2013 IEEE Wireless Communications and Networking Conference (WCNC): SERVICES & APPLICATIONS

Mobile Computing - A Green Computing Resource

He Ba, Wendi Heinzelman
Department of Electrical and
Computer Engineering
University of Rochester
Rochester, NY, United States
Email: {ba,wheinzel} @ece.rochester.edu

Abstract—Cloud computing provides an approach to accessing
shared computing resources. However, a traditional cloud is
composed of powerful but energy-hungry workstations. The
growth of the population of mobile devices such as smart phones
and tablets provides huge amount of idling computing power. In
this paper, we describe the design and implementation of a mobile
computing system prototype named GEMCloud that utilizes
energy efficient mobile devices (e.g., smartphones and tablets)
as computing resources. We evaluate the computing power and
energy efficiency of the mobile devices through comprehensive
experiments. The results show that a cloud computing system
with enough mobile devices working cooperatively is able to save
55% to 98% of the energy consumption of conventional server-
based clouds while providing comparable computing speed.

I. INTRODUCTION

Cloud computing provides an approach to accessing shared
computing resources as a service. Traditionally, the cloud is
a group of powerful computers, e.g., servers, workstations,
personal computers, etc. However, the traditional cloud com-
puting system usually focuses on performance rather than
energy efficiency. As the use of energy resources has raised
global concerns, looking for more energy efficient approaches
to providing computing power is an urgent task for researchers.

Nowadays, mobile devices such as smartphones and tablets
are becoming increasingly powerful and rising quickly in pop-
ularity. According to International Data Corporation (IDC)’s
statistics [1], 494 million smartphones were sold worldwide in
2011, surpassing the 353 million total sales of PCs. From 2010
to 2011, the sales of smartphones reached an annual growth of
62%, with expected continued increases in sales in the future.
Tablet device sales are also rising sharply, jumping from 19
million in 2010 to 69 million in 2011, an astonishing annual
growth of 263%. These comparisons are illustrated in Fig. 1.
With the continuous growth of annual sales and the evolution
of technology, it is reasonable to expect that in the near future
there will be enormous amount of computing power available
from tablets and smartphones all over the world.

In addition, unlike personal computers, mobile devices are
rarely powered off, even when the owners are sleeping, which
translates into hours of unutilized computing resources. There
is great potential if we can make use of these idle computing
resources. However, the approach to utilizing mobile devices
for cloud computing has not been researched extensively,

978-1-4673-5939-9/13/$31.00 ©2013 IEEE

Charles-Antoine Janssen

41 rue de Livourne

Email: ca@cajanssen.com

Jiye Shi
UCB Pharma
216 Bath Road
Slough, SL1 4EN
United Kingdom
Email: Jiye.Shi@ucb.com

HealthyBill

1050 Brussels
Belgium

leaving the question as to whether a mobile computing system
can be powerful and energy efficient at the same time.

In this paper, we investigate and develop a system, named
GEMCloud (Green Energy Mobile Cloud) that uses mobile
devices to provide distributed computing services to support
computationally-complex and parallelizable applications. Be-
sides the implementation, our focus is on the evaluation of the
computing capability and the energy efficiency of the system.

The rest of this paper is organized as follows. In Section
II, we review the current state of the art in the area of mo-
bile computing. Section III introduces our mobile computing
system followed by performance evaluations in Section IV.
Finally, Section V concludes the paper and discusses future
directions for this research.

II. STATE OF THE ART

We propose an energy efficient cloud computing system that
provides computational resources from distributed mobile de-
vices to the users. The idea of applying distributed computing
and cloud computing to mobile devices has been developed
in recent years. However, limited by the traditionally low
processing speed and small storage space, the focus of much
of this research has been on reducing the computational burden
of mobile devices.

One method of reducing the computational burden of mobile
devices is to set up an agent between the mobile devices and
cloud computing resources to provide mobile devices access

Worldwide Computing Devices Shipments
(Unit: Millions)

700
600
500
400
300
200
100

L el
Tablets
2012 forecast

PCs
W 2010 actual

Smartphones

W 2011 actual

Fig. 1. Computing device sales comparisons. Data are from [1].

4474

to the cloud. For example, the Mobile Cloud Middleware
(MCM) [2] introduces a middleware framework that manages
the connections and communications between mobile phones
and clouds. The MCM also provides an asynchronous server-
phone communication mechanism that specifically benefits the
mobile phone users.

Another approach to reducing the burden of mobile devices
is to offload the computationally-heavy executions to the
cloud computing resources. For example, CloneCloud [3] is a
system that allows a smartphone device to partially offload its
application to the phone’s clone (an application-level virtual
machine) in the cloud. The authors test CloneCloud on an
HTC G1 Android phone. Results show that the CloneCloud
approach saves execution time and energy consumption on
the mobile devices. A similar idea was also investigated by
Satyanarayanan et al. [4] and Cuervo et al. [5]. Another
example from Chen et al. [6] introduces a framework that
allows heavy back-end tasks on an Android phone to be
offloaded to an Android virtual machine in the cloud.

Both of the above approaches require the computations to
be executed in the cloud, which is composed of dedicated
computers. However, the mobile devices themselves could be
the source of computing power, too. Recent technological
advances have greatly improved the performance of smart-
phones/tablets in terms of CPU/GPU speed, memory size, and
storage space. As an example of one of the fastest tablet on
the market, the Asus Nexus 7 [7] is equipped with a 1.2GHz
quad-core CPU with 1GB RAM plus 8GB/16G B storage. A
smartphone or tablet similar to the Asus Nexus 7 can provide
a considerable amount of computing power that may be even
comparable to the computing power of a desktop computer.

Hyrax [8] has demonstrated the concept of using smart-
phones as computing resources. The author developed a mo-
bile cloud computing system named Hyrax by porting Hadoop
Apache, an open-source implementation of MapReduce, to
Android smartphones. Hyrax allows computing jobs to be
executed on networked Android smartphones. However, the
performance of Hyrax was poor compared with Hadoop on
traditional servers, not only because the smartphones were
much slower at that time, but also because Hadoop was not
originally designed, nor optimized, for mobile devices.

The NativeBOINC for Android project [9] is another ex-
ample of utilizing mobile devices as computing resources.
BOINC (Berkeley Open Infrastructure for Network Comput-
ing) [10] is an open-sourced volunteer computing software
originally developed for PC users to contribute their computing
powers to scientific projects. The NativeBOINC for Android
project implemented a BOINC client for Android devices that
supports six BOINC projects so far. On the mobile phone
client, the user may select several projects to attend and
start or stop computing on demand. Eastlack [11] ported
BOINC to 4 development boards with various ARM-based
mobile processors and compared their performances with Intel
processors. The results indicate that mobile processors have
energy efficiency advantages over desktop processors. How-
ever, this work does not consider system-level performance

User
—
' 4 N r I
Server Database
. S \ S
‘/r\ ‘
Mobile Mobile Mobile
Client Client Client

Fig. 2. The mobile computing system architecture.

comparisons. In this paper, we develop a working prototype
of GEMCloud, a system that exploits the energy efficiency
of mobile devices for processing computationally-complex,
parallelizable applications.

While the possibility of utilizing mobile devices as com-
puting resources has been demonstrated by researchers, de-
signing and developing a system specific to mobile devices is
challenging and must take into account the characteristics of
mobile devices in terms of their relatively slow and unstable
processing speed, limited battery life, constrained and costly
wireless bandwidth and dynamic network topology, among
others.

III. THE GEMCLOUD SYSTEM

In this paper, we design and develop a mobile computing
system prototype, namely GEMCloud, that utilizes distributed
mobile devices to cooperatively accomplish large paralleliz-
able computational tasks. The main purpose of designing such
a system is to find a green approach to making use of the
massive amount of idle computing power that is potentially
available to the public. In addition, in this paper we show
that a mobile computing system has significant advantages in
energy efficiency over traditional desktop computing systems,
and, therefore, distributed computing on mobile devices should
be explored through prototype implementations.

A. System Architecture

Fig. 2 shows the system architecture we utilize to create
a distributed mobile computing system. The system consists
of a network with users who need computing power, a server
that is in charge of the organization of the entire network, a
database that records the mobile clients’ information and task
information, and multiple clients of mobile devices that are
the computing resource providers.

The role of the server is to organize the entire network and
to coordinate mobile clients to perform computational tasks.
The server also maintains a database that stores client infor-
mation such as each client’s unique identification, IP address,
hardware capabilities, the tasks each client is performing,
project data stored on the device, etc. The server may assign
the tasks based on the clients’ information. For example, the
size and number of tasks assigned to a mobile device may

4475

Server 1 ‘ Database

L Client ‘ ‘

If not
ready

|—>| Receive client info

| Check if cllent needs

Check devi

ice’s status

If ready

Connect to server
with client info

Update client info

Reply with version

|
il

updates info
Ifyes
Y l If no
| Update |<—| Send updates |
Dlstrlbutetasks ’ N
| Compute |<—| basad 6 dliertinfs |<—>‘ Reply with clientinfo
| Send results l—)| Integrate results |

Fig. 3. The server-client protocol flow chart.

be based on the speed and the number of CPU cores on the
mobile device.

The clients are mobile devices that connect to the server via
the internet and provide computing resources to perform the
tasks requested by the user. In our prototype implementation,
we use Android [12] smartphones and tablets as the mobile
client devices. One of the most important reasons of choosing
Android as our development platform is its multi-tasking abil-
ity, which is lacking in the iOS platform. Multi-tasking allows
an application for mobile devices (i.e., an app) to execute in
the background without interfering with the device’s other
functionalities, which is especially beneficial as multi-core
mobile devices are becoming increasingly popular these days.
Another important reason to choose the Android platform is
that the developer has more control of the mobile device. For
example, it is easier to set the percentage of CPU allowed to
be used for distributed computing in Android than in iOS.

B. Server-Client Protocols

In our prototype, the clients follow the server-client protocol
flow chart described in Fig. 3. Before connecting to the
server, the mobile client’s application checks the device’s
status and decides if it should connect to the server and offer
its computing resources. For example, if the device is running
other applications that consume CPU and memory more than
a preset threshold or if the battery is low and not charging,
the device will not connect to the server. Such preferences are
designed to avoid interfering with the mobile device’s normal
usage.

After connecting to the server, the client will wait for a
response from the server. The server checks the database to
determine whether the client’s application needs an update.
For each mobile client, the server’s database stores an en-
try with a unique client identification, its IP address and
other information such as CPU speed, the tasks each client
is performing, project data stored on the device, etc. For
the prototype we have developed, we are focusing on the
evaluation of its computing capability and energy efficiency.

Network: Wi-Fi
Battery: discharging
Debug: off

O‘

Service started!

Version:0.5

Connecting to the server 107.22.64.69
Software is up to date.

Checking local database...

Local database out of date! Updating...
Database saved to/mnt/sdcard/UCB/1/
Starting job 1, Total job processed:0
Received task file/mnt/sdcard/UCB/1/pocket_atoms.txt
Calculating...

Calculation complete. Time consumed: 239s
Compressing results...

Results sent: output.zip (2772KB)

Job finished!

Starting job 2, Total job processed:1

Received task file/mnt/sdcard/UCB/1/pocket_atoms.txt

‘ s/‘ Use the default server IP

Fig. 4. The prototype screen shot from an Android phone.

Therefore, database management and clients’ information that
may be used for task distribution are not of concern for now.

Following the updating process, the server assigns tasks
to the clients. In our prototype implementation, the server
simply assigns the next task on a pre-determined list to the
next available mobile device. Again, since our current focus
is not on task assignment mechanisms, we do not attempt to
optimize task distribution in this paper.

In our prototype, the user’s application is a CPU-intensive
computing job, which can be split into multiple independent
tasks. The user sends a request to the server to complete a
job. The server splits the job into small tasks and distributes
them to multiple clients. When there are more active clients
to provide computing power, the server assigns to each client
fewer tasks, which means less time is required for each client
to finish the assigned tasks. Therefore, the turnaround time
for the job is reduced when more clients contribute to the
computation.

Upon reception of the task assignment, the mobile client
performs the computation and sends the results back to the
server in a compressed file. The server aggregates all the
results and sends them back to the user once all the tasks
are completed.

IV. PERFORMANCE EVALUATIONS

The main motivation of developing a mobile computing
system in this paper is its potential advantage in energy
efficiency. In this section, we evaluate the energy efficiency
and computing power of mobile devices and compare them
with conventional workstations.

4476

TABLE I
DEVICE SPECIFICATIONS (NOTE: “* 2 (4)” MEANS THERE ARE
TWO (FOUR) PHYSICAL CPUS IN THE WORKSTATION).

Device CPU Memory | Release Date
Xiaomi Qualcomm
Mi-One Snapdragon S3 1GB 2011
(MO) Dual Core 1.5GHz
Asus Nexus 7 Nvidia Tegra 3
(N7) Quad Core 1.2GHz 1GB 2012
Samsung Qualcomm
Galaxy S3 Snapdragon S4 2GB 2012
(GS3) Dual Core 1.5GHz
Workstation1 Intel Xeon E7505 * 2
(WS1) Single Core 3.06GHz * 2 | SOB 2003
Workstation2 Intel Xeon X5355 * 2
(WS2) Quad Core 2.66GHz * 2 | 24CB 2006
Workstation3 AMD Opteron 6276 * 4
(WS3) 16-Core 2.33GHz * 4 | !92GB 2011

A. Experimental Setup

In the energy efficiency tests, we evaluate the performance
of both the mobile devices and workstations in executing
a computationally-complex application. The application was
written in C++. The mobile devices we tested all use the
Android operating system. Since Android applications are
written in Java, we use the JNI (Java Native Interface) to
execute the native C++ code on the Android devices. The
testing code running on the workstations are directly compiled
from the C++ code. This may cause the application for the
Android platforms to be slower than that for the workstations
due to the overhead of Java and JNI integration. However,
this is unavoidable when porting C/C++ applications to mobile
platforms and thus represents a realistic situation. We used 3
mobile devices and 3 workstations for testing. Their specifi-
cations are listed in Table I.

We measure the power consumed by the mobile devices or
workstations using the “Watts up? PRO ES” power meter [13].
According to its specifications, the meter has an accuracy of
+1.5% in terms of wattage measurement. We set the recording
interval to the lowest value of 1s. This provides a good
sampling rate for our measurements as the test application
takes at least 40s even on the fastest workstation. We run
the same task 10 times on each device and average the
energy consumption readings. For multi-core devices, we run
the same task on multiple threads to evaluate the time and
energy performance. For mobile devices, we measure the
device’s energy consumption while the screen is off. For the
workstations, we only measure the power consumption of the
main unit without the monitor.

B. Experimental Results

The experimental results are shown in Tables II - VII,
corresponding to the Xiaomi Mi-One (MO) Android phone,
the Samsung Galaxy S3 (GS3) Android phone, the Asus Nexus
7 (N7) Android tablet and the three Linux workstations (WS1,
WS2, WS3).

Our first interest on the mobile devices is the computing
power they can provide. As expected, the mobile devices are

10000

1000

100

Time to complete (S)

10

1 2 4 8 16 32 64

Number of tasks

BMMO mGS3 mN7 mWS1L mWS2 mWS3

Fig. 5. Comparison of computing time.

1000000

100000

10000 | | A
1000
100

1 2 4 8 16 32

Number of tasks to complete

Energy Consumption (J)

64
EMO mGS3 mN7 mWS1 mWS2 mWS3

Fig. 6. Comparison of energy consumption.

slower than the workstation competitors. The GS3 is equipped
with a dual-core CPU and is able to finish 2 tasks in 217.1s.
This means, on average, the GS3 has a computing power
of 33.2tasks/hr. With the quad-core processor, the N7 has
the best computing power among all the mobile devices. It
is able to complete 4 tasks within 312.4s, which translates
into 46.1tasks/hr. This performance is close to the WS1’s
51.1tasks/hr, showing that mobile devices now may have
computing power comparable to some existing desktops and
workstations. The WS1 serves as a convenient benchmark for
processing speed. We ran the same task on the Amazon Web
Services (AWS) and found that each CPU of the WSI is
roughly equivalent to the AWS ml.small instance, which has
1 EC2 Compute Unit. The very high-end WS3 can accomplish
64 tasks within 50.1s. In other words, it is able to complete
4598.8tasks/hr, which is about 98.8 times faster than the
N7. Based on the data from Table II - VII, the times required
to complete the same number of tasks for all devices can be
calculated as shown in Fig. 5.

When the devices are idle, the GS3 has the lowest power

4477

consumption (0.001W) while the MO and N7 consume 0.6/
and 0.5W, respectively. As for the workstations we tested, the
WS1 has the lowest idle power consumption of 118W, while
the other two workstations consume over 3501/ even when
idle. The idle power is an important factor when considering
energy efficiency because the power consumed in this period
of time is not used for anything productive and is wasted
energy. Therefore, in the cases of light utilization, the mobile
devices can save a significant amount of energy thanks to their
low power consumption when idling.

Due to the fact that mobile device manufacturers build
various user interfaces (Uls) on top of the Android platform,
the power management strategies vary depending on the device
and the manufacturer. For example, the N7 limits the CPU
clock while using 4 cores when the screen is turned off.
Therefore, we observe a significant increase in the amount
of time (25% per core) needed to complete 1 task when all
4 cores are occupied. It is important to consider this power
management factor in our future work, as we cannot expect
every mobile device to allow applications to run in full speed
when the screen is turned off.

As for the energy efficiency, the mobile devices have a
clear edge over the workstations. With only 1 task to compute,
the GS3 has the best energy efficiency among all the tested
devices. It only consumes 288.5J to complete a task, while
the most energy efficient workstation WS3 requires 16, 322.J
to process the same task, 57 times the energy required by the
GS3. The WS1 and WS2 consume 75.8 and 92.5 times the
energy required by the GS3. In other words, the GS3 saves
more than 98% of the energy required by the workstations
when a single task is computed.

Both the workstations and the mobile devices have their
best energy efficiency when their CPUs are fully loaded. Fig.
6 shows the amount of energy required for each device to
complete a certain number of tasks (the energy required for
completing more than 64 tasks can be easily calculated based
on the measurements in Table II - VII). All the mobile devices
we tested have better energy efficiency than the workstations.
More specifically, to complete 64 tasks, the GS3 only requires
15,001.6J, or 234.4J per task, which is the least among all
the tested devices. The N7 and MO require 17,110.4J and
21, 648J, respectively. As for workstations, the WS3 requires
32,981.2J in total, which is 515.3J per task, 2.2 times what
the GS3 requires. The WS1 and WS2 consume 877,721.6.J
and 273,075.2J respectively, which is 58.5 and 18.2 times
what the GS3 consumes. In other words, the GS3 saves 98.3%,
94.5% and 54.5% of the energy required by the WS1, WS2
and WS3, respectively, when the CPUs of each device are at
full load.

In cases where the computing job can be split into multiple
independent tasks, the energy efficiency is a performance
metric more important than the computing speed, as we
can increase the system computing speed by recruiting more
devices to work cooperatively on the job. However, there is
no easy way to improve the energy efficiency. For example,
if a job consists of 320 tasks similar to the ones used in our

TABLE II
PERFORMANCE RESULTS OF THE XIAOMI MI-ONE (1 CPU, 2 CORES)

Idle 1 Core | 2 Cores
1 Task | 2 Tasks
Power (Watt) 0.6 1.8 2.9
Computing Time (Sec) N/A 235.0 236.1
Total Energy (Joule) N/A 424.1 676.5
Energy per Task (Joule) | N/A 424.1 338.3
TABLE III
PERFORMANCE RESULTS OF THE SAMSUNG GALAXY S3 (1 CPU, 2
CORES)
1 Core | 2 Cores
ldle |} Tagk | 2 Tasks
Power (Watt) 0.001 1.3 2.2
Computing Time (Sec) N/A 214.4 217.1
Total Energy (Joule) N/A 288.5 468.7
Energy Per Task (Joule) N/A 288.5 234.4
TABLE IV

PERFORMANCE RESULTS OF THE ASUS NEXUS 7 (1 CPU, 4 CORES)

Idle 1 Core | 2 Cores | 4 Cores
1 Task | 2 Tasks | 4 Tasks
Power (Watt) 0.5 2.1 2.8 33
Computing Time (Sec) N/A 233.7 2343 320.7
Total Energy (Joule) N/A 492.3 661.8 1069.4
Energy Per Task (Joule) | N/A 492.3 330.9 267.4
TABLE V

PERFORMANCE RESULTS OF THE WORKSTATION 1 (2 CPUSs, 2 CORES)

Idle 1 Core 2 Cores
1 Task 2 Tasks
Power (Watt) 118.0 156.4 195.8
Computing Time (Sec) N/A 139.8 140.1
Total Energy (Joule) N/A 21,864.4 | 27,4289
Energy per Task (Joule) N/A 21,8644 | 13,7144

test, a WS3 takes 250.5s to complete the job and consumes
164,906 in total. If we use the computing resources of 160
GS3, each processing 2 tasks, the total amount of time required
to complete the job is 217.1s while the energy consumed is
only 74,992J, 45.5% of that consumed when using WS3.

It should be noted that the WS3 represents a class of high-
end workstations/servers with significant hardware acquisition
cost, which is rarely seen in commercial cloud computing
service offerings. The WS1 and WS2, which uses 58.5 and
18.2 times the energy of what the GS3 costs, respectively,
are more representative of servers deployed as part of cloud
computing infrastructure. Furthermore, the energy efficiency
gap widens quickly as the device utilization level decreases,
which is due to the fact that, when being idle, workstations
consume hundreds of times more energy than do mobile
devices. Therefore, using mobile devices as a green computing
resource alternative to a conventional server-based cloud is
promising and feasible.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduce GEMCloud, a mobile cloud
computing system that provides computing resources to the

4478

TABLE VI
PERFORMANCE RESULTS OF THE WORKSTATION 2 (2 CPUs, 8 CORES)

Idle 1 Core 2 Cores
1 Task 2 Tasks
Power (Watt) 362.6 3779 393.0
Computing Time (Sec) N/A 70.6 70.6
Total Energy (Joule) N/A 26,687.8 27,755.1
Energy per Task (Joule) N/A 26,687.8 | 13,877.6
4 Cores 8 Cores
4 Tasks 8 Tasks
Power (Watt) 423.5 482.2
Computing Time (Sec) 70.6 70.8
Total Energy (Joule) 29,9174 | 34,1343
Energy per Task (Joule) 7479.4 4266.8
TABLE VII

PERFORMANCE RESULTS OF THE WORKSTATION 3 (4 CPUS, 64 CORES)

Idle 1 Core 2 Cores
1 Task 2 Tasks
Power (Watt) 395.6 407.8 420.3
Computing Time (Sec) N/A 40.0 40.0
Total Energy (Joule) N/A 16,322.0 16,824.4
Energy Per Task (Joule) N/A 16,322.0 8412.2
4 Cores 8 Cores 16 Cores
4 Tasks 8 Tasks 16 Tasks
Power (Watt) 438.7 466.9 506.4
Computing Time (Sec) 40.1 40.2 40.6
Total Energy (Joule) 17,586.8 18,751.1 20,538.4
Energy per Task (Joule) 4396.7 23439 1283.7
32 Cores | 64 Cores
32 Tasks | 64 Tasks
Power (Watt) 588.8 658.1
Computing Time (Sec) 41.0 50.1
Total Energy (Joule) 24,150.8 32,981.2
Energy Per Task (Joule) 754.7 515.3

user from energy efficient mobile devices. We provide the de-
sign of the system and implement a prototype for testing. Our
contribution is mainly focused on the evaluation of the energy
efficiency of this system by providing comprehensive tests
on the mobile devices. We provide performance comparisons
among various mobile devices and workstations. The results
show that the smartphones and tablets have lower individual
computing power but much higher energy efficiency. The
lower computing power can be made up by recruiting more
devices, while the energy efficiency is harder to improve given
the same type of devices.

The performance measurements demonstrate clearly the
potential of using mobile devices as distributed computing
resources. Our next step will be to investigate a more sophis-
ticated system design, focusing on task distribution algorithms
based on characteristics unique to mobile devices. As mobile
devices do not have the same stable environments as worksta-
tions have, it will be important to investigate how these random
factors affect the overall system performance. The energy and
time cost for the communications should be also evaluated and
included in the system model. In addition, the security of the
system must be investigated to protect the privacy of mobile
device owners and to guard against unauthorized access to the
computing data and results.

ACKNOWLEDGMENT

This research was funded in part by UCB Pharma and
by CEIS, an Empire State Development-designated Center
for Advanced Technology. The development of the mobile
computing platform prototype was funded by UCB Pharma.
The authors thank Dr. Phil Scordis and Dr. Dan Chapman of
UCB Pharma for helpful discussions and advice.

REFERENCES

[1] IDC Press Release. [Online]. Available: http://www.idc.com/getdoc.jsp?
containerld=prUS23398412

[2] H. Flores, S. N. Srirama, and C. Paniagua, “A generic middleware
framework for handling process intensive hybrid cloud services from
mobiles,” in Proceedings of the 9th International Conference on
Advances in Mobile Computing and Multimedia, ser. MoMM ’11.
New York, NY, USA: ACM, 2011, pp. 87-94. [Online]. Available:
http://doi.acm.org/10.1145/2095697.2095715

[3] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proceedings
of the sixth conference on Computer systems, ser. EuroSys ’11.
New York, NY, USA: ACM, 2011, pp. 301-314. [Online]. Available:
http://doi.acm.org/10.1145/1966445.1966473

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” Pervasive Computing, IEEE,
vol. &, no. 4, pp. 14 -23, oct.-dec. 2009.

[5] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer
with code offload,” in Proceedings of the 8th international conference
on Mobile systems, applications, and services, ser. MobiSys ’10.
New York, NY, USA: ACM, 2010, pp. 49-62. [Online]. Available:
http://doi.acm.org/10.1145/1814433.1814441

[6] E. Chen, S. Ogata, and K. Horikawa, “Offloading android applications
to the cloud without customizing android,” in Pervasive Computing
and Communications Workshops (PERCOM Workshops), 2012 IEEE
International Conference on, march 2012, pp. 788 —793.

[7] Asus Nexus 7 Android tablet. [Online]. Available: http://www.asus.
com/Tablet/Nexus/Nexus_7/

[8] E. E. Marinelli, “Hyrax: Cloud computing on mobile devices using
mapreduce,” Master’s thesis, Carnegie Mellon University, 2009.

[9] Native Boinc for Android. [Online]. Available: http://nativeboinc.org/

site/uncat/start

D. P. Anderson, “Boinc: A system for public-resource computing

and storage,” in Proceedings of the 5th IEEE/ACM International

Workshop on Grid Computing, ser. GRID ’04. Washington, DC,

USA: IEEE Computer Society, 2004, pp. 4-10. [Online]. Available:

http://dx.doi.org/10.1109/GRID.2004.14

[11] J. R. EASTLACK, “Extending volunteer computing to mobile devices,”

Master’s thesis, New Mexico State University, 2011.

Android. [Online]. Available: http://www.android.com/

Watts up? PRO ES Watt meter. [Online]. Available: https://www.

wattsupmeters.com/secure/products.php?pn=0

[10]

[12]
[13]

4479

