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Hysteresis is a phenomenon that has been observed across many different materials and situations.

Under small-amplitude cyclical motion, classical hysteresis designates a constant loss per cycle

over a wide range of frequencies. This is also consistent with an increase in losses or attenuation

with frequency that is strictly proportional to the first power of frequency. Unfortunately, the

classical (and simple) frequency domain description of hysteresis does not result in a real and

causal impulse response, and therefore is not useful for predicting laboratory results. This problem

has led to many errors as well as other more fruitful approaches over the years. The frequency

domain requirements for hysteresis are re-examined and it is demonstrated that there is a family of

solutions that provide real and causal impulse responses over some extended frequency range. The

family is conveniently divided into highpass, lowpass, and bandpass causal systems. These are

populated by closed form analytical solutions which can be applied to the prediction of motion and

waves in hysteretic materials and systems. VC 2014 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4876183]

PACS number(s): 43.35.Cg, 43.20.Bi, 43.20.Hq, 43.80.Cs [JDM] Pages: 3381–3389

I. INTRODUCTION

There is a long standing recognition that in a variety of

situations, from the movement of soil to waves in metals, the

energy dissipation during cyclical motion can increase as the

first power of frequency, over an extended frequency range

(Kimball and Lovell, 1927; Wegel and Walther, 1935;

Mason and McSkimin, 1947). That implies that the losses

per cycle are constant over many octaves, and this behavior

has been called hysteresis, a hypothetical loss element or

process that creates a constant phase lag between stress and

strain over all frequencies (Theodorsen and Garrick, 1940;

Mason, 1950). In the early 20th century, hysteresis effects

were thought to be prominent across a diverse range of mate-

rials and conditions. Kimball and Lovell (1927) at GE Labs

reported that hysteresis was found “over a considerable fre-

quency range” and “for a number of solids of very different

physical properties.” Later, Mason stated (Mason and

McSkimin, 1947) that “the component proportional to fre-

quency is the same as observed for most metals and solid

materials at low frequencies, and indicates the presence of

an elastic hysteresis.” The issue of hysteresis is of continuing

importance in a diverse set of areas, including earthquake

motion and damping of structures, and, possibly in shear

wave propagation in biomedical tissues (Makris and Zhang,

2000; Nakamura, 2007; Carstensen and Parker, 2014).

Unfortunately, there remains a fundamental and irrecon-

cilable difference between the classical, idealized frequency

domain description of hysteresis and practical, causal time

domain realizations, and this problem has been the subject of

numerous papers over the past decade.

The Kramers–Kronig relationship links and constrains

the relationship between the real and imaginary parts of a

transfer function in the frequency domain, based on the con-

straint that the impulse response of a material is a real and

causal function (Nachman et al., 1990; Szabo and Wu, 2000;

Nasholm and Holm, 2011). Nevertheless, the most straight-

forward description of a constant phase shift in the frequency

domain is simply a transfer function with constant real and

imaginary parts, as given by Mason (1950). However, if

formulated to be consistent with a real impulse response, the

corresponding impulse response is an acausal 1=t function

(valid for both positive and negative time t), and this well-

known transform pair is related to the Hilbert transform

(Crandall, 1963; Bracewell, 1965; Crandall, 1970).

Thus, there is a problem reconciling a real, causal

impulse response for a hysteresis loss element while simulta-

neously maintaining the classical “constant real and imagi-

nary” formulation in the frequency domain.

To address this problem, a number of researchers have

taken different approaches. Inaudi and Kelly (1995) pro-

posed an iterative technique in the time domain to approach

a realizable hysteretic element. Their introduction is also

useful as a review of the many incorrect approaches and ad
hoc formulations that were proposed in the past as research-

ers grappled with the fundamentally irreconcilable differ-

ence between the simple Mason complex constant (in the

frequency domain) and the need for a real and causal

response in the time domain. Other recent formulations

include Nakamura (2007) who introduced a discrete time

approximation with up to 18 terms. Makris and Zhang

(2000) proposed a real and causal time domain function,

however, it had a singularity at zero frequency. They com-

pared this result with a much earlier result from Biot (1958)

which has a storage modulus that, at high frequencies,

increases as log xð Þ, where x is the frequency. The hysteresis
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loss at high frequencies is essentially constant, independent

of frequency (Caughey, 1962; Inaudi and Kelly, 1995). The

paper by Biot is noteworthy as a contribution since it opens

the suggestion that perhaps the hysteresis model could be

approximated by a nearly constant modulus over a limited

frequency range. This loosening of the definition is key to

achieving a working synthesis. Unfortunately, Biot’s contri-

bution is given as a “short remark on the nature of solid

friction” at the end of a highly theoretical paper on linear

thermodynamics. As such, its inference may have been

underappreciated for many years.

In this paper we re-examine the fundamental require-

ments for hysteresis and causality, and demonstrate that

there is a diverse set of continuous, real, causal analytic

functions that provide the hysteresis behavior over a range

of observable frequencies, but within a set of constraints that

permit only an approximation to the classical formulation of

constants.

II. THEORY

In terms of signal theory (Papoulis, 1987), any real and

causal signal T tð Þ can be considered to be the sum of two

real functions: T tð Þ ¼ E tð Þ þ O tð Þ representing even and odd

functions of time, respectively. These two are identical for

t > 0 but are opposite for t < 0 and therefore the sum is

causal. Their Fourier transforms are also real and even, and

imaginary and odd, respectively. Specifically,

= T tð Þ
� �

¼ R xð Þ þ jX xð Þ; (1)

where ={ } denotes the Fourier transform operation, and

because of the even, odd properties,

R xð Þ ¼ 2

ð1
0

E tð Þcos xtð Þdt; (2)

and R xð Þ is an even function of x; and

X xð Þ ¼ �2

ð1
0

O tð Þsin xtð Þdt (3)

and X xð Þ is an odd function of x.

Furthermore, since the two functions are equal for t > 0,

it can be shown then that as a consequence, the cosine

Fourier transform of the even part must equal the sine

Fourier transform of the odd part. Specifically,

T tð Þ ¼ 2E tð Þ ¼ 2O tð Þ for t > 0: (4)

Thus, using the inverse transform relations,

T tð Þ ¼ 2

p

ð1
0

R xð Þcos xtð Þdx

¼ � 2

p

ð1
0

X xð Þsin xtð Þdx for t > 0: (5)

This is another way of saying that the real and imagi-

nary parts of the frequency domain, R xð Þ and X xð Þ, are

linked and dependent for a causal function, a relationship

which is alternatively captured in Kramers–Kroning

relations.

Adopting Mason’s (1950) formulation for strain S and

stress T in a solid material with hysteresis H and elastic

constant K under plane wave conditions we begin with the

frequency domain equation

T xð Þ ¼ K þ jHð ÞS xð Þ; (6)

where the purely elastic K plus hysteretic H elements are

independent of frequency x. We see immediately that the

hysteretic term H (which comprises the imaginary compo-

nent) must be made an odd function of frequency [so as to

correspond to a real transfer function following Eq. (3)], and

so must take the form jH Sign xð Þ. Thus,

T xð Þ ¼ K þ jH Sign xð Þð ÞS xð Þ: (7)

We now have a transfer function whose real part is even

and whose imaginary part is odd. This is one requirement for

causality. But can we also satisfy the Fourier cosine and

Fourier sine equality requirement [Eq. (5)] with constant

functions of frequency for both K and H? The answer is no

if we insist on constant K and H over all frequencies, since

the Fourier cosine transform of a constant yields an impulse

in time, whereas the Fourier sine transform of a constant

yields a 1=t function, hence we cannot use two constants

simultaneously to satisfy the basic requirements of a real,

causal response. In other words, if we examine the impulse

response of the transfer function of Eq. (7), then S xð Þ ¼ 1

and T xð Þ ¼ K þ jH Sign x½ �. Then, examining Eq. (5) with

R xð Þ ¼ K and X xð Þ ¼ H, we have

T tð Þ ¼ 2

p

ð1
0

K cos xtð Þdx ¼ 2Kd tð Þ (8)

but, furthermore,

T tð Þ ¼ � 2

p

ð1
0

H sin xtð Þdx ¼ 2H

pt
: (9)

These are not equal for any constant value of K; H
except for the trivial case where H ¼ K ¼ 0. Thus, some-

thing has to vary in Eq. (7) in order to establish a real and

causal impulse response.

However, following Biot (1958), if we allow for some

variation at extremely low frequencies, then we can perhaps

find solutions that do provide a constant phase shift (or a

constant loss per cycle) over a very wide frequency range,

and at the same time provide for a real and causal response

to an applied impulse of stress. Thus, we designate the

requirements for limited hysteresis over an observable fre-

quency range xmin < x < xmax, where xmin � xmax as

T xð Þ ¼ K xð Þ þ jH xð Þð ÞS xð Þ; (10)

and where

H xð Þ ffi H0 for xmin < x < xmax;

and where K xð Þ is an even function of x, H xð Þ is odd.
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A. Conditions for limited hysteresis

A limitation of the formulation comes from examining

the energy loss per cycle in hysteresis in sinusoidal steady

state at some frequency x0. Starting with Eq. (10), let

S ¼ S0cos x0tð Þ ¼ Re S0ejx0t½ �, then

T ¼ Re S0 K þ jHð Þejx0t
� �

¼ S0 K2 þ H2ð Þ1=2
cos x0tþ hð Þ; (11)

where h ¼ arctan H x0ð Þ=K x0ð Þ
� �

. Along the cyclical path of

stress and strain the energy E dissipated is given by

dE ¼ TdS ¼ T
dS

dz
dz

¼ �S0 K2 þ H2ð Þ1=2
cos zþ hð ÞS0 sin zð Þdz

¼ �S2
0 K2 þ H2ð Þ1=2

cos zþ hð Þsin zð Þdz (12)

and the total energy dissipated per cycle is

E¼
ð2p

0

dE¼�S2
0 K2þH2ð Þ1=2

ð2p

0

cos zþhð Þsin zð Þdz

¼þpS2
0 K2þH2ð Þ1=2

sin h½ �: (13)

Note that sin h½ �¼sin arctan H=K½ �½ �¼H=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2þH2
p

. Thus,

E xð Þ ¼ pS2
0H xð Þ; (14)

indicating that if H xð Þ is constant then the resulting energy

loss per cycle will be constant over a frequency range.

However, this is only true if strain S0 is treated as the inde-

pendent variable and also held strictly constant over the fre-

quency range. This could be accomplished experimentally

with conventional load cell equipment; however it is not

generally the case, especially in wave propagation. Thus the

inference of Eq. (14) that hysteresis will be exhibited only if

H xð Þ is constant is restricted to special circumstances and

will be called “limited hysteresis.” Even in these restricted

circumstances—with S0 and H xð Þ constant—causality

requirements will specify K xð Þ to be a non-constant, so the

idealization of Eq. (6) is not realizable.

B. Conditions for strict hysteresis

Under wave propagation, the requirements for hysteresis

are more stringent since we now require the attenuation (the

imaginary part of the wave number) to increase linearly with

frequency. This constrains the material properties. As one

example, in sinusoidal steady state plane shear wave propa-

gation in an isotropic elastic material with losses, the general

relationship is

T xð Þ ¼ lS xð Þ: (15)

l is the shear modulus and the shear wave speed

cs ¼
ffiffiffiffiffiffiffiffi
l=q

p
, where q is the density. Assuming that l can be

described as l xð Þ ¼ K xð Þ þ jH xð Þ, then the complex wave

number is

k ¼ x
cs
¼ b� ja ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K xð Þ þ jH xð Þ
q

r : (16)

Here, k is the wavenumber with real (b) and imaginary

(a) parts (Blackstock, 2000). The attenuation coefficient a of

a propagating wave will therefore be a function of frequency

depending on K xð Þ and H xð Þ. Expanding on the real and

imaginary parts of Eq. (16) we have

b ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

K2 þ H2

r
1

2
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ H2

K2

r
0
B@

1
CA

2
64

3
75

1=2

(17)

and the wave speed

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ H2
p

q

s
1

2
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ H2

K2

r
0
B@

1
CA

2
64

3
75
�1=2

(18)

and the absorption coefficient

a ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ H2
p

r
1

2
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ H2

K2

r
0
B@

1
CA

2
64

3
75

1=2

¼ x
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ H2

K2

r

1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ H2

K2

r

vuuuuuuuuuut
: (19)

As a limiting case, for K � H,

c!
ffiffiffiffi
K

q

s
(20)

and

a! x
2c

H

K
: (21)

However, for K � H,

c!
ffiffiffiffiffiffi
2H

q

s
; (22)

a! x

ffiffiffiffiffiffi
q

2H

r
¼ x

c
; (23)

and

ak! 2p: (24)

Considering Eqs. (17)–(19), we see that if K2 xð Þ
þH2 xð Þ ¼ constant, and if H xð Þ=K xð Þ¼ constant, then c
will be independent of frequency while a will be linearly

proportional to frequency. This behavior has been
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traditionally associated with waves in a hysteretic material

since Mason (Mason and McSkimin, 1947; Mason, 1950).

However, this behavior can only be observed in a passive

medium if both H xð Þ and K xð Þ are approximately constant

over some extended frequency range. We call this the “strict

hysteresis” criterion and have already noted that achieving

the strict criterion, H xð Þ ¼ H0 and K xð Þ ¼ K0, over all fre-

quencies is not possible with real, causal functions.

C. Realizations over frequency bands

Considering our framework for hysteresis over an observ-

able frequency range xmin < x < xmax, we note that causal

hysteretic functions (initially we examine “limited” hysteresis

functions) can be classified conveniently into three subgroups.

(1) Highpass causal hysteresis functions: H xð Þ � H0 for

xmin < x <1ðessentially xmax !1Þ.
(2) Lowpass causal hysteresis functions: H xð Þ � H0 for

0 < x < xmax ðessentially xmin ! 0Þ.
(3) Bandpass causal hysteresis functions: H xð Þ � H0 for

xmin < x < xmax; H xð Þ ! 0 otherwise.

III. RESULTS

By reference to tables of Fourier transforms (Bracewell,

1965) and with the help of the MATHEMATICA computation

system (Wolfram Research, Champaign, IL, USA, whose

notation for functions is used in all following equations), a

number of functions can be found as candidates for K xð Þ
þ jH xð Þ and its real, causal transform h tð Þ.

The list below is not exhaustive; it simply presents some

candidates to illustrate the scope of the family of solutions.

We begin with an examination of some more obvious func-

tions that, upon closer inspection, have serious problems in

terms of practicality.

F1: The function

1=tð ÞUnitStep t½ � (25)

has the Fourier transform of

�2c� 2 log Abs x½ �½ � þ ip Sign x½ �
2
ffiffiffiffiffiffi
2p
p ; (26)

where c is Euler’s constant. This is the simplest of the func-

tions that are causal yet related to Mason’s model and with

the idealized constant H xð Þ ¼ 1=2
ffiffiffiffiffiffiffiffi
p=2

p
Sign x½ � from

0 < x <1. However, because of the slow asymptotic

decay of 1=t as t!1, K 0ð Þ is infinite. This means that the

function represents a material with stiffness approaching in-

finity at very low frequencies. Furthermore, the real part

K xð Þ goes negative, whereas passive, non-resonant materi-

als will have positive K. Finally, the singularity at t ¼ 0 is

impossible to realize experimentally, and is difficult to deal

with in convolution operations. Thus, while UnitStep t½ �=t
has the ideal H suggested by Mason, it is at best an example

of “limited hysteresis” with numerous additional problems.

A simple way to improve asymptotic convergence to

zero and thereby eliminate the singularity at K 0ð Þ is to mul-

tiply the impulse response by an exponential. Thus we

examine F2,

UnitStep t½ � exp �t=4½ �=t: (27)

Its Fourier transform is

1ffiffiffiffiffiffi
2p
p �cþ i arctan 4x½ � þ log 4½ � � 1

2
log 1þ 16x2½ �

� �
:

(28)

A plot of the real and imaginary parts of the Fourier trans-

form are given in Fig. 1. The shape of the transforms is typi-

cal of this family of relatives to 1=t, and the long negative

real part of K xð Þ is still present. A number of other functions

similar to 1=t have transforms similar to those of F1 and F2.

Notably, they have a flat imaginary part at high frequency.

These are given in Table I. The time domain character of

some of these functions is given in Fig. 2.

Many of the practical issues with the previous functions

(F1–F7) can be favorably resolved by removing the singular-

ity of the impulse response at t ¼ 0. For example,

H1: The function

UnitStep t½ �csch tþ e½ � (29)

has the transform

ie�e

ffiffiffi
2

p

r !
Hypergeometric2F1 1;� 1

2
i iþ xð Þ;� 1

2
i 3iþ xð Þ; e�2e

	 

iþ xð Þ (30)

and for the case of e ¼ 1=100 000, this transform is shown in

Figs. 3(a) and 3(b) over different frequency ranges. The real

part K xð Þ cannot be a constant; however, it is positive and

has a very slight decay over any octave from x > 2. This

function is labeled highpass in the sense that K xð Þ and H xð Þ
are rapidly varying until x > 2.

Of course for earthquake or other work with lower fre-

quency components the response can be scaled since

= atð Þ ¼ 1=að ÞF x=að Þ, so xmin can be adjusted as needed.

Furthermore, in principle we can add a constant K0 such that

the real part of K0 þ K xð Þ þ jHð Þ will be positive between

xmin < x < xmax. This provides a highpass function that
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approaches the strict hysteresis criterion. In practice, any of

the functions F1–F7 can be improved by replacing

UnitStep t½ �f tð Þ with UnitStep t½ �f tþ eð Þ, where e is small but

>0. The closed form transforms are lengthy, however, and

will not be reproduced here.

Next, examples of lowpass hysteresis functions are given.

L1:

11

2
MeijerG

3

4

� �
; fg

� �
1

4
;
3

4
;
3

4

� �
;

�		

0;
1

2

� ��
;

11tð Þ4

256

#
UnitStep t½ �

#
; (31)

has the Fourier transform

�112
px2 � 112log jxj4=114

 �
� 2� 112ð Þip Sign x½ �

� �
4p 114 þ x4ð Þ :

(32)

The plot of the real and imaginary components is

given in Fig. 4. The impulse response is given in Fig. 5.

The slow asymptotic decay as t!1 leads to singularity

of K xð Þ as x! 0, limiting its value at extremely low

frequencies.

L2: The function

FIG. 1. (Color online) The frequency domain transfer function of highpass

hysteresis function F2. K xð Þ is real and even, H xð Þ is odd and imaginary.

The magnitudes of K and H are shown over the frequency range

�10 < x < 10. The imaginary part, H, is relatively constant for x > 2 to

infinity. Under certain conditions, this results in a constant loss per cycle,

the hysteresis effect, for those frequencies. However, the negative values of

K xð Þ are not applicable to passive, non-resonant media.

TABLE I. Some causal functions and their Fourier transforms that approach limited highpass hysteresis.

F1 1=tð ÞUnitStep t½ �

Fourier transform:
�2c� 2log Abs x½ �½ � þ ip Sign x½ �

2
ffiffiffiffiffiffi
2p
p

F2 UnitStep t½ �exp �t=4½ �=t

Fourier transform:
1ffiffiffiffiffiffi
2p
p �cþ iarctan 4x½ � þ log 4½ � � 1

2
log 1þ 16x2½ �

� �
F3 csch t½ �UnitStep t½ �

Fourier transform:
1

2
ffiffiffiffiffiffi
2p
p �HarmonicNumber � 1

2
� ix

2

	 

� HarmonicNumber

1

2
i iþxð Þ

	 

þ iptanh

px
2

	 
 !

F4 exp½� t2ð Þ=4� 	 1=tð Þ 	 UnitStep t½ �

Fourier transform:
1ffiffiffiffiffiffi
2p
p � c

2
þ 1

2
iperf x½ � � x2HypergeometricPFQ 1; 1f g; 3

2
; 2

� �
;�x2

	 

þ log 2½ �

� �
F5

ffiffiffi
2

p

r
K1 t½ �UnitStep t½ �, where K1 t½ � is the modified Bessel function of first order.

Fourier transform:
1

p
�cþ ipx

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p � Abs x½ �arcsinh Abs x½ �½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p þ log 2½ �

� �
. A plot of the real and imaginary parts of the Fourier transform are given in

Fig. 2.

F6 1=t 0 
 t 
 1

0 elsewhere

�

Fourier transform:
1ffiffiffiffiffiffi
2p
p Ci x½ � þ iSi x½ �½ �, where Ci x½ � is the cosine integral function and Si x½ � is the sine integral function. This imaginary part ripples as

the Si x½ � function, but these converge to a few percent of steady value for x > 50. The real part has a negative singularity at x ¼ 0, however.

F7 1

t 4þ t2ð Þ

� �
UnitStep t½ �

Fourier transform: F7 has a Fourier transform with many terms. The imaginary part has an arctan shape that is flat from jxj > 2.

FIG. 2. (Color online) The functions 1=t (the outermost function), csch t½ �,
and K1 t½ � (the innermost function) are shown over a range of 0 < t < 5.

These are representative of functions F1–F7 in Table I which are similar in

that they have a singularity at t ¼ 0 and also their transforms approach a flat

imaginary component for high frequencies.
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sin
x0t

2

	 
� �2

t
UnitStep t½ � (33)

has the Fourier transform

1

8
ffiffiffiffiffiffi
2p
p 2 log Abs �x0 þ x½ �½ � � 4 log Abs x½ �½ � þ 2 log Abs x0 þ x½ �½ �

�ip Sign �x0 þ x½ � þ 2ip Sign x½ � � ip Sign x0 þ x½ �

� �
(34)

with a constant H from 0 
 x 
 x0. The impulse response

begins at 0 (unlike the highpass examples), and oscillates

around a 1=t decay while remaining positive. However, this

function also has a singularity at K 0ð Þ. This can be mediated

[resulting in finite K 0ð Þ] by increasing the decay of the

impulse response. Hence the function,

L3:

sin
x0t

2

	 
� �2

t
exp �t=s½ � 	 UnitStep t½ �; (35)

has an improved Fourier transform with the real and imaginary

parts graphed in Fig. 6 for parameters x0 ¼ 10 and s ¼ 10.

Finally, we examine bandpass behavior,

B1: The bandpass causal hysteretic functionffiffiffi
2

p

r
cos xmint½ � � cos xmaxt½ �ð ÞUnitStep t½ �

t
(36)

has the Fourier transform

1

4p
ðlog½ x� xmaxð Þ2 xþ xmaxð Þ2�

� log½ x� xminð Þ2 xþ xminð Þ2�
þ ip Sign x� xmax½ � þ Sign x� xmin½ �


þ Sign xþ xmax½ � þ Sign xþ xmin½ �ÞÞ: (37)

The frequency domain real and imaginary plots are

given in Fig. 7 for the parameters xmin ¼ 2; xmax ¼ 9. The

corresponding impulse response is shown in Fig. 8. The

severe cutoff nature of the frequency domain imaginary

component leads to prominent oscillations (Gibbs phenom-

enon) in the impulse response, and also to singularities in the

real part, K xð Þ, at xmin and xmax.

Nonetheless, bandpass function B1 has remarkable

properties. Inside the hysteretic band, the response of this

element to an input S tð Þ ¼ sin xotð ÞUnitStep tð Þ is, after a

short startup transient, the expected hysteretic phase shift as

shown in Fig. 9 for the parameter x0 ¼ 5 inside the band

xmin ¼ 2, xmax ¼ 9. However, given the sinusoidal input

FIG. 3. (Color online) The frequency domain transfer function of the high-

pass hysteresis function H1, which is based on a csch tþ e½ �UnitStep t½ � func-

tion in the time domain. The transfer function is shown for a particular value

of e ¼1/100 000 s. In (a) are the real and imaginary parts vs frequency, dem-

onstrating a nearly constant imaginary part (lower) and slightly decreasing

real part from 4–10 radians/s. In (b) is the transfer function over a greater

frequency range, 0 
 x 
 10 000, showing slowly varying behavior within

octaves up to 10 000 radians/s.

FIG. 4. (Color online) The frequency domain transfer function of lowpass

hysteresis function L1. K xð Þ is real and even, H xð Þ is odd and imaginary.

The magnitudes of K and H are shown over the frequency range

�2 < x < 10. The imaginary part, H, is relatively constant for x ¼ 0–5. At

higher frequencies, H drops off slowly and tends to zero. This would corre-

spond to an observation of the hysteresis effect at lower frequencies.
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with x0 outside of the band, after a short startup transient the

element acts like a purely elastic material as shown in

Fig. 10 for x0 ¼ 1 (below the hysteretic band of this

example).

In practical systems, such sharp cutoffs are unrealis-

tic, so smoother bandpass functions can be applied.

Many bandpass shapes are discussed in the field of sig-

nal processing. Some smooth shapes that include func-

tions already seen in the highpass examples include the

forms

erf x� xmin½ � � erf x� xmax½ �
� �

(38)

or

arctan x� xmin½ � � arctan x� xmax½ �
� �

for x> 0;

(39)

and these have closed form inverse transforms. A bandpass

polynomial of the type

Dxð Þ2n

x� x0ð Þ2n þ Dxð Þ2n
for x> 0 (40)

is smooth, and has a closed form transform for n ¼1 or 2.

FIG. 6. (Color online) The frequency domain transfer function of lowpass

hysteresis function L3, with the parameters x0 ¼ 10 and s ¼ 10. K xð Þ is

real and even, H xð Þ is odd and imaginary. The magnitudes of K and H
are shown over the frequency range �10 < x < 20. The imaginary part,

H, is relatively constant below x ¼ 5, except at the transition around

x ¼ 0.

FIG. 7. (Color online) The frequency domain transfer function of band-

pass hysteresis function B1, with the parameters xmin ¼ 2 and xmax ¼ 9.

K xð Þ is real and even, H xð Þ is odd and imaginary. The magnitudes of K
and H are shown over the frequency range �10 < x < 10. The imaginary

part, H, is constant from 2 < x < 9. Inside this band, the function exhib-

its hysteresis. However, outside this band the function has zero phase

shift.

FIG. 8. (Color online) The corresponding time domain impulse response of

bandpass hysteresis function B1. This function begins at zero at t ¼ 0 and

exhibits oscillations that are pronounced due to the severe sharp transitions

in the frequency domain (see Fig. 7).

FIG. 9. (Color online) The input sine wave (leading) and output (lagging) of

bandpass hysteresis function B1 for input frequency of 5, which lies within

the hysteresis band. After a short transient, the system produces a phase lag

with respect to the input.

FIG. 5. (Color online) The time domain impulse response of lowpass hyster-

esis function L1. This function begins at zero at t ¼ 0, unlike the highpass

functions which exhibit a singularity at t ¼ 0.

J. Acoust. Soc. Am., Vol. 135, No. 6, June 2014 Kevin J. Parker: Real and causal hysteresis elements 3387

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.151.164.114 On: Tue, 10 Jun 2014 17:17:47



IV. DISCUSSION AND CONCLUSIONS

There is a large family of real, causal functions that

come close to the requirement of approximately constant

real and imaginary transforms over some observable fre-

quency range. Examples are provided and these do not rep-

resent an exhaustive and complete set. Rather, they are

offered to illustrate the scope and range of real and causal

hysteretic functions. This family can be conveniently

grouped into subcategories of highpass, lowpass, and band-

pass hysteretic causal functions depending on the nature of

the frequency range that is covered. The impulse response

of the highpass functions tend to resemble the 1=t function

with a singularity at t ¼ 0þ. The lowpass functions have

different impulse responses without necessarily having a

singularity at t ¼ 0þ. Bandpass functions tend to have an

oscillatory impulse response. All satisfy the key approxima-

tion of Eq. (10) (or “limited hysteresis”) over a specified fre-

quency range, and all have causal and real impulse

responses, thus are compatible with practical realizations in

nature and in the laboratory. A necessary result of causality

constraints is that the real part of the transfer function,

K xð Þ, will not be constant if H is constant. However, K xð Þ
can vary slowly [or K xð Þ þ K0 even more slowly] over a

specified frequency range, approaching the ideal, or “strict

hysteresis” behavior.

A limitation of this study is that there is no attempt to

decide which of the family of functions is the most realistic

for a given material and experimental condition. This

requires case-by-case evaluation of the response of the ma-

terial under investigation, although some theoretical consid-

erations apply. For example, Makris and Zhang (2000)

argue that the model of Biot (1958) of an infinite number of

parallel Maxwell elements can, in the high frequency limit,

be shown to yield a causal function with a real part given by

a log x½ � function and the imaginary part given by the

Sign x½ � function. Thus, combinations of basic elements (or

distributions of basic elements) under different models may

be demonstrated to produce specific functions from the fam-

ily of highpass, lowpass, and bandpass causal hysteresis

elements. This phenomenological modeling approach itself

is limited to supporting, but not “proving” the suitability of

one member of the family over any other. Another approach

would be to measure the impulse response or step response

of a discrete element at the highest possible sampling rate

(and duration) so as to determine a curve fit over the widest

possible frequency range. In practice, noise and baseline

drift will contaminate measurements and thereby can limit

our ability to support one member of the family over others.

Some forms of K xð Þ þ jH xð Þ and their impulse responses

are unlikely to be seen in nature. For instance, the impulse

response of highpass function H5 has a sharp cutoff to zero

in the time domain at t ¼ 1 s. Some other candidates have a

K xð Þ singularity at x ¼ 0, implying that the material stiff-

ness must increase sharply as frequency approaches zero. It

is unlikely that passive common materials possess these

exotic properties. The more smooth and slowly varying

forms of K xð Þ or K0 þ K xð Þ are more likely to fit passive

materials. Active damping systems could be designed to

approach the more complicated transfer functions, however.

These considerations emphasize the need for the model-

ing of hysteresis starting from molecular or macromolecular

phenomenon. This modeling from fundamentals is an impor-

tant task for future research.

These results should be helpful over a wide range of

endeavors where hysteresis has been found to play a role

and where real, causal analytical models are required to pre-

dict wave propagation and the response of materials and

structures.
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