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Abstract. A methodology to study the relationship between clinical variables [e.g., prostate specific antigen
(PSA) or Gleason score] and cancer spatial distribution is described. Three-dimensional (3-D) models of
216 glands are reconstructed from digital images of whole mount histopathological slices. The models are
deformed into one prostate model selected as an atlas using a combination of rigid, affine, and B-spline deform-
able registration techniques. Spatial cancer distribution is assessed by counting the number of tumor occur-
rences among all glands in a given position of the 3-D registered atlas. Finally, a difference between
proportions is used to compare different spatial distributions. As a proof of concept, we compare spatial distri-
butions from patients with PSA greater and less than 5 ng∕ml and from patients older and younger than 60 years.
Results suggest that prostate cancer has a significant difference in the right zone of the prostate between pop-
ulations with PSA greater and less than 5 ng∕ml. Age does not have any impact in the spatial distribution of the
disease. The proposed methodology can help to comprehend prostate cancer by understanding its spatial dis-
tribution and how it changes according to clinical parameters. Finally, this methodology can be easily adapted to
other organs and pathologies. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.2.3.037502]
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1 Introduction
Prostate diseases occur commonly in men after age 40. The
prostate gland tends to increase in size with age, which can
cause the urethra to become narrower and decrease urine flow,
causing pain to patients and affecting their quality of life.
Benign prostatic hyperplasia, prostatism, prostatitis, and prosta-
todynia are among the more common benign, noncancerous
prostatic pathologies.

According to the American Cancer Society, prostate adeno-
carcinoma remains a disease that affects most men. The esti-
mated incidence and mortality numbers during 2014 due to
this disease in the USA were 233,000 (28% estimated new
cancer cases) and 29,4801 (10% estimated deaths), respectively.
The incidence and mortality rates are similar in developing
countries as well. In South America as a whole, prostate cancer

remains the most common cancer among men2 (26.4% of new
cancer cases and 14.6% of cancer deaths). Worldwide, the
incidence and mortality numbers are ∼899;000 and 258,000,
respectively.3

Standard prostate cancer screening tests include a digital rec-
tal examination (DRE) and prostate specific antigen (PSA) test.
The DRE has long been used to diagnose prostate cancer due to
its positive predictive value (from 33% to 83%) when the PSA
value is high (3 to 9.9 ng∕ml).4 However, few tumors are
detected only with an abnormal DRE (11%) when the PSA
value is low (0 to 2.9 ng∕ml).4 Further, ∼17% of men with a
normal DRE are diagnosed with prostate cancer after a biopsy.

PSA is a glycoprotein produced naturally by prostate gland
epithelial cells. High levels of PSA (>4 ng∕ml) may be an
indication of prostate infection, inflammation, enlargement, or
cancer. PSA was adopted for cancer screening by the early
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1990s. However, this screening methodology has become some-
what controversial since randomized trials do not show a clear
benefit. The European Randomized Study of Screening for
Prostate Cancer (ERSPC) reported only a small benefit of
PSA screening after 13 years of follow-ups.5 A report from
the large United States trial, the Prostate, Lung, Colorectal,
and Ovarian (PLCO) Cancer Screening Trial, published concur-
rently with the European trial, found no benefit for annual PSA
and DRE screening after 13 years of follow-ups.6 Nevertheless,
PSA combined with DRE is still used to identify prostate cancer
in early stages.

After the initial screening, the ultimate diagnosis of prostate
cancer is currently made by biopsy-guided transrectal ultra-
sound (TRUS) imaging. However, TRUS images exhibit low
signal-to-noise ratio and low contrast. Therefore, biopsies are
obtained in a random fashion with the ultrasound being used
to localize areas of the prostate for sampling, rather than having
the ability to target suspicious lesions directly. Flanigan et al.7

demonstrated that biopsies have a success rate of ∼30% using
the gold standard, six-core biopsy protocol. Subsequent studies
indicate that to increase the level of success, more cores should
be tested, and the standard of care today includes at least a
12-core sample.

In an effort to improve this situation, several researchers have
explored the possibility of building a probability map containing
the tumor distribution within the prostate gland based on histo-
pathological images. This distribution map can be used to study
the efficiency of existing biopsy schemes or to design optimal
biopsy strategies.8–14 An estimation of the tumor distribution has
a significant impact on both clinical and academic perspectives,
allowing a better understanding of the disease.

Previous studies have focused on optimizing the positioning
of biopsy cores based solely on the cancer distribution without
considering additional relevant information such as cancer vol-
ume and Gleason score, two of the most important surrogate
markers to determine the staging of the disease. In addition,
the PSA level and location of the tumor in the gland can be
included to improve clinical decisions (where to perform the
biopsy). Studying the influence of variables such as PSA,
Gleason score, age, and capsule penetration can lead to a better
understanding of the disease and its treatment.

In this work, a software tool to study the correlation between
these surrogate markers and the cancer distribution in the gland
is presented. We illustrate the image processing methodology to
develop several probabilistic maps (spatial distribution) of the

tumor distribution from a database of whole-mount histology
sections. We also provide statistical analysis to compare two
spatial distributions based on differences of proportions.

The manuscript is organized as follows: in Sec. 2 we present
the methodology to develop the spatial distribution. Section 3
describes the statistical method to differentiate spatial distribu-
tion. Results are presented in Sec. 4, and discussion and conclu-
sions are presented in Sec. 5.

2 Methodology for Three-Dimensional
Reconstruction

Health Insurance Portability and Accountability Act recommen-
dations were followed to guarantee the security and privacy of
patient information.

Information from two different clinical sites was used
(two databases): 58 patients from the University of Rochester
Medical Center (URMC), Rochester, New York, United States,
and 158 patients from the Section of Biomedical Image Analysis
(SBIA), University of Pennsylvania, Philadelphia, Pennsylvania,
United States.

All the patients were scheduled to undergo a radical prosta-
tectomy. Their age range was 44 to 73 years old, with an average
age of 60.51� 6.28 years. Their PSA values at the time of sur-
gery ranged from 0.7 to 138 ng∕ml, with a mean PSA value of
9.93� 14.13 ng∕ml. Table 1 provides pathological variables for
both databases (URMC and SBIA).

2.1 University of Rochester Medical Center
Database

In the following sections, we will explain the framework
followed for registering the URMC database.

2.1.1 Image acquisition

Each gland was weighed and measured. The gland was inked
and a device,15 which consists of two sets of four 3-mm diameter
mating metal prongs, was used to create markers for three-
dimensional (3-D) reconstruction. Each set was attached to
a metal base in a square grid of 13 × 13 mm2. The prostate
was inserted through the apex and the base symmetrically
around the urethra. The specimen then was fixed in 4% formalin
for 24 h.

After fixation, the device was removed and the gland was
measured again to assess the shrinkage factor. The prostate
was then sectioned into 4 mm slices from the apex to the

Table 1 Clinical or pathological variables of the University of Rochester Medical Center (URMC) and Section of Biomedical Image Analysis (SBIA)
databases.

Pathological variable

URMC SBIA
Combined databases

(all patients)

Mean Range Mean Range Mean Range

Age (years) 59.8� 5.4 48.5–72.8 60.6� 6.2 44.0–73.0 60.5� 6.2 44.0–73.0

PSA at time of surgery (ng/ml) 6.9� 8.2 1.0–61.1 11.2� 18.6 0.7–138.0 9.9� 14.1 0.7–138.0

Gleason score 6.8� 0.7 6.0–9.0 5.4� 1.0 3.0–8.0 6.2� 1.1 3.0–9.0

Cancer percentage 20.7 5.0–60.0 8.6 0.3–68.0 12.3 0.3–68.0

Note: PSA, prostate specific antigen.
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base. Depending on the size of the individual prostate, 6 to 12
gross pathology whole-mount slices (3 to 5 mm thick), were
obtained. The processed whole-section slices were embedded
in Paraplast™, using large metal base molds (Surgipath
Medical). Sections 4 to 5 μm thick were cut from the surface
of each block. The slides were baked for 1 h at 60°C and stained
using routine hematoxilin–eosin protocol. The result was one
histology slide for each gross slab. The microscope whole-
mount sections were examined by an expert pathologist in
order to delineate the tumor in every slice.

Both gross pathology slices and histology slices were photo-
graphed after preparation, so that 3-D reconstruction could be
done. The color images for both gross pathology and histologi-
cal slices were captured using a digital camera (Diagnostic Spot
RT digital color camera, Diagnostic Instruments Inc., Sterling
Heights, Michigan, United States). The sheets were mounted
on a flat table, parallel to the focal plane of the camera. The
distance between the camera and the sheets was about 30 cm.
The images were stored on a computer using the Advanced
Spot camera software (Diagnostic Instruments). For the gross
specimens, a caliper was used to measure the thickness of
each slice. This measurement was used for 3-D reconstruction.
Additional information on the acquisition protocol is given in
the article by Taylor et al.15

2.1.2 Three-dimensional reconstruction

The methodology used to create the 3-D spatial distribution was
as follows: (1) alignment of the histological and pathological
image of the same prostate; (2) segmentation of the gland
and the tumor in order to determine the outlines; and (3) inter-
polation to determine an isotropic volume. For interpolation, we
used the distance between the apex and the base of the fresh
gland when it was extracted; that information can be found
on the patient info sheet. Figure 1 provides a diagram of the
methodology that was used to build the 3-D model.

Alignment. Since pathological and histological images are
positioned differently during image acquisition, it is necessary
to have an alignment step. First, all histological and pathological
slices are registered to their respective central slices (fixed
images) since they are more likely to show four holes caused
by the marking device. Each hole is labeled clockwise with

a number [see Fig. 2(a)] in all slices. This step is performed
manually.

The device used in the acquisition protocol provides land-
marks, which are 13 mm apart in a square configuration.
This information is helpful to correct any deformations which
the tissue underwent as part of the pathological processing.
Figure 2(a) shows the four holes from the landmark device
[Fig. 2(b)] in a histology slice. Figure 2(c) shows the next
slice from the same prostate. Note that the holes are not posi-
tioned in the same place. Finally, Fig. 2(d) shows the result after
applying the alignment step to the second image.

For the alignment step, we used a warping algorithm,16 a pair
of corresponding lines in the source, and destination images to
define a coordinate mapping from the pixel X in the destination
image to the pixel X 0 in the source image. Let us consider that
the landmarks 1 and 4 form the line PQ in the destination image;
similarly the landmarks 1 and 4 in the source image form the line
P 0Q 0, as we can see in Fig. 3.

We calculate the distance of a pixel X to the line PQ to obtain
υ and the distance from P to the projection of X onto the line PQ
to obtain u. With these values, we determine the location of X 0

in the source image, maintaining the proportions. This pro-
cedure is repeated for all image points.

u ¼ hðX − PÞ; ðQ − PÞi
kQ − Pk2 ; (1)

υ ¼ ðX − PÞ ⊥ ðQ − PÞ
kQ − Pk ; (2)

Fig. 1 Methodology to build the three-dimensional (3-D) spatial dis-
tribution. First, alignment the histological and pathological image of
the same prostate; then segmentation the gland and the tumor; fol-
lowed by interpolation to have an isotropic volume using the patient
information sheet in order to get the distance between slices and
finally the registration step.

Fig. 2 (a) Label of the four holes in the central histology slice.
(b) Device used in the image acquisition protocol. (c) Next, histology
slice of the same prostate gland not aligned with the base image.
(d) Result of image (c) aligned with the base image (a). The four
holes in the prostate gland are used as landmarks in the alignment
step.
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X 0 ¼ P 0 þ uðQ 0 − P 0Þ þ hυ;⊥ ðQ 0 − P 0Þi
kQ 0 − P 0k ; (3)

where ⊥ represents the perpendicular vector operator and h·i
represents the dot products. For details, see Ref. 16.

Due to cutting and tearing in the acquisition protocol, some
histological images will have missing parts [see Fig. 4(a)].
In order to determine a possible border, we propose to use
information from the corresponding gross pathology section.
Following the same procedure to align the set of histology
images, the holes in the corresponding pathology images are
labeled and the warping transform is applied.

Pathology images are used when there is missing information
in the boundary of the histological image (see segmentation sec-
tion). In all cases, the central slice of the prostate is selected as
the fixed image and the rest of the cuts are aligned to it.

Histological cuts of the base and apex do not always show all
four holes. Since at least two holes are needed for the warping
transformation, a translation transform is applied when only one
hole is present.

Segmentation. The purpose of the segmentation was to iden-
tify the outline of the prostate and the shape of the tumor pre-
viously delimited by an expert pathologist. This segmentation
step is required to generate a 3-D reconstruction of the prostate
and the tumor.

Since the images were not acquired in a controlled environ-
ment, there were several factors that made this step difficult
(lighting and unwanted shadows in images). Therefore, a

preprocessing step was required. The histological images
have a characteristic red to pink color with a white background.
Thus, the intensity levels corresponding to the image are located
on the first mode of its histogram. The other mode corresponds
to the background (highest intensity values—nearly white).
The histogram was formed as the sum of each histogram
layer. We detected the peak of the first mount to establish an
upper threshold, whereas the lower threshold was established
at the 10% intensity of the peak. Finally, an image-stretching
transformation was applied with these two thresholds.

After applying the preprocessing step to the histological
images, they showed high contrast between the prostate and
the background. The outline of the prostate gland was located
in the red and blue layers.

The tumor was delineated by an expert pathologist on the
histology cut using a blue or black marker. To segment it
from the image, an automated thresholding based on Otsu’s
algorithm17 was performed on the red layer. After this step,
we only considered the objects which were within the previously
segmented prostate.

Some histological images had missing parts [see Fig. 4(a)].We
used information from its pathological counterpart to correct the
segmented boundary. To do this, we developed a semiautomatic
algorithm. First, the pathological and histological images were
aligned as explained in the alignment section [Fig. 4(c)]. Then
the border of the segmented prostate was decomposed into a
set of vertices which are overlaid on the pathology image. A
few vertices are dragged on the desired boundary (pathology
image) by the user.

Then discrete dynamic contour18 was applied to move the
rest of the outline closer to the correct boundary. The vertices
inserted by the user (two or three) are clamped; this ensures that
adjacent vertices generally deform toward the clamped vertices.
This semiautomatic algorithm allows the user to edit and guide
the segmentation process. In our experiments, the weights were
wimg
i ¼ 0.4 and wint

i ¼ 0.6. The image force is responsible for
moving the vertex to the nearest and strongest edge as long
as it is within the influence area, which is determined by a
two-dimensional (2-D) Gaussian function. Internal forces are
computed based on neighboring vertices and constrain the ver-
tex to form a smooth contour. The damping force provides sta-
bility in the iteration process.

In addition to this problem, in some images, the pathologist
did not completely delineate the tumor with a continuous solid
line but with spaced dots. To obtain the complete outline, cubic
interpolation was applied.

Fig. 3 (a) Positions of a single line pair in the destination image and
(b) in the current source image.

Fig. 4 (a) The dashed circle in the histology slide shows the missing boundary; the thin, black outline is
the localization of the cancer (defined by an expert pathologist). (b) The counterpart gross pathology
image of image (a). (c) Gross image aligned to the histology slide, in green the overlaid histology
slide with cancers outlined and registered.
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Measurement in gross pathology. To build the 3-D
reconstruction of the prostate gland, it is necessary to quantify
the separation between histology and gross pathology slices.
The thickness of each gross pathology slab was measured
using a caliper. Eight measurements were performed, two mea-
surements per hole (one using the outside jaws and the other
using the depth probe of the caliper). This task was repeated
by two observers and the average measurement is used. The
result was the measured distance between adjacent histology
cuts.

Handling during the acquisition process caused the gland to
shrink or deform. Therefore, the distance between the apex and
the base of the gland was measured (with a caliper) when the
prostate was removed. The distance before deformation was
available on the patient information sheet and it was compared
with the distance obtained postdeformation. Thickness values
were then scaled to make the sum of the thicknesses of all slices
equal to the apex-to-base distance measured in the fresh pros-
tate. Next, an interpolation step was required in order to have
a coherent 3-D reconstruction.

Interpolation. The distance between adjacent image ele-
ments (pixels) within a slice is smaller than the distance between
adjacent image elements in two neighboring slices. Histology
images had a thickness of 5 μm but were obtained at spacings
of 4 mm. Typically, there were eight histology slices per gland.

There are several approaches for reconstructing and display-
ing 3-D objects from serial cross sections.19,20 The major differ-
ence in these approaches lies in the interpolation method
employed. The two main methods of interpolation techniques
for reconstructing objects are gray-level and shape-based inter-
polations. Gray-level methods employ nearest neighbor, linear,
or polynomial and splines interpolation. On the other hand,
shape-based interpolation methods consider shape features
extracted from the image. Shape-based interpolation converts
binary images into distance maps using distance transformation
functions such as the Manhattan or city-block distance tem-
plate21,22 to approximate the Euclidean distance between the
pixel and the contour of the object. Shape-based interpolation
is quite simple to understand, easy to implement, and computa-
tionally fast. However, this method fails to interpolate slices
when there is no overlapping area between the two objects.

We used the method proposed by Lee and Wang23 to over-
come this limitation. A morphology-based interpolation method
uses dilation and erosion morphological operators to create dis-
tance maps and perform the interpolation. After interpolating the
prostate, the same procedure is repeated for each tumor present
in the gland. However, there are additional considerations to be
taken in order to avoid ambiguities in the reconstruction. For
example, Figs. 5(a)–5(c) show the location of a tumor in
three slices and Figs. 5(d) and 5(e) show their possible 3-D
reconstructions. As we can see, there is more than one option,
since the tumor can grow in any direction and sense.

First, we determined tumor-matching between slices (since
multiple cancers may exist on two input slices) by measuring
the distance between the contours of the tumor. If the result
was less than 5 mm, they were considered the same cancer.
This is a heuristic based on the experience of the expert
pathologist.24,25

If a slice contains a small region of cancer with no
corresponding regions in an adjacent slice—for example, the
upper lesion in Fig. 5(b), compared to Fig. 5(c)—then the

confirmed cancer is extended into 3-D using morphological
operators. However, the interpolated cancer volume is con-
strained by the adjacent cancer-negative slice.

Registration. A key challenge of this study is the registration
of 3-D surface models. All of the prostate models studied need
to be reshaped such that tumors are placed in a uniform prostate
atlas. Frimmel et al.14 divided all prostate models into three
groups by size (small, medium, and large). Prostate models
were reshaped into one of these three models using a 2-D
reshaping algorithm. Shen et al.10,11,13 presented the use of
a deformation-based registration approach using an adaptive
focus deformable model (AFDM)26,27 to spatially normalize
the external and internal structures of the prostate samples.

In this work, the registration process was composed of four
steps: (1) a rigid registration was used to align the volumes,
(2) an affine transformation allowed compensation for shear
and scale, (3) a deformable B-spline registration28 with a coarse
grid was applied, and (4) another B-spline registration with a
finer grid. Rigid and affine transformations bring the registration
process close to its global minimum, and B-spline transforma-
tions were used to compensate for deformations in the gland due
to mechanical and chemical procedures in the histological
processing. This approach was developed by Castaneda et al.29

Since our database consists of whole prostatectomy glands
subsequent to cancer diagnosis, we do not have a healthy
prostate to use as a model for the development of the atlas.
Therefore, the model used for SBIA (Sec. 2.2) was selected
to be the atlas model and the 3-D reconstructions from all
other glands were warped against it.

2.2 Section of Biomedical Image Analysis Database

The SBIA database was built using the method proposed by
Shen and Davatzikos26 and reported in previous publica-
tions.27,30 The spatial normalization is done using a 3-D sur-
face-based, nonrigid image registration, as demonstrated in
Zhan et al.31 The spatial normalization preserves the zonal

Fig. 5 (a), (b), and (c) show the location of a tumor in three consecu-
tive slices. If there is not a decision rule, there will be two possible
3-D reconstructions: (d) and (e).
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anatomy of the prostate so that after normalization, the same
spatial coordinates will correspond to approximately the same
anatomic locations. This framework is based on an AFDM.
This deformable model includes information about the statistical
variation of prostate structures within a given population.

The database from SBIA was combined with the database
from URMC to improve the statistical analysis and to compare
two different databases.

3 Statistical Analysis
Once all of the prostate glands have been registered into a
unique atlas model, the spatial distribution is developed by
counting the number of occurrences in a given position in
the 3-D space from each registered prostate reconstruction.
Our clinicians (E. Messing and A. Fazili) recommended the
comparative analysis of subgroups based on available data
and clinical significance:

• PSA at the time of surgery less than, or greater than, or
equal to 5 ng∕ml.

• Age less than, or greater than, or equal to 60 years old.

• Gleason score greater than, or less than, or equal to 6.

A particular way to illustrate differences between subgroups
is to apply the Z-test32,33 on pairs of voxels. This approach is
capable of highlighting voxels where the cancer distributions
have a meaningful difference, although it does not consider
the joint probability of having a significant difference (SD)
in a region (see Sec. 5 for detailed explanation).

The proportions are defined as the number of occurrences
divided by total number of patients that correspond to the pop-
ulation of study and analysis (e.g., 216 if we analyze the entire
population, see Fig. 6).

The difference between proportions was applied to each
voxel and was evaluated with a Z-test in order to ensure that

the voxel was significantly different between the two spatial dis-
tributions. This process was repeated for all the voxels corre-
sponding to the prostate model. We chose the critical Z value
for two tails 1.65 (equivalent to p ¼ 0.1) in order to find
SDs while producing clearly defined regions within different
subgroups, as shown in Sec. 4. The value used for PSA analysis
is 5 ng∕ml in order to obtain representative statistical analysis.
There is no report in the literature about the exact cutoff values
for PSA. Table 2 shows the number of patients by pathological
variable with the threshold used in this research.

The values chosen as threshold in each parameter are a com-
promise between commonly accepted clinical thresholds sepa-
rating high and low values, and the number of patients in each
subgroup required to make a good statistical evaluation.

4 Results
The database consists of 215 prostate glands (58 patients from
URMC and 157 patients from SBIA). For each gland, histopa-
thological images as well as pathological variables (PSA at time
of the surgery, Gleason score, patient age, and percentage of
cancer) were available. Figure 7 shows the cancer probability
distribution of the complete database, going through the base
to the apex (from top left to bottom right). We will use the
same sequence, from base to apex, in later Figs. 8–12. The
results show that the prostate cancer is more likely to occur
in the middle right zone of the prostate (represented in red in
Fig. 8). We used a pseudocolor map in order to identify the
zones with more level of occurrences. The color scale indicates
the number of occurrences for a given population.

Figure 8 shows the location of the largest number of occur-
rences corresponding to the right and left sides of the gland for
the entire database (URMC and SBIA). Table 3 details the maxi-
mum number of occurrences for each database.

Figure 9 shows the cancer probability distribution within the
two studies (URMC and SBIA). Both distributions have a higher
number of occurrences in the anterior zone (reddish color).
There is an SD in the base and apex of the prostate, but not
in the middle zone (p-value >0.1), as shown in Fig. 9(c),
where a p-value <0.1 is outlined in white.

Next, we combined the two data bases to create a larger
(N ¼ 215) group, which can be subdivided by different clinical
parameters. Statistical analysis shows that for a population with
PSA greater and less than 5 ng∕ml, there is a spatial SD in the
right zone of the prostate. Figure 10 shows the two spatial dis-
tributions and their SD.

Fig. 6 (a and b) Spatial distribution results from two patients; for each
patient, the colors yellow and cyan represent the zones with and with-
out tumor, respectively. The values of 1 and 0 are assigned to the
yellow and cyan zone, respectively. (c) To generate the spatial distri-
bution, we count the number of occurrences after summing the two
images. The color red corresponds to two occurrences.

Table 2 Group of patients by pathological variable used in this
research.

Number of patients

PSA at time of surgery <5 ng∕ml 134

≥5 ng∕ml 55

Age <60 years old 77

≥60 years old 117

Gleason score >6 49

≤ 6 51
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Fig. 7 Spatial distribution of all the patients (216 total). The color scale indicates the number of occur-
rences; the right zone shows to have the most level of occurrences. The labels—right, left, apex, and
posterior—are related to the patient’s position.

Fig. 8 The figures on the left show the 3-D location (red crosses) of the largest number of cancer occur-
rences for right and left sides of the prostate. The figures on the right show the corresponding slices with
the largest number of occurrences. (a) Entire database, (b) Section of Biomedical Image Analysis (SBIA)
database, and (c) University of Rochester Medical Center (URMC) database.
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Similar results for the population with Gleason score greater
and less or equal to 6 were obtained (Fig. 11).

In the case of populations older and younger than 60 years
old, statistical analysis shows that age does not have any impact
on the spatial distribution of the disease, see Fig. 12. In all cases,
we used a Z-test for two independent proportions; the critical
value is Z ¼ 1.65. The red color indicates SD.

Table 4 quantifies the percentage of the whole prostate voxels
that exceeded the Z-test threshold, for each comparison of two
subgroups. Even though there are significant spatial differences
of prostate cancer within the prostate gland when analyzed
according to our clinical–pathological variables, the extent of
these differences are highly variable, as seen in the table below.

5 Discussion and Conclusions
Probabilistic maps are used to investigate where cancer is more
likely to develop within the prostate gland. The goal of this
study was to develop a computational tool, which extends
the use of 3-D probabilistic maps for a statistical analysis of
prostate cancer between different populations in relation to
the cancer’s clinical parameters: PSA, Gleason score, patient
age, and cancer percentage. This analysis provides spatial
SDs between maps, which would increase our understanding
of this disease in relation to its clinical parameters. This tool
would help create a starting point for future work to comprehend

the relationship between tumor distribution and different surro-
gate markers. Therefore, this study could have a significant
impact.

Several computer-assisted approaches9–13,34 developed in this
field have focused on the optimal targeting of biopsy needles so
as to maximize the detection of cancer but without considering
other clinical parameters. Our approach can estimate the spatial
distribution of the cancer with respect to clinically significant
parameters, and this can help create a probabilistic map custom-
ized to the patient.

The database used in this study is composed of prostate
glands obtained after radical prostatectomy for prostate cancer.
Consequently, the database does not include normal prostates,
and the probabilistic model has some deformation because of
the presence of a tumor. An expert pathologist manually selected
one prostate from the database with an average size and shape to
be the atlas model. This process is similar to other reported stud-
ies10,11,13,30 and does not affect the statistical analysis used since
the same prostate is used for the registration step.

Most of the statistical analyses are based on the hypothesis
about two independent population medians (Mann–Whitney U
test and Kolmogorov–Smirnov test for two independent sam-
ples), which perform a comprehensive analysis of the distribu-
tions indicating the similarity between populations. However,
these analyses do not provide the spatial difference between

Fig. 9 Spatial distribution of (a) SBIA and (b) URMC. (c) Spatial p-value; the area inside the white outline
has a p-value <0.1.
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two populations. The Z-test for two independent proportions
was proposed in order to determine the most SD, voxel by
voxel. We analyze differences in distribution between two sub-
populations separated by a clinical or pathological variable. One
limitation of this approach is that the Z-test as applied does not
account for correlation or the conditional probability of adjacent
voxels within an individual prostate. In our approach, we simply
display the list of voxels, which individually have an SD
between the independent groups being analyzed. If the joint
probability of all the highlighted voxels is required, repeated
use of the Z-test on adjacent pixel pairs will increase the overall
probability of type 1 errors. Therefore, a difference test, such as
the Holm–Bonferroni method, for multiple comparisons would
be required for more rigorous statistical analysis.35

Previous studies on 3-D spatial distribution of prostate
cancer8–12,36 have identified some zonal differences in the occur-
rence of prostate cancer—specifically, a higher incidence in
posterior (versus anterior) and mid-apex (versus base) based
on biopsy samples.8 In our combined database, the region
with the highest number of occurrences is the right zone, more

precisely in the right posterior peripheral zone near the base of
the prostate. However, a biological explanation for this has not
yet been given in the literature.

According to our results, there is little difference in the spa-
tial distribution of cancer between patients greater or less than
60 years old. The effect of age on the distribution of prostate
cancer may have been confounded by the larger differences
seen when comparing groups based on PSA, Gleason score, and
tumor volume, all of which are expected to be higher with
advanced age.

In regards to PSA, the value of 5 ng∕ml was used as a cutoff
in our analysis to develop two spatial distributions to compare
two populations and find SDs. According to our results, prostate
cancer has an SD in the right zone of the prostate in patients with
a PSA greater than and less than 5 ng∕ml.

As seen in Table 3 as well as Figs. 7 and 8, the right zone of
the prostate shows a greater number of occurrences of prostate
cancer than the left, and this result was seen in both individual
institutional databases as well as the combined database of all
cases. Although there is no clear biological explanation for this

Fig. 10 Cancer probability distribution for prostate specific antigen (PSA) at the time of surgery.
(a) Greater than 5 ng∕ml∕number of patients ¼ 134∕189. (b) PSA ≤ 5 ng∕ml∕number of patients ¼
55∕189, where color scale indicates number of occurrences. (c) significant difference (SD) using
Z -test for two independent proportions. Red color indicates SD.
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finding, a right to left asymmetry is not unique in urologic dis-
eases and can be seen in other pathologies such as congenital
ureter pelvic junction obstruction, which is more common on
the left. Hence, the lack of any explanation for the asymmetry
at the present time does not detract from the observed result. It
also brings into question whether equal sampling of the prostate
gland in each sextant, as is the current standard of care, should
be altered to include a greater number of biopsies from the
patient’s right side, although this issue requires further study.

Ultimately, there is a clear disparity between the incidence
and cancer-specific mortality of prostate cancer, as discussed
previously. Given this discrepancy, there has been an increasing
reliance on “active surveillance” of what is considered to be
“low risk” prostate cancer in recent years. This entails the serial
monitoring of PSA, DRE, and Gleason score on repeat biopsy
after the initial diagnosis of prostate cancer has already been
confirmed via an initial biopsy. There are various active surveil-
lance criteria and protocols in existence, but the cornerstone of
all of these protocols is repeat prostate biopsy, since an increase
in tumor grade or volume is the most likely variable to move a
patient from active surveillance of the disease to direct therapy
for their cancer.37–39

Hence, the importance of accurate biopsy for guiding sub-
sequent treatment decisions becomes even more imperative,
and it is in this context that a patient-specific biopsy template
based on parameters such as PSA, Gleason score, and tumor
volume may be of even more benefit. Accordingly, since all
active surveillance protocols have an exclusion criteria for
Gleason scores >6, the increased prevalence of prostate cancer
seen at the right base of the gland in our database, when the
Gleason score was >6 (Fig. 11), may suggest that physicians
should increase sampling in this zone of the prostate to help
diagnose clinically significant prostate cancer.

It should be noted that there has been a move toward mag-
netic resonance imaging (MRI)-guided prostate biopsy in recent
years, which signals a move away from random prostate biop-
sies—currently done via TRUS—and represents a move toward
actual directed lesion targeting.40

Despite much progress in the development of prostatic MRI,
including MRI spectroscopy and more recently ultrasound–MRI
fusion biopsy devices, the higher costs associated with this tech-
nique as well as its still-investigational status has meant that
the standard of care for prostate cancer biopsy and diagnosis
currently remains a TRUS-guided, 12-core prostate biopsy.

Fig. 11 Cancer probability distribution for Gleason score. (a) Greater than 6/number of patients = 49/100.
(b) PSA ≤ 6∕number of patients ¼ 51∕100, where color scale indicates number of occurrences. (c) SD
using Z -test for two independent proportions. Red color indicates SD.
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To summarize, a statistical atlas based on histologic images of
whole-mount prostatectomy specimens has been created in this
study. The methodology enables us to better understand the
differences in the spatial occurrence of prostate cancer and
test for patterns associated with clinical–pathological variables.
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