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Abstract—In beamforming, a critical design issue is the 
choice of the window or apodization function. Because the 
transverse beam pattern at focal depth is related to the Fouri-
er transform of the apodization function, designers must evalu-
ate the properties of the function and its transform, jointly, 
to optimize the system. This paper illustrates systematic ap-
proaches to designing useful functions.

I. Introduction

Window functions are well known in digital signal 
processing (DSP). Closely related to these are the 

apodization functions of sources used in imaging. In these 
subject areas, the objective is to choose a function that 
has a limited support in one domain, while also having 
desired properties in the transform or frequency domain. 
In traditional digital signal processing, there can be some 
flexibility in choosing the support of a window, and differ-
ent applications place priorities on side-lobe levels, spec-
tral leakage, or other measures of the transform of the 
window function [1]–[4].

This paper is primarily concerned with ultrasound 
imaging systems using focused beams produced by apo-
dized sources. A lens or analogous time/phase shift at the 
source results in a transverse beam pattern across the fo-
cal region that is the Fourier transform of the source apo-
dization function [5], [6]. The Fourier transform properties 
of a focused system are approximate within Fraunhofer 
and paraxial simplifications for a monochromatic source 
[5]–[7]. However, for many practical systems the relation 
is highly useful. For this reason, many principles in DSP 
concerning window functions and their transforms are 
pertinent to the study of ultrasound beam patterns. For 
example, in linear arrays, one-dimensional apodization 
functions can be selected and applied to the long axis of 
the transducer while a fixed function is applied along the 
shorter axis. The selection of a proper apodization func-
tion is critical to the production of an optimal beampat-
tern for pulse–echo imaging [8]–[11].

However, there are some important distinctions be-
tween the classical discussions of windows in DSP and the 
particular case of focused ultrasound apodization. DSP 
applications are primarily concerned with discrete sam-
ples and the discrete Fourier transform is typically utilized 

with its properties of implicit periodicity. However, ultra-
sound pressure (or velocity) is modeled and measured in 
the focal region as a continuous variable [9], [12]. Even in 
the near field of a linear array, the array elements are typi-
cally sub-wavelength and the pressure (or velocity) can be 
modeled and measured as a continuous variable. Hence, 
for simplicity, in this paper we will be primarily concerned 
with continuous analytic functions and their transforms.

Furthermore, considering the specifics of ultrasound 
imaging systems and a range of design parameters, we 
highlight the following three simplified objectives:

	 1) 	Absolute limits on support of the apodization func-
tion. This is a practical yet inflexible constraint. 
Hand-held ultrasound transducers have a fixed di-
mension and, furthermore, the available acoustic 
window (for example between the ribs to view the 
liver) is also strictly limited in many applications.

	 2) 	Maximum energy transmission across the apodiza-
tion function. The combination of tissue attenuation 
and weak scattering from organ microstructures cre-
ates a signal-starved imaging situation, and limits 
penetration. Furthermore, there is an upper limit to 
the excitation of array elements in transmission, and 
so any apodization function that causes the majority 
of elements to be set to a small amplitude—as in a 
slow asymptotic decay to zero—will be transmitting 
only a fraction of the energy that could be transmit-
ted with a rectangular window of the same size. A 
similar consideration applies to the receive apodiza-
tion, for which maximizing signal-to-noise is desired. 
This energy factor can be quantified by the integral 
of the square amplitude of the normalized apodiza-
tion function over the support of the window.

	 3) 	Compact transform (narrow beamwidth for high lat-
eral resolution). Furthermore, because ultrasound 
systems display a high dynamic range (typically 50 
or 60 dB), side lobes are undesirable. These confound 
the interpretation of single versus multiple point tar-
gets and also act to fill in voids. Hence, there is a 
strong preference for a compact, high-resolution be-
ampattern without side lobes, or else side lobes well 
below −60 dB with rapid asymptotic decay.

As is well known from the properties of the Fourier 
transform, these three objectives are generally in opposi-
tion to each other. For example a rectangular window is 
strictly limited (Objective 1) and maximizes the transmit-
ted energy (Objective 2), but the Fourier transform is the 
well-known sin[ω]/ω function, with side lobes as high as 
−13 dB with a slow asymptotic decay. Thus, this beam-
pattern ranks very low for Objective 3.

Because of the need to consider competing design goals, 
the selection of apodization or window functions and their 
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transforms requires compromises and joint optimization of 
the features of the functions in both domains.

This paper takes a systematic look at continuous, ana-
lytic apodization functions to illustrate trends across vari-
ous functional shapes, and to identify candidates which 
may be optimal, considering the three objectives. The 
definition of Fourier transforms and functions follows the 
convention used in the Mathematica computational devel-
opment platform (Wolfram Research, Champaign, IL), so 
that the results can be easily modified or expanded.

The organization of this paper is as follows: first, we 
examine the properties of the ideal Gaussian function and 
others to demonstrate how familiar functions succeed or 
fail to meet the objectives of high energy transmission and 
compact beampatterns. For background and reference, 
Section II examines functions that are not limited in sup-
port, and so can only be approximated in practice. Section 
III deals with strategies for limiting the candidate func-
tions to a finite support, and examines the consequence 
of these on the Fourier transforms. Some novel functions 
are proposed that have useful properties and reasonably 
satisfy the three imaging objectives.

II. Properties of Ideal Functions,  
With Unlimited Support

In this section, some familiar functions are examined 
to provide background and context for the discussions. 
These functions with unlimited support can demonstrate 
desirable or undesirable characteristics in their Fourier 
transforms. Strategies for limiting the support of good 
functions are considered later in Section III.

A. The Gaussian

The transform pair ℑ −{ }e x 2 2/  = e−ω
2 2/  illustrates that 

the Gaussian function is an eigenfunction of the Fourier 
transform operation. Lacking any side lobes, and with a 
strong (parabolic in log scale) asymptotic decay to zero in 
both domains, it would seem to be an optimal function for 
satisfying Objective 3 of ultrasound imaging. In fact, the 
well-known uncertainty principle [13] sets a lower limit on 
the product of the spread (Δx) of any function and the 
spread of its transform (Δω) such that

	 ( )( ) .∆ ∆ ≥x ω π
4

	 (1)

The Gaussian transform pair achieves the minimum value 
permitted by the uncertainty principle [13], in sharp com-
parison to many other familiar functions which can have 
an uncertainty product that is many times, or even orders 
of magnitude times the theoretical minimum. Thus, the 
Gaussian stands as an important reference standard. Un-
fortunately, it does not have limited support.

B. The Hyperbolic Secant

Another eigenfunction of the Fourier transform is the 
hyperbolic secant:

	 ℑ =





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{sech[ ]} sech .x
π πω
2 2 	 (2)

This function and its transform are, like the Gaussian, free 
of unwanted side lobes. However, the asymptotic decay 
of sech [x] goes as exp[−x], which is slow compared with 
the Gaussian. Hence the spread of this function and its 
transform are a disadvantage when considering Objectives 
1 and 3 and the need for a compact waveform.

C. The Hyperbolic Secant Squared

For normalized functions (peak value = 1) that asymp-
totically approach zero, the rate of descent can be im-
proved by raising the function to a power. The transform 
pair

	 ℑ = ⋅ ⋅





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{(sech[ ]) }x 2
2 2
π
ω

πω
csch 	 (3)

yields a tighter function in the x domain, however, at the 
expense of a broader transform. These functions still do 
not decay as rapidly as the Gaussian. A comparison of 
these three functions is plotted in Fig. 1 for reference.

D. Flat-Topped Gaussians

In an attempt to optimize Objective 2 by extending the 
region of the apodization function that is near the maxi-
mum, there are several functions and modifications of the 
Gaussian that have more of a flat top and a wider central 
region. A wider central lobe function would also (generally 
speaking) yield a narrower Fourier transform, and hence a 
narrower focused beam, improving Objective 3 so long as 
side lobes are constrained. One strategy is to multiply the 
Gaussian by an increasing function:

	 ℑ =

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
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or
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Another strategy is to widen the transform by multiplica-
tion with a suitable function because multiplication in one 
domain corresponds to convolution of the transforms:
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A third strategy is simply to increase the power of the 
exponent:
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These functions are plotted in Fig. 2. The general trend is 
that flattening the window results in oscillations (undesir-
able side lobe creation) in the transform.

III. Functions of Limited Support

In this section, we apply strict limits to the support of 
the apodization function such that A(x) is specified for 
−1 < x < 1 and is 0 elsewhere. There are several strate-

gies that can be employed to enforce the limits, and each 
strategy has its own consequence in terms of the resulting 
function’s Fourier transform.

A. Truncation

The simplest way of limiting a function to the span of 
−1 < x < 1 is to truncate the function at these points. 
This is equivalent to multiplying the function by a rect-
angular window. In the transform domain, this results in 
a convolution. Because the rectangle window has a sinc[ω] 
transform, the problem of multiple side lobes with slow 
decay is significant. Using the Gaussian as an optimal ref-
erence function, the key design parameter is the choice of 
the Gaussian standard deviation relative to the window 
size. As one example, we set σ to 0.4 so that there are 5 
standard deviations within the window −1 < x < 1. Fig. 3 
shows the side lobes produced by the truncation.

It stands to reason that as σ is decreased (and the 
Gaussian becomes narrower within the fixed window), the 
effects of truncation are minimized and the side lobes lev-
els are reduced. However, the slope of the decay of the side 
lobes does not change, and the maximum energy trans-

Fig. 1. Reference functions of unlimited support. (a) From outside to inside, the hyperbolic secant (sech[x]), the Gaussian with unity variance  
(exp[−x2/2]), and the hyperbolic secant squared. (b) The Fourier transforms of these functions, plotted on a decibel scale (20 log 10[Mag]) as a func-
tion of spatial frequency ω from −5 < ω < 5. Because real and even functions have real and even transforms, there is no imaginary component. The 
widest function corresponds to the transform of the hyperbolic secant squared. The parabolic function corresponds to the Gaussian, which represents 
an ideal standard.

Fig. 2. In an attempt to increase the total power transmitted or received across the window, the Gaussian function is modified to produce flat-top 
and broadened functions. (a) { erf[( ) ]− − +1 2 1 22/ //π x  + 1 2 1 22/ //π erf[( ) ]},+ x  (with thick line), { cosh[ ]},e−x x

2
 { ( )},e− +x x

2
1 2  and { }e−x

4 2/  
(with narrowest base). (b) The Fourier transforms of these functions for |ω| ≤ 5. All transforms have side lobes, meaning they oscillate at higher 
frequencies, with the exception of the pure Gaussian, shown again for reference (parabolic curve). The transform of the erf functions is a Gaussian 
times a sinc, and this function (with thick line) has the lowest side lobes of this set.
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mitted (Objective 2) is decreased. Thus, this strategy is 
ultimately self-limiting.

B. Nonlinear Transformation of Variable

A function of unlimited support can be mapped into 
a limited span by replacing x with a transformation that 
approaches ±∞ as x approaches ±1. Many functions can 
achieve this mapping; a simple polynomial approach is

	 X
x
x

x=
−







 − ≤ ≤

1
1 1

abs[ ]
.α

β

 for 	 (8)

If α is an even integer, the absolute value function is 
not necessary. The powers α and β control the rate at 
which larger values are mapped toward X = ∞. As an 
example, using the reference Gaussian function with the 
transformed variable and α = 2, and β = 1.5, 2, 3, and 4 
are shown in Fig. 4(a). Fig. 4(b) shows a particular case 
where α = 8 and β = 2, approximating a pure Gaussian. 
We have not found a closed-form analytical Fourier trans-
form for this family of functions but numerical integration 

of the Fourier transform integral indicates the presence 
of side lobes. Hence, these have no particular advantages.

C. Limited Basis Functions

Another strategy is to compose apodization functions 
from a set of basis functions fn(x) that approach zero at 
the limits, or are zero outside of −1 < x < 1. The popular 
Hann and Blackman windows are good examples using the 
appropriately windowed cosine function [1], [3]. In par-
ticular, the Blackman window approaches the shape of a 
Gaussian and correspondingly has low side lobes (below 
−50 dB). Fig. 5 illustrates the Blackman window using 
standard parameters.

The Bessel functions Jn[x], where n = 0, 1, 2,…, have 
Fourier transforms that are strictly limited to the range 
−1 < ω < 1, and can be expressed in terms of the function 
(1 − ω2) times a Chebyshev polynomial [14]. Furthermore, 
the odd-order functions divided by x also have transforms 
that are limited to −1 < ω < 1. Specifically: Jn+1[x]/x has 
the transform (1 − ω2)1/2 · Pn(ω), where Pn are the Le-
gandre polynomials, and the order (n + 1) is odd [15]. We 
take advantage of this fact by examining a linear combina-

Fig. 3. The effect of abrupt truncation on the ideal Gaussian function. Shown are the transforms for |ω| ≤ 20 of the ideal Gaussian with a standard 
deviation of 0.4 units (smooth curve) and then truncated at a width of 5 standard deviations (x = ±1 units). The side lobes are seen at a level above 
−40 dB. These continue out to great distance. The side lobes can be further reduced by truncating the Gaussian at larger and larger standard devia-
tions; however this has the disadvantage of setting most of the useable aperture to near zero gain.

Fig. 4. Limiting the extent of functions by a nonlinear transformation of the variable. (a) Gaussian functions with x2 (as a standard reference) and 
then X with different transformation parameters α = 2 and β = 1.5, 2, 3, and 4. The β = 1.5 function has the widest base, whereas the β = 4 func-
tion has the narrowest base but the flattest top. (b) The transform of the standard reference Gaussian and the particular case of X derived with α 
= 8 and β = 2. This latter function converges to zero smoothly at x = 1 but it exhibits side lobe patterns.
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tion of the first 3 odd-integer orders of Bessel functions, 
each divided by x:

	 A x J
x
x J

x
x J

x
x( )

[ ]
.

[ ]
.

[ ]
.= + +1 3 51 4 0 56 	 (9)

This function and its transform are shown in Fig. 6(a). In 
this case, it is the transform that is strictly limited to −1 
< ω < 1, and this function of ω would be used as the apo-
dization function. These strict limits are also an example 
of zero mapping, described next.

D. Zero Mapping

This strategy enforces a limited support by mapping 
the zero (or zeroes) of a function to the points x = ±1. In 
general, it is helpful if the function A(x), and its first and 
second derivatives, all approach zero at the limits. This 
minimizes the spread of the transform [16].

A simple polynomial function with the desired proper-
ties is the family

	 A x x x( ) ( )= − − < <{ 1 1 1
0

2 α

elsewhere.
	 (10)

As specific examples:
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Higher integer orders of α have higher order polynomials 
in ω, with cos(ω) and sin(ω). This family of functions is 
shown in Fig. 7. These functions have side lobes, but the 
levels decrease as α increases.

Another function utilizes the hyperbolic sine function:

	 A x
x

( )
sinh[ ]

sinh[ ]
.=

−1
1

2 α

α 	 (14)

This function, and its first and second derivatives, ap-
proach zero as x approaches ±1. The Fourier transform 
for α = 5 is given by a long set of erf [a ± iω], erfi [a ± iω], 

Fig. 5. The use of basis functions. (a) The standard Blackman window which uses cosine functions as basis functions, compared with a reference 
Gaussian of unlimited support. (b) The transform of the Blackman showing side lobes below −50 dB, but with a narrower main lobe at −40 dB 
compared with the Gaussian.

Fig. 6. The use of Bessel functions as basis functions. (a) The sum of three Bessel functions of the form Jn[x]/x, where n is odd. The summation is 
effectively zero (<0.001 or −60 dB) for |x| > 10. (b) The transform of (a) on a linear scale. This transform is composed of polynomials which ap-
proach zero at ω = ±1. Specifically, F(ω) = 0.04(1 − ω2)1/2[30.8 − 56.3ω2 + 25.5ω4] for |ω| ≤ 1 and 0 for |ω| > 1.
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and Gaussian terms. They appear in conjugate pairs, so 
the result is real and even in ω.

The results are excellent because the transform has 
nearly parabolic drop off on a log scale, as shown in Fig. 
8, and there are no side lobes within −70 dB. In DSP 
applications, the corresponding N-point window would be

	 An n N
n
N( ) sinh

sinh[ ]
...( ).=

− −( )



 = −

1 1

1
0 1

2 2 5

5  for 	 (15)

A related function uses a third-order polynomial ap-
proximation to the sinh function (specifically the third-
order series expansion for sinh [x] evaluated at x = 0),

	 A x x
x
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1
6

2
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and also produces an excellent result, as shown in Fig. 9.
Furthermore, to a reasonable approximation (abso-

lute error less than 0.4% over the interval 0 < |ω | < 14.2 
and side lobes below −70 dB for |ω | > 14.2), the sinh5 
function emerges as an approximate eigenfunction of the 
Fourier transform operation, with limited support in both 
domains:

	

ℑ
−









≅ ⋅

− ( )
sinh[ ]

sinh[ ]
.

sinh .1
1

0 2118
12 5

5

2
14 2x ω





− ≤ ≤ − < <
→

5

51

1 1
0

14 2 14 2
0

sinh[ ]

. .x
 elsewhere  elsewhere.

ω
ε

	 (17)

Fig. 7. The use of zero mapping. A set of functions is shown based on 
the polynomial (1 − x2)α, from −1 < x < 1 and 0 elsewhere. α is shown 
at values of 0.5, 1, 2, 3, and 4 (narrowest curve). Their transforms have 
side lobes which tend to decrease as α increases.

Fig. 8. The use of zero mapping with the hyperbolic sine function of argument (1 − x2) from −1 < x < 1 and 0 elsewhere. (a) This function is raised 
to the powers of 0.5, 1, 2, and 3. (b) This function raised to the fifth power, as a good approximation to a reference Gaussian (also shown), however 
the sinh5 function has strict convergence to zero at the limits x = ±1. (c) The transform of the sinh (1 − x2)5 function, compared with the transform 
of a reference Gaussian. There are no side lobes in this transform within −70 dB.
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Of course, the fundamental uncertainty limit on Fourier 
transform pairs makes it impossible to have strictly lim-
ited, compact support in both domains, yet with reason-
able (−70 dB) approximation, this is practically achieved 
with these functions.

Finally, it should be noted that other monotonically 
increasing functions can be modified by zero mapping, for 
example the function [1 − cosh [1 − x2]]α produces similar 
results to those previously mentioned in this section.

IV. Discussion

The choice of an optimal apodization function will be 
dependent on the precise objectives that a designer uses, 
and how the objectives are weighted. Without these, we 
can only state some general considerations. The issue of 
side lobes and resolution are major concerns in high-dy-
namic-range medical ultrasound systems, and therefore 
the Gaussian function of unlimited extent is an excellent 
example function in that it lacks side lobes and has para-
bolic decay in log-magnitude space. Correspondingly, it 
achieves the lowest theoretical spread (uncertainty prod-
uct) in both domains.

Unfortunately, practical systems cannot use this ideal 
function because there is a strict limit on support of the 
apodization function. In that case, a truncated Gaussian 
or a Blackman window are two common choices. These 
possess unwanted side lobes, although the side lobe am-
plitudes can be set below −50 or lower by adjusting 
parameters, however at greater loss in the total energy 
at the aperture. We have shown that, additionally, the 
function A(x) = (sinh [1 − x2]5)/(sinh [1]5) and its poly-

nomial approximation are advantageous in the sense that 
these functions and their first two derivatives approach 
zero at the limits of x = ±1, and correspondingly have 
a transform magnitude of approximately the same sinh5 
form with nearly parabolic (in log scale) drop off with no 
side lobes within −70 dB. Table I summarizes some of the 
tradeoffs, using a few of the functions for comparison. The 
particular choice of beamwidth (i.e., −6 dB, −20 dB, or 
other) is up to the designer and some relative rankings 
depend on the level specified.

One way to appreciate the combination of factors is 
to examine the image produced from a pair of reflectors 
separated by a small distance. Fig. 10(a) is shows the im-
age of two point reflectors separated by 4.68 mm laterally, 
at the focus of a 5-MHz, f-number 3.2 simulated imaging 
system using the Field II acoustic pressure field simulation 
package [17]. In Fig. 10(a), a rect or uniform apodization 
function is used for both transmit and receive; hence the 
sinc side-lobe pattern is strongly visible on a 100 dB dy-
namic range gray scale. Fig. 10(b) shows the same reflec-
tors and settings; however a sinh5 apodization pattern is 
used for both transmit and receive. This function has its 
zeroes mapped to ±1.2, but is truncated at ±1. This fo-
cal pattern has no visible side lobes but is larger than the 
main lobe of the sinc function. Of course, one could use 
a rect on transmit and receive and a sinh5 on receive (or 
other choices) to adjust the criteria in stages. Finally, a 
5σ truncated Gaussian apodization is used in Fig. 10(c) in 
both transmit and receive modes. The truncation results 
in low-level side lobes.

It must be noted that the full details of beamforming in 
phased array systems are complex and include several fac-
tors beyond the scope of this paper. For instance, in prac-

Fig. 9. A polynomial approximation to the hyperbolic sine function. (a) The sinh5 and its third-order polynomial approximation. (b) The transform 
of the third-order polynomial function, and a reference Gaussian transform.

TABLE I. Evaluation of Selected Apodization Functions. 

Criteria 1 
Limited 
support

Criteria 2 
Energy  

(% of maximum)

Criteria 3 
−6-dB beamwidth  
(normalized units)

Criteria 3 
Side lobe 

maximum level (dB)

Rect Yes 100 3.8 −13
Gauss 5σ By truncation 70 6.0 −43
Blackman Yes 60 7.2 −57
Sinh5 Yes 48 8.6 −78
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Fig. 10. Simulated images from a 5-MHz, f-number 3.2 simulated scanner using Field II and a pair of scatterers at the focus, 60 mm depth and 
4.68 mm separation laterally. In the simulation, the transducer had 129 active elements and a narrowband pulse (−6-dB bandwidth of 20%) was 
transmitted. (a) A flat or rect apodization was utilized for both transmit and receive. (b) A sinh5 apodization function was employed for both trans-
mit and receive. The sinh5 apodization has no side lobes but has a wider main lobe as compared with (a). (c) A Gaussian 5σ truncated apodization 
is employed. This function has a narrower main lobe than the sinh5 but low-level side lobes as a result of truncation. Images are 100 dB dynamic 
range scale so that one-way side lobes down to −50 dB can be visualized.
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tice, the array elements are discrete and have a form fac-
tor. Thus, a more careful modeling of the source includes 
a convolution of discrete sources with a representative 
element [5], [7], [9], [18]. Furthermore, the use of beams 
over many centimeters of tissue depth requires consider-
ation of the extended beampattern, including depth of 
field, f-number, focal gain, pulse bandwidth, tissue proper-
ties, and use of dynamic receive strategies [18], [19]. Other 
types of beams, including the limited diffraction beams 
such as Bessel, X-, and Axicon beams [19] can also be con-
sidered as alternatives. Finally, the issue of contrast and 
resolution in ultrasound systems is complex. Visualizing 
small voids such as cysts in tissue is critically important 
in clinical ultrasound, and a careful treatment of this as 
a function of the beampattern requires integration over 
partial volumes [11], and cannot be simply extrapolated 
from one or two parameters in Table I.

V. Conclusion

The design of focused systems includes the joint op-
timization of conflicting requirements of the apodization 
function and its Fourier transform (as embodied in the 
lateral beampattern at the focus). Several approaches can 
be taken to jointly optimize the requirements for the apo-
dization function and the beampattern. The most fruit-
ful of these include: the use of basis functions, including 
cosine and Bessel functions, and the use of zero mapping. 
With these, it is possible to achieve a strictly limited sup-
port of the apodization and an approximately limited sup-
port (side lobes below −70 dB) of a compact focal beam-
pattern.
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