
Time domain Doppler estimators of the amplitude of vibrating 
targets 

Sung-Rung Huang 
Department of Electrical Engineering, University of Rochester, Rochester, New York 1462 7 

Robert M. Lerner 

Department of Radiology, University of Rochester, Rochester, New York 14642 

Kevin J. Parker 

Rochester Center for Biomedical Ultrasound, University of Rochester, Rochester, New York 14627 

(Received 9 November 1990; accepted for publication 30 September 1991 ) 

Five basic algorithms using time domain techniques are described in this paper to estimate the 
amplitude and frequency of relatively low-frequency vibration of a target that is interrogated 
with a relatively high-frequency wave. The estimations are based on the Doppler shift 
generated by the vibrating target, which produces a frequency modulated echo. All algorithms 
presented here use only a small fraction of the low-frequency vibration cycle to obtain the 
estimated parameters; therefore, real-time imaging of vibration can be made in many 
applications. The described algorithms complement each other to cover a wide range of the 
estimated parameters and different sampling, scanning, and imaging criteria. Simulations show 
that these time domain algorithms have good noise performance and low sensitivity to 
nonlinearities of the vibration that may be present in nonideal conditions. 

PACS numbers: 43.60.Gk, 43.80.Vj 

INTRODUCTION 

The pulsed Doppler ultrasound technique has been suc- 
cessfully applied for blood flow detection since the 1970s. 2-4 
Since then, Doppler spectral parameter estimations using 
time and frequency domain processing have been extensively 
studied. 5-•3 These methods are oriented toward steady and 
slowly varying (pulsatile) blood flow, and are not well suit. 
ed for vibration amplitude detection using Doppler ultra- 
sound. Vibration images are produced in sonoelasticity 
imaging which was recently developed •4-•7 to detect hard 
tumors surrounded by relatively soft tissues. The principle of 
sonoelasticity imaging is briefly described as follows: The 
tissue is vibrated by a low-frequency (compared to the inves- 
tigating wave) external source; and regions of abnormal 
elasticity are expected to produce abnormal vibration ampli- 
tudes. However, the Doppler spectrum from a vibrating tar- 
get is symmetric about the center frequency; thus the mean 
frequency is zero. Therefore, the conventional Doppler ve- 
locity estimators are not appropriate for detecting vibration 
and new approaches are required. Estimators based on time 
domain processing are proposed in this paper for sonoelasti- 
city imaging and other applications where various kinds of 
propagating waves, e.g., ultrasound, laser, and microwave, 
are utilized to detect oscillating structures. Since our estima- 
tors need only very few samples of the Doppler signal, asyn- 
chronous real-time two-dimensional sonoelasticity imaging 
or vibration imaging systems can be built with proper design 
of scanning and gating. 

The problem of estimating the vibrational parameters 
underlies many applications aside from sonoelasticity imag- 
ing, e.g., remote sensing, radar, sonar, acoustics, and laser 
calibration of sound fields. Various estimation methods have 

been proposed. Since the time domain waveform is compli- 
cated, frequency domain techniques have been the primary 
object of past studies. •6'•8-24 Since all the techniques refer- 
enced above require the use of long sequences of Doppler 
signals to avoid frequency aliasing and to achieve noise re- 
duction, they are not as well suited to real-time imaging. 
Time domain processing which makes use of a priori infor- 
mation regarding the nature of the Doppler shifts from vi- 
brating targets requires less data than frequency domain ap- 
proaches to achieve the same estimation, and, therefore, is 
more suitable for real-time and/or imaging applications. 

Five time domain algorithms are proposed in this paper 
and the estimated parameters are vibration amplitude and 
frequency. Four among the five are devoted to estimating 
vibration amplitude; the other one is a vibration frequency 
estimator. The theoretical derivations and performances of 
each estimator will be presented in the following sections. 
Variations and advantages of the algorithms will also be ad- 
dressed. The equivalence of baseband and fidomain process- 
ing will also be discussed. 

I. THEORY 

A. Derivation of the Doppler signal for vibrating target 

When an incident laser, radio, or acoustic wave is ap- 
plied to a moving target, the frequency of the detected back- 
scattered signals from that moving target will be Doppler 
shifted. If the illuminated target is vibrating, the returned 
signal is more complicated. In this case, the validity and the 
mathematical formulation of the Doppler shift are still sub- 
jects of controversy involving some linear and nonlinear 
derivations. 25'26 But for the simplified case of a sinusoidally 
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vibrating target, the returned signal can be represented by a 
pure-tone frequency modulation (FM) process. 

Assume that the scatterers are vibrating with the form 

•(t) = •'rn sin(cOL t + CpL ), ( 1 ) 

v(t) =}(t) = o m COS(COLt -•- (j3L) , (2) 
where •(t) is the displacement of the vibration, v(t) is the 
velocity of the vibration, •m is the vibration amplitude of the 
displacement field, Vm = COL•m is the vibration amplitude of 
the velocity field, fL = co,./2rc = 1/TL is the vibration fre- 
quency, and cpL is the vibration phase. 
Then, the received signal can be written as ls'19 

Sr(t) = A cos coi(t)dt , (3) 

where coi (t) = coo + coa (t) is the instantaneous frequency 
and coa (t) is the Doppler shift of frequency due to the mo- 
tion of the target. The Doppler shift frequency can be ex- 
pressed as 

coa(t) = [2v(t)/Co ]coo cos 0, (4) 
where Co is the propagating speed and 0 is the angle between 
the direction of wave propagation and the direction of vibra- 
tion. Substituting Eqs. ( 1 ) and (2) into Eq. ( 3 ), the received 
signal can be rewritten as a pure-tone FM equation 

Sr(t) = A cos[coot + •Po +/3 sin(COLt + CpL ) ], (5) 
where •o is an arbitrary constant phase term. The modula- 
tion index of the FM process/3 is directly related to the 
vibration amplitude of the velocity or displacement field as 
follows: 

2Vm COO COS 0 2•'m COO COS 0 •'m 
/3 = = = 4rr • cos 0, 

COL CO CO /]'0 
(6) 

where Ao is the wavelength of the interrogating wave. Thus 
estimating the modulation index/3 is equivalent to estimat- 
ing the vibration amplitude of the displacement and/or ve- 
locity fields. The amplitude constant ,4 is assumed to be uni- 
ty to simplify the analysis for the rest of this paper. 

----tan- '(IkQk_ , -- I•_ • Q• )1(I•I•_ , + Q•Qk_ , ) 

= - ([/3 sin(kco,• Ts + c,o,• ) + COo ] 

-- {/3 sin [ (k -- 1 )wL Ts + •L ] + •o }) 
= -- 2/3 cos(kcoL Ts -- col Ts/2 + cpL ) sin(coL Ts/2) 

and 

(9) 

•j, ----tan- '(IkQk_ , + I•_ , Q• )1(I•I•_ , -- Q•Q•_ , ) 

= [/3 sin(kco,• Ts + ½,• ) + COo ] 

+ {/3 sin[ (k - 1 )co,. Ts + •,• ] + •o} 
= 2/3 sin(kco,. Ts -- col Ts/2 + cpL ) cos(coL T•/2) + 2q•o. 

, (10) 

These two signals are called phase and co-phase signals, 
respectively, in this paper. They are both related to the phase 
of the received signal and form the basis for the following 
estimations. Derivations of these two signals involve the 
complex multiplications of two successive complex quadra- 
ture signals. Examining these two signals closely, they are 90 
deg out-of-phase with different amplitude multipliers. In 
other words, they are the phase shifted and amplified version 
of the vibration signals. Figure 1 (a) shows the simulated 
waveform of the two quadrature signals with 30-dB signal- 
to-noise ratio and small modulation index fi = 0.5. The cor- 
responding estimations of the phase and co-phase signals are 
shown in Fig. 1 (b). 

To estimate the vibration amplitude, note that the sum 
and the difference of successive samples of the phase signal 
can be written in the forms 

= 4fi sin[ (k - 1)col Ts + •,. ] 

X sin(coL Ts/2)sin(coL Ts/2), ( 11 ) 

--& + &_, 

= -- 4fi cos[ (k - 1 )col rs + cpL ] 

x cos (co,. Ts/2)sin(coL Ts/2). (12) 

B. Estimation by operations on phases 

If synchronous detection is used to detect the Doppler 
signal, the resulting two discrete quadrature signals can be 
represented as 

Ik = cos [/3 sin(kcoL Ts + •L ) + •o ] (7) 

and 

Q• = sin[fi sin(kcoL Ts + •L ) + •o ], (8) 
where Ts is the sampling period and k is the sample number: 
1,2,3 .... In practice, if pulse Doppler ultrasound is used, the 
sampling period Ts is determined by the pulse repetition rate 
fr. 

Noting that the cross products of two quadrature sinu- 
soidal signals can be simplified using trigonometric identi- 
ties, two useful signals are defined as follows: 

Similarly, the sum and difference of successive co-phase 
samples give 

=4ficos[(k-- 1)coLTs + c, oL ] sin(coLTs/2) 

X cos (col rs/2), (13) 

+ + 

= 4/3 sin[ (k - 1 )col Ts + cpL ] 

X cos(coL Ts )cos(co½ )+4qo. (14) 2 

If the vibration frequency is known, the vibration ampli- 
tude can be estimated directly from the above equations: 

=4 [0; rs/2)]'- + [0; sin(o, rs/2)1'-. 4 sin2(coL rs ) sin2(coL Ts/2) 
(15) 
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FIG. 1. (a) Time domain waveforms of two quadrature signals I• and Q•; 
(b) the phase signal •, co-phase signal •,, and vibration 
o• ---/• sin(kco L T, + c, oL ). Signal-to-noise ratio is 30 dB, the modulation in- 
dex is/• - 0.5, and the sampling frequency is f, = 10f•. 

This estimator will be referred as successive-phase estima- 
tor. Notice that the carrier phase Cpo does not appear 
throughout the derivation as only phase samples are used, 
and, therefore, this estimation is independent of the un- 
known carder phase. 

Since the sum and difference of successive phase and co- 
phase signals are essentially similar, one can obtain the same 
estimation using the sum and difference of the two successive 
samples of the co-phase signal as shown below 

cos(o rs/2)1: + sin(oL rs/2) ' 4 sin2 (col T s ) cos2(coL Ts/2) ' 
(16) 

The unknown carrier phase •'o in •i + [ (Eq. (14) ] produces 
a bias in the estimate of/g using Eq. (16). The constant phase 
term can be removed by first filtering •, or •[ + before mak- 
ing further calculations. But in general, this estimation 
[ (Eq. (16) ] is inferior to the previous one [ (Eq. (15) ]. 

If both phase and co-phase signals are available, the esti- 
mation can be achieved by combining these two signals in the 
following way 

h2 •• [•k/ sin(o• r,/2) ]2 _•_ [•/COS(OL r,/2) ]2 
(17) 

Since both phase and co-phase signals have contributions 
depending on the sampling rate, this estimator is called bi- 
phase estimator. It needs one more arctangent operation 
than the previous one but is less sensitive to the variation of 
the sampling rate. Notice that the weightings of phase signal 
•k and co-phase •, depend on the product of sampling peri- 
od and vibration frequency. Using the example offs = 10 
kHz and fL = 200 Hz, the resulting argument for the sine 
and cosine functions is rr/50. This means that the contribu- 

tion of the co-phase signal is only a correction term and 
much less than that of a phase signal. Looking back at the 
phase signal in Eq. (9), the squaring operation gives one dc 
term which is proportional to the square of the desired pa- 
rameter/g and another term oscillating at twice the vibration 
frequency. The co-phase signal is used to compensate the 
rapidly oscillating term. This compensation is not necessar- 
ily when the sampling frequency is very high as in the case of 
conventional Doppler estimators. Once again, since the 
compensating co-phase term contains a dc unknown carrier 
phase contribution, either low-pass filtering or calibration is 
needed to reduce the bias. 

If white noise is added to the quadrature signals, the 
autocorrelation and cross correlation of the noise compo- 
nents at one delay will approach zero. This noise reduction is 
achieved during the above estimation process by the cross 
multiplications of in-phase and quadrature-phase signals 
(Ik and Qk ) to derive the phase and co-phase signals if un- 
correlated noise terms are inserted into Eqs. (7) and (8) to 
produce Eqs. (9) and (10). Applying the same noise reduc- 
tion technique, the cross products of phase and co-phase 
signals can be used to achieve more noise reduction in the 
following forms: 

h3 •/(•k•c-- 1 -- •k--1 • )12 sin2 (COL Ts ), (18) 
•; =X/(•k•'- n -- •k-- n•' )/2 sin(noL Ts ) sin(oL Ts ). 

(19) 

They are termed the one-shift cross-phase estimator and n- 
shift cross-phase estimator, respectively. The performance 
of the n-shift cross-phase estimator is similar to that of the 
one-shift cross-phase estimator but it can be used in more 
flexible sampling conditions and scanning patterns to 
achieve the real-time imaging requirement. 

In all of the above estimations, the vibration frequency 
must be known before the vibration amplitude is estimated. 
In some applications, the vibration source is externally ap- 
plied and the vibration frequency can be tracked accurately 
and precisely using a frequency meter, e.g., in sonoelasticity 
imaging and laser calibration and measurement of sound 
fields. But in some other applications, e.g., the study of heart 
valve vibration, the frequency of vibration is an unknown 
and possibly important parameter. Therefore, an estimation 
of the vibration frequency may be required. However, we 
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point out that the estimation of one more parameter out of 
the same set of sample data will generally increase the vari- 
ance of the results. 

Taking the ratio of difference of the phase and the sum 
of the co-phase signals and assuming Cpo = 0, we have 

4/3 sin[ (k - 1 )COL Ts + cpL ] sin2(coL Ts/2) 
4/3 sin[ (k -- 1 )co L Ts + cpL ] cos2(coL Ts/2) 

= tan- 2(WL Ts/2). (20) 

From the above equation, it is not difficult to derive the 
phase-ratio estimator for vibration frequency: 

)',. = [tan- •X/(•bk -4k_• )/(•b;, q-•b;,_ • ) ]/z'Ts. 
(21) 

Since the vibration frequency is a much slower varying quan- 
tity, it is not difficult to remove the unknown carrier phase 
Cpo by filtering. 

C. Estimation by correlations 

Since all the previous algorithms use a fixed number of 
samples to estimate the parameters, noise performance can 
only be improved by averaging over the estimated param- 
eters. However, the noise may be amplified in the process of 
taking trigonometric functions; therefore, the performance 
improvement is limited to some extent. Given a small modu- 
lation index/3, noise can cause serious problems in the pre- 
vious estimaters. Thus we seek the development of alterna- 
tive method estimations, which employ averaging over the 
raw data. 

Returning to the pure-tone FM signal, the spectrum of 
this signal is well known to be a series of Bessel functions. 27 
Therefore, if x(t) represents the complex quadrature signal 

x(t) = cos [/3 sin(co L t + qoL ) + qOo ] 

+ i sin [/3 sin ( coL t + cpL) +Cpo] 
• eigOoei13sin(wL t + •oL) 

= ei•øø Z Jn (/3) ei"<•'l•t+•ø'•, (22) 
then the Fo',rier transform of x (t) will be 

X(w)------•-(x(t)) 

= x(t)e - •' dt, 

• . 

= 2•e i•ø • J. (•)e'"•(w -- nw• ), (23) 
n• • 

where J• (•) is the nth order Bessel function of the first kind. 
Let R • (v) be the autocorrelation function of x (t), 

R• (•) • x(t • v)x*(t)dt, (24) 
then, from the properties of Fourier transformation, we have 

R• (•-) = •-- •(X(co)X* ((o)) 

_ 1 2•rei(•oo- •Oo) 
2•r _•, 

x • J• (g)e'"(•-•)•(a - na•)e • da 
n• • • 

= • J2(•)e•" (25) 
n• • • 

Notice that the unknown cartier phase •o and vibration 
phase • have been canceled and the resulting power spec- 
trum is independent of those phases. 

This autocorrelation function is a series of squared Bes- 
sel functions weighted by a complex exponential function 
and can be evaluated with the aid of the generating function 
of the Bessel function and z-transform theory as follows: If 
we replace the term e iw• by z- •, the autocorrelation func- 
tion can be written into a z transform of a discrete sequence 
of squared Bessel function as 

R• (v) = • Z- nj2 (•) (26) n 

n= • • 

or the product of two identical discrete Bessel sequences. But 
the z transform of a discrete Bessel sequence is its generating 
function, i.e., 

•(•,z) • • z- ", (•) = e-(•/2)(•- •/•). (27) 
n• • • 

This analytic expression of the Bessel generating function 
can be found in many mathematical handbooks, e.g., see Ref. 
28. It is used to relate the z transform of a Bessel sequence 
instead of solving differential equations in this derivation. 
Since the multiplication in the index domain for two discrete 
sequences is equivalent to the complex convolution in the 
transform (or z) domain, we have 

1 R• (v) - • •(•,v)• v - • dvl•= 
(28) 

Evaluating the integral on the unit circle by setting v = d ø, 
we have 

R•,•,(3') =• -• exp --•- 

X exp --•- (e --e ) 
X (e - io) ( ieiO dO) 

f- _ _•1 exp( /3 [cos 0 
2rr 

-- COS( 0 -- O L 3') ] ) dO 

1 f • 3') sin(0 = -- exp [2/3 sin( coL -- 2•r -• 2 

=Jo [ 2/3 sintco,•3'/2) ]. (29) 

Middleton 29 has derived a similar but incorrect expression 
for pure-tone FM autocorrelation function, where a cosine 
was used in place of the sine in the argument. 
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Since the zeroth-order Bessel function Jo (x) has a series 
expansion of the form 

X 2 X 4 X 6 
Jo(x)=l-- 3-•-•+'", (30) 

22 2242 224262 

the autocorrelation function can be approximated as 

Rxx (r) • 1 - 4/3 2 sin2(COL r/2)/4, (31) 
the desired vibration amplitude can be estimated as 

•4 --x/[ 1 -- [Rx• (Ts)] ]/sin2(co,• Ts/2), (32) 
when the estimated parameter/3 is small. This is called the 
autocorrelation estimator for the vibration amplitude. 

The autocorrelation function, in practice, is approxi- 
mated by a finite series: 

1 N--! 

Rx• (k,T•).-• • Xt`_nX•_n--1, (33) rt•0 

where xt` is the discrete complex quadrature signal 

xt` = cos [/3 sin(kco,• T• d- q•) ] d- i sin [/3 sin(kco,• T• d- q•) ] 
= Ik d- iQk. (34) 

The time delay variable r is replaced by two variables: index 
k and Ts to emphasize the controllability of the two indepen- 
dent parameters N and Ts. The parameter N can be varied 
according to real conditions, e.g., sampling rate, noise level, 
•.a ..... •,,•7o,i,,• The longer the sequence is used to ap- 
proximate the autocorrelation, the bette• the estimation is. 
In practice, •ve to ten samples can be used to p•oducc good 
approximation. 

The vibration Fcequency is assu•ed to be known in the 
above estimation. IF the vibration Fcequency is unknown, the 
estimation can p•oceed •ith the aid oF the quasiautocorrela- 
tion Function denned as 

R • (•) • x(t • •)x(t)dt. (35) 
Note that x(t) is complex in the above expression. Then, 
again the Fourier transform properties give 

R = 

i2•o , . ( 3 6 ) = e 
Using similar mathematical techniques as before, the qua- 
siautocorrelation function can be evaluated to be 

= ] 
•1 -- 4• 2 cos2(•/2)/4. (37) 

From the above expression, the quasiautocorrelation estima- 
tor can be written immediately as 

<38 
Since this estimator has the same structure as the autocorre- 

lation estimator, their performance and limitations are basi- 
cally the same. Notice that the quasiautocorrelation for a 
continuous, random bandpass process is identically zero 3ø 
in the limit, but the signal we are dealing with is discrete, 
deterministic, and sample limited and therefore the quasiau- 
tocorrelation is not equal to zero. 

In cases where the vibration frequency is unknown, the 
dependence on vibration frequency col can be canceled by 
summing the autocorrelation (31 ) and quasiautocorrelation 
functions (37) as follows: 

IR (39) 
Since both autocorrelation and quasiautocorrelation func- 
tions are used in deriving the estimated parameter, it is called 
the dual-autocorrelation estimator. This estimation is valid 

only for small vibration amplitude but holds for all vibration 
frequency and sampling rates. The performance is again de- 
pendent on the length of the sequence used in calculating the 
two correlation functions. 

D. Estimation using the rf signal 

The signal processing based upon the phase operation 
Can also be implemented in the radio frequency (rf) domain. 
This follows the observations 

•k,rf = tan- 1( It`,rf Qt` - 1,rf -- Ik - 1,rf Qt`,rf ) ß .• 

(Ik, rflk -- 1,rf d- Qt`.rf Qt` - ,,rf 

= - ([ kcoo T• + qo +/3 sin(kco,• T• + q,• ) ] 

--{(k- 1)COo Ts + qo 

+/3 sin[ (k - 1)COL Ts + •,• ]}) 
= qbt` - COo Ts (40) 

and 

•b;,rf- tan-1( Ik'rfQt`- l'rf d- Ik--l,rfQk, rf ) It,,rfIt,- •,rf -- Q t`,rf Q t`- 1,rf 

= [kcoo Ts + •Po +/3 sin(ko) L T s d- qS• L ) ] 
+ {(k - 1)cooTs + •o 

-3-/3 sin[ (k - 1 )(-/)L L d- I•L ]} 
= 4; + 2kCOo - COo L, (41) 

where •bk,rf and •b;,rf are the phase and co-phase signals de- 
rived from the rf quadrature signals, i.e., 

Ik, rf = COS [ kcoo Ts + •Po +/3 sin ( kCOL Ts d- I•L ) ] (42) 
and 

Qk, rf: sin [kcoo Ts + •Po +/3 sin(kCOL Ts + I•L ) ]. 
(43) 

These two rf quadrature signals can be derived from two rf 
phase shifters with 90-deg phase difference. Another way to 
obtain the quadrature signals pair from a single component 
is to take the Hilbert transform. This is in contrast to the 

usual way of obtaining the baseband quadrature signals by 
mixing the received rfsignals with the rfcarrier. Note that an 
arctangent operation would be used to obtain the phase and 
co-phase signals from Irf and Qrf; thus the additive term 
2kcoo T• in Eq. (41 ) leads to a rapid oscillation in co-phase 
and can be eliminated by low-pass filtering. The dc term in 

, 

both expressions can be removed also. Therefore, all vibra- 
tion estimators based on the phase operations as described 
earlier have their own associate rf processing schemes. 

The correlation estimator can also be implemented in 
the rf domain when the baseband quadrature signals are un- 
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available and only the rf signal is available. Let 
z(t) = x(t)e i'øø' be the rf signal, where x(t) is the complex 
signal as defined in Eq. (22); then the Fourier transform of 
z(t) is simply a shifted version of the Fourier transform of 
x(t), i.e., Z(co) = X(co -- COo ). Therefore, the autocorrela- 
tion and quasiautocorrelation functions of z(t) can be ex- 
pressed as 

R• ( r) = R• ( r)e - iwør 

=Jo [2/3 sin(coLt/2)]e -ia'ør 

= [ 1 --/3 2 sin2(COL r/2) ]e -'øø• (44) 

and 

R' (r)=R' (r)e iøø' zz xx 

= Jo [2/3 cos(COL r/2) ]e i'øø• 
iwot 

= [ 1 -/3 2 cos2(COLr/2) ]e , (45) 
respectively. Note that COl Ts ,• rr since high sampling rate is 
used. In this case, COS2(COL rs/2) > > > sin2(COL Ts/2) and, 
therefore, the quasiautocorrelation approach is less sensitive 
to noise than the autocorrelation approach. 

If the rf sampling rate is sufficiently high, i.e., COo Ts ,• rr, 
the vibration estimation can be achieved as described in the 

previous section. In case the sampling frequency is not suffi- 
ciently high or only the real rf signal (either sine or cosine or 
a phase shifted sine component) is available, the vibration 
can still be estimated after correction of the sin(COo Ts) 
and/or cos (COo Ts ) factors. For instance, let 
z• (t) = [z(t) +z*(t)]/2=cos[COot +/3sin(COLt) ] be the 
rf signal; then the autocorrelation of z• (t) can be expressed 
as 

Rzlzl (7') 

l fr[(z(t+r)+z*(t+r))(z*(t)+z(t) ) dt =-• 2 2 

1 [(Rzz(7-)+R*(7-)) (R'(7')+R•*(7'))] • • zz , + zz 
2 2 2 

2 2 

+Jo[213cos(coL7-) } cos(coo7-) 2 

•"' 1 (2 -- ]• 2) COS(coo 7- ) (46) 

for/3,• 1 and COL7',•rr. 
This equivalence of signal processing in the baseband 

and the rf domain gives freedom and high flexibility in de- 
sign of system architecture, electronic circuitry, and signal 
processing. 

E. Estimation using conventional Doppler estimators 

Assuming a target is slowly vibrating with sinusoidal 
velocity, the output of a short time, mean Doppler frequency 
estimator is also a sinusoidal function. The frequency of this 
sinusoid is the vibration frequency and the amplitude is pro- 
portional to the modulation index or vibration amplitude. 
Therefore, one can also upgrade a conventi9nal Doppler es- 

timator with some modifications to estimate the vibration 

amplitude. But due to the nature of the truncated sinusoid, 
large bias or variance of the resulting estimates of the sinu- 
soidal amplitude are often encountered. Thus, to reduce the 
bias and variance, the estimation time can be made longer 
than that of the estimation techniques proposed in the pre- 
vious section. It is worthwhile discussing some general ap- 
proaches to modify a conventional Doppler into vibration 
Doppler estimates. 

The first way to find the amplitude of the sinusoid is to 
differentiate or to integrate the oscillating estimate. Let the 
conventional Doppler frequency estimate be y(t) 
=/3COS(COLt+q•L), then dy(t)/dt= --COL/3sin(COLt 
+q•L) and œy(t)dt=[3/COL sin(COLt+q•L). There- 

fore, the vibration amplitude can be estimated as 

/3 = y2(t) q- • (47) 
COZ dt 

or 

/3= y2(t) q- CO• y(t)dt . (48) 

This method is very general but the performance depends on 
how well the time derivative or integration can be achieved 
or be independently estimated. The time derivative and inte- 
gration terms can be either derived from the conventional 
Doppler estimate or directly derived from the rf signal. For 
direct rf estimation, this translates to the use of displace- 
ment, velocity, and/or acceleration estimators. For exam- 
ple, since the time shift of the rf correlation peak between 
successive pulses is proportional to the displacement, and 
velocity can be derived from the amount of time shift of the rf 
correlation peak in a few successive pulses, l• these two sig- 
nals can be combined to estimate the vibration amplitude. 

The other straightforward approach is to use spectral 
estimation techniques, e.g., see Ref. 31, to estimate the pow- 
er or amplitude of a truncated sinusoid. Among those spec- 
tral estimation techniques, the AR (autoregressive) and 
ARMA (autoregressive and moving average) models suffer 
from the stochastic nature of the modeling and, therefore, 
the resulting estimates are oscillating as a function of trunca- 
tion length, initial phase of the sampled sinusoid, sampling 
frequency, etc. Therefore, the sampling must be held at a 
certain fixed operating point and the vibration frequency can 
not be changed or swept during the estimation. This will 
restrict the use of the vibration and the scanning. Some other 
methods that employ sinusoidal models might perform bet- 
ter. Examples are Pisarenko harmonic decomposition and 
Prony spectral line estimation. 31 Since the phase of the esti- 
mated sinusoid is lost in the Pisarenko method, the signal 
must be sampled carefully. For all spectral estimation tech- 
niques, the major disadvantage is the intensive computation 
involved in the least-square minimization. 

II. RESULTS AND DISCUSSIONS 

A. Noise performance of vibration amplitude 
estimators 

Computer simulations suggest that the estimators de- 
scribed above have reasonable noise performance. Figure 2 
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Vibrotion Cycle 

FIG. 2. Typical vibration amplitude for five vibration cycles. Signal-to- 
noise ratio is 30 dB, the true modulation index is/3 = 0.5, and the sampling 
frequency is f = 6fL. 

shows the estimated parameters against time. For estimators 
•1' •2' •3' and •4' sampling rates are fixed at fs -- 6fL and 
random noise is added in both quadrature signals to main- 
tain 30 dB signal-to-noise ratio. Other variant estimators 
(• '•, • ;, • •, and • •') have similar performances to the cor- 
responding estimators and are not shown on the graphs. The 
true modulation index is/3 = 0.5 in this simulation. The re- 
sults indicate that the estimators are not strongly dependent 
on the phase of the vibration, and simulations that use nonin- 
tegral sampling frequency give similar results. Therefore, 
synchronized sampling is not necessary. The estimations 
over signal-to-noise ratio from 10 to 40 dB for three different 
modulation indices/3 = 3, 0.5, and 0.05 are shown in Fig. 
3 (a). In this case the sampling frequency is again fixed at 
f• = 6fL. The results show that• cross-phase estimators and 
correlation estimators (•3 and/34 ) are good for small vibra- 
tion amplitudes. This is as expected since the small modula- 
tion index approximation is involved in the derivations of 
correlation estimators. But the su?essive-phase estimator 
and the biphase estimator (• and/32 ) are fairly good over a 
wide range. Figure 3 (b) indicates that the successive-phase 
estimator can make accurate estimation even when the mod- 

ulation index is as large as/3 = 100 if the sampling rate is 
maintained within a certain criterion (rs = 2.4/3fL in this 
simulation), which will be discussed in the next section. 

B. Applicable range of vibration amplitude estimation 

Since the power spectrum of the pure-tone FM signal is 
a Fourier-Bessel series with harmonics spacing at the modu- 
lation frequency f•,27 the sampling frequency must be high 
enough to include the first few spectral harmonics without 
aliasing. From our experience in simulation, the minimum 
sampling frequency must be at least four times higher than 
the vibration frequency (or modulation frequency) to 
achieve satisfactory estimation. Aside from this general sam- 
pling criterion, there are different sampling criteria for each 
estimator. For the successive-phase estimator in Eq. (15), 
the phase signal is derived from the arctangent function and 
has a basic range limitation 

-o 

•- ' ..... "•?..7,,'.'.• •,•, fi 005 _ ',• ---- Successive-phase • • • = ' 
Bi-phase E. 

....... Cross-phase E. 

½ Correla[ion E. 
10.00 13.75 17 50 2.25 25.00 28.75 32.50 36.25 40.00 

Signal-to-Noise ratio (dB) 

I I. I i I i i 10.00 13.75 17 50 21.25 25.00 28.75 32.50 36.25 40.00 

(b) Signal-to-Noise Ratio (dB) 

FIG. 3. (a) Estimated modulation index •against signal-to-noise ratio for 
four different algorithms: •,, •2, •3, and/34. True modulation indices are 
/3 = 3, 0.5, and 0.05 from top to bottom, and the sampling frequency is 
f• = 6fL in each case; (b) wide applicable range for the successive-phase 
estimator •, with true modulation indices/3 = 0.3, 1, 3, 10, 30, and 100 and 
sampling frequency f = 2.4/3fL in each case. 

O< lc•k I 2/5' cos(kcoz: T• OL T• ) sin(,WL2T• ) 2 

(49) 

Since the cosine term is always less than 1, ihe above expres- 
sion can be simplified as 

213 Isin( 2rrfL/2f• ) l•<rr. (50) 

If the sampling frequency is high, the small argument ap- 
proximation for the sine function can be made. Then, the 
following sampling restriction can be derived: 

fs >/2/3fL. ( 51 ) 

This is the sampling criterion chosen in Fig. 3 (b). In prac- 
tice, the maximum modulation index can be estimated from 
the strength of the vibration source, and then the sampling 
frequency can be determined accordingly. The same sam- 
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pling criterion applies for the successive-co-phase estimator 
in Eq. (16), biphase estimator in Eq. (17), and cross-phase 
estimators in Eqs. (18), (19), and (15), where the phase 
and co-phase signals are used. But for those estimators, since 
the trigonometric function to be approximated is the cosine 
function instead of the sine function, there is a limitation of 
the maximum estimatable modulation index •max: 

•max •< •r/2. (52) 

If this rule is violated, the aliasing of the phase will occur, 
which will subsequently lead to the aliasing of the modula- 
tion index/3 (or the vibration amplitude). 

For the minimum estimatable modulation index/3min, 
however, good estimation can always be achieved with high 
signal-to-noise ratio in simulation. As a rule of thumb, the 
minimal estimatable modulation index as function of signal- 
to-noise ratio and sampling frequency can be described as 

log,o ( 1//•min ) • SNRo,/10 (fs/fL) 0.5. (53) 
This rule of thumb also applies to biphase and cross-phase 
estimators, and applies especially well to correlation estima- 
tars which exploit small argument expansion for the zeroth- 
order Bessel function. 

Figure 4 is a summary of the range of validity of each 
estimator. The lower axis is an example of a typical sonoelas- 
ticity imaging application using ultrasound as the interro- 
gating wave with the following parameters: fo = 7.5 MHz, 
co = 1500 m/s,/To = 0.2 mm, and 0 = 10 ø. In this graph of 
applicable range of estimation, the upper limit of the succes- 
sive-phase estimator and the lower limit of the correlation 
estimators are depicted roughly by Eqs. (51 ) and (53), re- 
spectively. 

C. Effects of nonlinearity on vibration amplitude 
estimation 

In practical applications, the vibration is not always 
pure-tone sinusaid because of some medium or vibration 
source nonlinearities. In this case, assuming that only funda- 
mental and the second harmonics are significant in the vibra- 
tion, then the returned signal can be written as 

s,(t) = A cos[coot +/3 sin(co•.t + ½• ) 

+/32 sin(2wrt + ½2 ) ], (54) 
where/3 and/32 are the modulation indices of the fundamen- 
tal and second harmonics of the vibration, respectively. The 
nonlinearity can be defined as 

N,• --/•,•//3 x •00%. (55) 

For small nonlinearity (less than 10%), the perfor- 
mance of all estimators are essentially not affected as shown 
in Fig. 5 where a noise-free signal is analyzed. The sampling 
frequency is held constant at f• = 6fL and the true modula- 
tion index is/3 = 0.5 for all estimations. Note that the cross- 
phase estimator and correlation estimators show almost zero 
estimation errors. Even in the worst case of 10% nonlinear- 

ity, the phase estimator only introduces less than 1.2% esti- 
mation error. Thus we can conclude that all these time do- 

main estimators are insensitive to the nonlinearity. 

D. Vibration frequency estimation 

An unknown vibration frequency can be estimated in 
several ways. Equation (21 ) provides one easy way to obtain 
the estimation. Figure 6 shows the performance of this 
phase-ratio estimator against vibrational cycles. Signal-to- 
noise ratio is maintained at 30 dB, the modulation index is 

/3 = 1.2, and the sampling frequency is fixed at f• = 5.436fL 
for simulations at three different vibration frequencies 
f,• = 100, 250, and 400 Hz in Fig. 6. The results indicate that 
the phase of the vibration has little effect on the frequency 
estimation. The deviation is approximately proportional to 
the vibration frequency since the first estimated parameter is 
the tangent function of the product of the vibration frequen- 
cy and the sampling frequency. 

III. CONCLUSION 

Five time domain estimators (and variations) are pre- 
sented in this paper. Four of them estimate the modulation 
index (or equivalently the vibration amplitude), and the 
other one estimates the vibration frequency. The successive- 
phase estimator in Eq. ( 15 ) covers a broad range of the esti- 

I 

Correlation estimators j 
r I 

Cross-phase estimotors __j 
"--I 

L Bi-phase estimator 

•_ Successive-phase estimator 

Modulation Inde10 • 10 -2 10-' 1½ •0 • 10 • 

' ' ''' 'I'•' ' ' '"' ..... ";'"' •1• ..... I 10' ....... ........ • ...... • , l• • ' •' ..... I• .... ;, ....... 
10-' 10-' •b-' 

Normalized Displacement in Wavelength 

Vibration Displacement (mmic • ld 1C• 10 -4 10 -5 10 -2 10 -• 
I I I I I IIIIJ I I I I IIIll I I I • •1 • I I I IIIII I • • • ,•,,I • f • I •1 

lb- ....... •o ....... •b' ....... • ....... •P ....... 1 

Vibration Velocity (mm/s) 

FIG. 4. The applicable range for the time 
domain estimation algorithms discussed 
in the text. The relation of modulation in- 

dex and the normalized estimated vibra- 

tion amplitude of displacement field is 
plotted. Two auxiliary axes are drawn for 
the typical SOhoelasticity application 
where the parameters of the interrogating 
wave are fo = 7.5 MHz, Co = 1500 m/s, 
Ao = 0.2 mm, and 0 = 10 ø. 
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0.0 

Successive-phase / 
Bi-phase • 

....... Cross-p.hase • 

5.0 10.0 

Nonlinearity (%) 

FIG. 5. Percentile estimation errors (noise-free) ag•nst nonlinearity for 
four vibration amplitude estimators: •1•,/32,/33, and •34. True modulation 
index is/3 = 0.5 and the sampling frequency is f, = 6fL. Since the estima- 
tion errors for •3 and/•4 are so small, their percentile error curves are over- 
lapped with the horizontal axis. 

mated parameter. The upper limit of valid estimation de- 
pends on the sampling frequency. The required calculation is 
also minimal and simplest among all estimators discussed. 
The successive-co-phase estimator in Eq. (16) is a variant of 
the successive-phase estimator and has almost the same per- 
formance as the successive-phase estimator. The biphase es- 
timator in Eq. (17) uses both phase and co-phase signals; 
thus it has better performance than the successive-phase esti- 
mator when the modulation index/3 is small. Noise perfor- 
mance is improved with cross-phase estimators [Eqs. (18), 
(19) ] but the estimation range is reduced. The n-shift-cross- 
phase estimator in Eq. (15) is also the most flexible one for 
the design of the image scanning system. Sampling criteria as 
shown in Eqs. (52), (51 ), and (53) must be followed to 
maintain good estimation. 

c) 

Do 

• o 

o. 

-- 100 Hz 

250 Hz 

....... 400 Hz ,'", , 

,' • 

i i i i 

0.0 1.0 2.0 3.0 4.0 5.0 

Vibrotion Cycle 

FIG. 6. Three different vibration frequencies ( f•. = 400, 250, and 100 Hz 
from top to bottom) are estimated by the phase-ratio estimator ]c•.. Five 
cycles of vibration are shown on the graph. Signal-to-noise ratio is 30 dB, 
the true modulation index is /3 = 1.2, and the sampling frequency is 
f• = 5.436fL. 

Correlation estimators [the autocorrelation estimator 
in Eq. (32), the quasiautocorrelation estimator in Eq. ( 38 ), 
and the dual-autocorrelation estimator in equation (39)] 
provide alternative approaches when the vibration ampli- 
tude is small. The minimum estimatable vibration amplitude 
is determined by the system noise and sampling criterion 
given in Eq. (53). The length of the sequence used in the 
correlation estimators is adjustable and is a parameter in 
making an image. Carefully choosing the correlation length 
will be helpful in producing good real-time images. 

The phase-ratio estimator in Eq. (21 ) estimates the vi- 
bration frequency. Since the vibration frequency used in real 
applications is expected to be constant or slowly changing, 
the estimation can be improved significantly by simple filter- 
ing. As long as the vibration frequency estimation is main- 
tained in a certain range of accuracy, the vibration amplitude 
can then be accurately estimated using one of the algorithms 
described above. 

Furthermore, either phase estimators or correlation es- 
timators can be implemented using rf signals. This alleviates 
the restriction of requirements for signal processing and 
electronic circuitry. Trade-offs between signal processing 
and electronic circuitry can be made accordingly. 

Also, conventional Doppler techniques can be modified 
to estimate the vibration parameters. However, if the deter- 
ministic property of the sinusoidal vibration is not used, the 
final estimate will suffer from the finite truncation and non- 

zero initial phase. 
All of the time-domain estimators proposed in this pa- 

per make use of a priori knowledge of vibration, and, there- 
fore, require only a small fraction of the vibration cycle and a 
minimum of two samples to estimate the desired parameters. 
Furthermore, the resulting estimations are not affected sub- 
stantially by the vibration phase. Together with the frequen- 

19 
cy domain estimators developed in our previous paper, 
they cover a wide working range of signals and working con- 
ditions (e.g., sampling criteria, vibration amplitude, noise 
level, and nonlinearity). Therefore, they are useful in var- 
ious real-time imaging and remote sensing applications in 
radar, sonar, and acoustics. 
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