the tumor shape to be a darker region. Combining
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amplitude-sonoelastography and CrW techniques may

increase the reliability of tumor detection by CrW.

III. EXPERIMENTAL

A GE Logic 9 ultrasound scanner (GE Healthcare, Mil-

waukee, WI) was modified to show vibrational sonoelasto-

graphic images in the color-flow mode. A sample image

with the crawling wave pattern is shown in Fig. 1. An ultra-

sound transducer (M12L, GE Healthcare, Milwaukee, WI)

was connected to the ultrasound machine and was placed on

top of the phantom. It is a linear array probe with a band-

width of 5–13 MHz.

Two piston vibration exciters (model 2706, Brüel &

Kjaer, Nærum, Denmark) were placed on each side of the

phantom. Two line shaped extensions were mounted on the

pistons and their abraded surfaces were pressed on the phan-

toms with contact regions of 8� 1 cm. The shear wave sig-

nals were generated by a two-channel signal generator

(model AFG320, Tektronix, Beaverton, OR) and were

amplified equally by a power amplifier (model 5530, AE

Techron, Elkhart, IN), which was connected to the pistons

(see Fig. 1 for an illustration). The imaged cross section is

parallel to the x� y plane. The transducer and the vibration

line sources are in the same plane. The x direction corre-

sponds to the width of the phantom and the y direction corre-

sponds to the depth of the phantom. The phantom is moved

along the z direction for examination at different cross sec-

tions. The shear vibration is along the y axis and the shear

wave propagates along the x axis. If the line extensions are

longitudinally in good contact with the phantom, then the

particles in the phantom at different depths are disturbed by

equal forces. Thus, the waves traveling in the imaging plane

can be considered as plane waves.

The ex vivo experiments on prostate cancer detection

were performed using the system. Each prostate gland was

embedded in 10.5% gelatin with the dimension of

12:5� 10� 15 cm3. Three sections perpendicular to the

posterior of the prostate gland were chosen for imaging. One

(AB1) was close to the apex, another (AB2) was at the mid-

dle gland, and the other (AB3) was close to the base. Crawl-

ing wave movies at 100, 120, and 140 Hz were taken at each

section. In our current system, this bandwidth represents the

optimal window for crawling waves in larger (5 cm diame-

ter) prostates. Above 140 Hz, the increasing shear wave

attenuation with frequency24 makes the signal too weak in

larger prostates. Below 100 Hz, the wavelengths become too

large for our estimator. It is likely that this window can be

extended using improved sources and estimators. The fre-

quency offset was adjusted so that the crawling wave pattern

crawls at least one wavelength through the movie. After

imaging each section, two needles were inserted into the

imaging plane to mark the section. An expert pathologist

read the slides and outlined the cancerous regions. The his-

tology slides provided the ground truth of cancer distribution

for the crawling wave imaging method. An illustration of an

imaging section taken at the middle gland is shown in Fig. 2.

Figures 2(a) and 2(b) show the posterior view and the trans-

verse view of the gland, respectively. Figure 2(c) shows the

B-mode scan of the cross section with the left gland marked

with “L.” The gland is positioned so that the posterior is

closer to the transducer and it is at the top of the image and

the patient’s left is clearly marked on B-scan. Figure 2(d)

shows the histology slide corresponding to the scan. The left

gland, the right gland, the anterior, and the posterior are

marked with “L,” “R,” “A,” and “P,” respectively.

IV. METHODS

In this section, effort was made to clear the noise in sig-

nals and hence improve the contrast of the elasticity map

and increase the credibility of lesion detection. The signal

processing procedures for noise reduction are illustrated in

the flow chart in Fig. 3. Procedures shown in dotted rectan-

gular areas may or may not improve the final estimation

results. They are simulated both with and without other pro-

cedures. The comparison between estimation results deter-

mines whether or not to apply them. Conditions represented

by diamond shapes are optimized in simulation to determine

the parameters or the procedures for best estimations. The

input and output data forms are shown in parallelograms.

The phase multiplication step and the final one-lag local

autocorrelation estimate of shear wave speed have been

described in detail previously.19

Four signal processing methods were proposed for noise

reduction. Except for the slow-time fitting method, it is unde-

cided whether these methods will be used in the final signal

processing sequence. Each of the methods was performed

solely with slow-time fitting. Combinations of the methods

FIG. 1. Schematic drawing of the experimental setup. (a) Line-shaped exten-

sions, (b) piston vibration exciters, (c) the imaged cross section of the phan-

tom, (d) ultrasound transducer, (e) amplifier, and (f) function generator.
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were also tested. The procedures were done on a crawling

wave movie for the 6 mm inclusion phantom at 100 Hz.

The contrast-to-noise ratio (CNR) results are shown in Ta-

ble I. The CNR is chosen because we wish to display maxi-

mum contrast of a stiff lesion with minimal variation in a

homogeneous background. The first item in the table corre-

sponds to the denoising procedure with slow-time fitting only.

The first row corresponds to procedures with low-pass filtering

on IQ data, contrast enhancement, or low-pass filtering and

contrast enhancement in addition to slow-time fitting. The first

column corresponds to procedures using the spatial interpola-

tion method (1D linear, 1D spline or 2D interpolation, and

interpolation performed on sonoelastographic images or on

phase images) in addition to slow-time fitting. The rest of the

table shows results from combinations of methods.

It can be seen that among all spatial interpolation algo-

rithms, 1D linear interpolation provides the best results.

Thus, various percentiles of interpolation were tested with

this method. The combination of low-pass filtering on IQ

data and 1D linear interpolation on sonoelastographic

images yields the highest CNRs compared to other combina-

tions. The highest value, 3.573, was reached with 20% inter-

polation, that is, the lowest 20% of signals ranked by

Doppler energy are dropped and interpolated. Dropping 25%

and 30% produces poorer overall CNR, evidently the

required interpolations are inadequate. The optimal proce-

dure to obtain shear velocity estimations with high CNR is

illustrated in Fig. 4. A comparison between the shear

FIG. 2. Illustration of an imaging section at the middle gland. (a) View of the prostate and attached seminal vesicles after a single slide has been made through

the midprostate posteriorly (Ref. 25). (b) Transverse view of the slide for imaging. (c) The B-mode scan. (d) The histology slide marked for cancer (dark out-

line) and BPH (lighter outlines).

FIG. 3. The flow chart of signal processing for local elasticity estimation.
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velocity maps estimated from the procedure with only slow-

time fitting (a) and from the optimal procedure (b) is shown

in Fig. 5.

V. RESULTS

V.A. The CrW approach

Forty-three ex vivo prostate glands were examined using

the CrW approach. For each exam, shear velocity images

were extracted for three cross sections of the prostate gland.

Crawling wave movies of 129 sections were acquired and 10

sections were discarded because of extremely low SNR. The

selected 119 sections were divided by quadrant (upper left,

upper right, lower left, and lower right) and the 476 quad-

rants were compared to the corresponding histology slices

for diagnostic accuracy analysis.

153 quadrants were true positives (TPs). Among the

TPs, 22 were tumors (indicated in the histology slices)

with a small size (effective diameter < 4 mm). 152 quad-

rants contained false positives (FPs). Among the false

positives, 17 were related to tumors (indicated in the seg-

mented shear wave velocity maps) with a small size

(effective diameter < 4 mm) and 41 coincided with be-

nign prostatic hyperplasia (BPH). Forty-eight quadrants

were false negatives (FNs). Among the false negatives,

nine were related to tumors (indicated in the histology

slices) with a small size (effective diameter < 4 mm).

123 quadrants were true negatives (TNs). The tumor sta-

tistics of the CrW approach are listed in Table II. The

statistics not including small tumors (excluding those

with effective diameter < 4 mm) are summarized at the

bottom half of the table. As shown in Table III, sensitiv-

ity, specificity, and diagnostic accuracy were calculated

based on the collected information of tumor statistics to

evaluate the performance of the approach in prostate can-

cer detection. The performance, when not considering

false positives caused by BPH, is summarized at the bot-

tom half of the table.

It was observed that the performance was enhanced when

not considering quadrants with small size tumors < 4 mmð Þ.
Diagnostic accuracy and specificity were increased when

quadrants with false positives possibly caused by BPH were

discarded in the analysis.

V.B. Combination of CrW sonoelastography and
amplitude-sonoelastography

As shown in Table III, the specificity of CrW sonoe-

lastography was low due to false positives. It was possi-

bly caused by reflections at tissue boundaries where the

intensity was typically saturated in the CrW movies. As a

result, the false positives were often shown as a brighter

TABLE I. Contrast-to-noise ratio results.

CNR No procedure IQ low pass Contrast enhance IQ low pass and contrast enhance

No procedure 1.6336 2.6149 1.5651 2.4094

2D interp 10% (phase) 1.779 2.7874 1.5647 2.4654

2D interp 10% (sono) 1.905 2.9366 1.8157 2.6717

1D spline interp 10% (phase) 1.8542 2.698 1.8759 2.4456

1D spline interp 10% (sono) 2.0572 3.0363 1.9056 2.8414

1D linear interp 10% (phase) 2.1412 3.0279 1.9933 2.8423

1D linear interp 10% (sono) 2.1153 3.1144 2.0634 2.9067

1D linear interp 15% (sono) 2.3047 3.4255 2.4325 3.3086

1D linear interp 20% (sono) 2.3695 3.573 2.5376 3.1084

1D linear interp 25% (sono) 2.3983 3.4493 2.5922 3.3384

1D linear interp 30% (sono) 2.5717 3.4357 2.6598 3.3118

FIG. 4. The final flow chart for the optimal local elasticity estimation.
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region in amplitude-sonoelastographic images, which

reveal the amplitude of the crawling waves. Since the

brighter regions can be segmented and excluded, these

false positives were eliminated when we considered the

assessment by amplitude-sonoelastography. Furthermore,

hard cancers should result in a localized amplitude defi-

cit, which can be segmented. To enhance the performance

of the CrW approach, we combined it with the ampli-

tude-sonoelastography method.

First, the amplitude-sonoelastographic images were gen-

erated from the CrW movies. Second, tumors shown as a

darker area were segmented from the images. Then, the

intersection of the amplitude-sonoelastography segmentation

and the CrW segmentation was obtained as the final tumor

area. An example of the combined approach is shown in Fig.

6. The false positives in the segmented tumor regions

obtained using the CrW approach were eliminated when

combining the segmentation results from the amplitude-

sonoelastography approach. The final segment was in

approximately the same position as the outline of the tumor

(in black color) on the histological slice.

The tumor statistics of the combined approach are listed

in Table IV. The statistics, not including small tumors

(effective diameter < 4 mm), are summarized in the bottom

half of the table. As shown in Table V, sensitivity, specific-

ity, and diagnostic accuracy were calculated based on the

collected tumor statistics to evaluate the performance of the

approach in prostate cancer detection. The performance,

when not considering false positives caused by BPH, is

summarized at the bottom half of the table. We observed a

similar trend when the tumor size consideration and the

BPH consideration were varied as discussed in the CrW

approach.

The receiver operating characteristic (ROC) plot of

both the CrW approach and the combined approach is

shown in Fig. 7. It was observed that the medical deci-

sion points resulting from the combined approach (shown

in square symbols) were clustered in the area of high

specificity and low sensitivity; on the other hand, the

points obtained by using the CrW approach (shown in di-

amond symbols) were clustered in the area of high sensi-

tivity and low specificity. In other words, the combined

approach increased the specificity of the CrW approach.

However, its sensitivity was lowered as a trade-off. The

combined approach without considering BPH and small

size tumors (the leftmost diamond symbol) yielded the

highest diagnostic accuracy of 80.05% among all studied

methods.

V.C. Elasticity contrast

Twenty sections with both true positive quadrants and

true negative quadrants were selected to evaluate the

elasticity range of cancerous vs noncancerous tissues.

FIG. 5. Shear velocity estimations. (a) Estimation by the denoising procedure with only slow-time fitting. (b) Estimation by the optimal denoising procedure.

Color scale units are in cm/s.

TABLE II. Tumor statistics of the CrW approach.

CrW Gland

No.

Quadrant

No.

TP

No.

FP

No.

TN

No.

FN

No.

BPH

No.

All size 43 476 153 152 123 48 41

�4 mm 43 428 131 135 123 39 38

TABLE III. Performance of the CrW approach in ex vivo prostate cancer

detection.

CrW Accuracy (%) Sensitivity (%) Specificity (%)

All size w/BPH 57.98 76.12 44.73

�4 mm w/BPH 59.35 77.06 47.67

All size w/o BPH 63.45 76.12 52.56

�4 mm w/o BPH 65.13 77.06 55.91
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The shear wave velocity estimations of cancerous and

noncancerous tissues were 3:4960:49 and 2:40

60:19 m=s, respectively. The contrast was 1.45. Based on

the square root relationship between the elasticity modu-

lus and the shear wave velocity of the tissue, the

estimated Young’s moduli of the cancerous and noncan-

cerous tissues were 37:28610:47 and 17:4262:73 kPa,

respectively. The values are within the ranges of

40:4615:7 kPa for cancerous prostate tissues and

15:965:9 kPa for noncancerous tissues reported from me-

chanical testing.24 Our estimated elasticity contrast is 2.1,

similar to the contrast value of 2.6 in prostate cancer

found by mechanical testing.24

FIG. 6. An illustration of the combined approach. Shown are coregistered images of a transverse slice of a prostate. (a) The B-mode image. (b) The histology

slice with thick black circle indicating cancer and other light clue circles indicating BPH. (c) The CrW segment. (d) The amplitude-sonoelastography segment.

(e) The final segment. Color scale units are cm/s.

TABLE IV. Tumor statistics of the combined approach.

Combined Gland

No.

Quadrant

No.

TP

No.

FP

No.

TN

No.

FN

No.

BPH

No.

All Size 43 476 109 49 236 77 15

�4 mm 43 428 97 36 236 59 12

TABLE V. Performance of the combined approach in ex vivo prostate cancer

detection.

Combined Accuracy (%) Sensitivity (%) Specificity (%)

All size w/BPH 73.25 58.60 82.81

�4 mm w/BPH 77.80 62.18 86.76

All size w/o BPH 75.66 58.60 87.41

�4 mm w/o BPH 80.05 62.18 90.77
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VI. CONCLUSIONS

The motivation of the thesis was to establish a complete

and reliable protocol to quantify the local tissue elastic mod-

ulus based on the CrW sonoelastography method. The proto-

col then could be applied to clinical applications, primarily

ex vivo prostate cancer detection.

To accomplish the task, the study was first concentrated

on developing and improving signal and imaging processing

methods to obtain tissue elasticity maps with higher CNR.

The improvement was focused on reduction of noise in the

sonoelastographic movies of CrW propagation. The variety

of imaging processing algorithms was considered with

respect to both the characteristics of raw sonoelastographic

signals and the properties of CrW propagation. The combi-

nation of low-pass filtering on IQ data, 1D linear interpola-

tion on sonoelastographic images, and the slow-time fitting

method was found to be the optimal image processing proce-

dure. The CNR value of the 6 mm inclusion phantom result-

ing from this combination of algorithms was 3.57, which

was much higher than the CNR of 1.63 resulting from solely

using the slow-time fitting method.

After the signal processing protocol of the CrW approach

was completed by studying the inclusion phantoms, it was

then transferred and applied to ex vivo prostate cancer detec-

tion. Its diagnostic performance was evaluated by inspecting

43 excised prostate glands and comparing the indicated can-

cerous region to the histological outline of tumors.

476 quadrants in total were assessed to be TP, FP, TN, or

FN. The statistics further yielded the sensitivity, the specific-

ity, and the accuracy of the CrW approach. The combination

of the CrW approach and amplitude-sonoelastography

increased the specificity yet lowered the sensitivity. The

highest accuracy, 80.05%, was achieved by the combined

method after excluding BPH and small size < 4 mmð Þ
tumors. The specificity was 90.77% and the sensitivity was

62.18%. This point was closest to the upper left corner of the

ROC space. This compares to an accuracy of 76% in a major

study in Germany13 using compression elastography, which

creates strain images. This group also used step section pa-

thology analysis as their gold standard, similar to our analy-

sis methods. Other groups using strain images employed

biopsy results as the gold standard.11,12 In the context of

image guided biopsies, a false negative from imaging

implies that an existing cancer was not identified. A false

positive from imaging implies the biopsy for a suspect

region was negative. Since 6–12 needle biopsies are com-

monly used, the problem of false positives may not be

weighted as highly by some in considering trade-offs

between sensitivity and specificity.

Lastly, the estimated elastic moduli and the elasticity con-

trast of cancerous and noncancerous areas from 20 prostate

sections were investigated. The estimated elasticity values of

the normal tissues and the tumors fell into the ranges pro-

vided by mechanical testing.24 The contrast was also in

agreement with the mechanical testing results.

The results suggested that the CrW approach in combina-

tion with amplitude-sonoelastography could be adapted to

detect prostate cancer. The quantitative estimation of elastic-

ity obtained by using the CrW approach was in agreement

with the mechanical testing result and was trustworthy. The

estimated contrast of tumors and normal tissue supported the

feasibility of the CrW approach to detect cancer and may be

of particular value in guiding biopsy needles to suspect

regions.
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