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Abstract—Dynamic programming (DP) is a fundamental tool
used across many engineering fields. The main goal of DP is
to solve Bellman’s optimality equations for a given Markov
decision process (MDP). Standard methods like policy iteration
exploit the fixed-point nature of these equations to solve them
iteratively. However, these algorithms can be computationally
expensive when the state-action space is large or when the
problem involves long-term dependencies. Here we propose a
new approach that unrolls and truncates policy iterations into
a learnable parametric model dubbed BellNet, which we train
to minimize the so-termed Bellman error from random value
function initializations. Viewing the transition probability matrix
of the MDP as the adjacency of a weighted directed graph, we
draw insights from graph signal processing to interpret (and
compactly re-parameterize) BellNet as a cascade of nonlinear
graph filters. This fresh look facilitates a concise, transferable,
and unifying representation of policy and value iteration, with
an explicit handle on complexity during inference. Preliminary
experiments conducted in a grid-like environment demonstrate
that BellNet can effectively approximate optimal policies in a
fraction of the iterations required by classical methods.

Index Terms—Algorithm Unrolling, Dynamic Programming,
Graph Signal Processing, Graph Filter, Policy Iteration.

I. INTRODUCTION

Dynamic programming (DP), recognized for its effective-
ness in numerous engineering applications [1], is frequently
modeled as a Markov decision process (MDP) [2]. A central
challenge in DP involves solving Bellman’s equations (BEQs)
to determine value functions (VFs), which represent cumu-
lative long-term rewards. Since BEQs constitute fixed-point
equations, DP commonly relies on iterative algorithms [2], [3],
wherein state transitions naturally induce a directed (di)graph
structure. Despite their effectiveness, these iterative methods
face significant computational hurdles. The number of required
iterations until convergence grows rapidly with the size of the
state-action space, and even more so in long-horizon problems.

To address these challenges, this work leverages algorithm
unrolling [4], [5] and graph signal processing (GSP) [6], [7]
to develop novel learnable neural architectures that reduce the
number of DP iterations. Unrolling techniques combine the in-
terpretability of model-based algorithms with the flexibility of
data-driven methods [4], [8]. In unrolling, iterative algorithms
are truncated to a finite sequence of update steps, eliminating
conventional iterative loops. This sequential structure can then
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be mapped into a parametric model where iterations become
layers, enabling particular elements of each update step to be
learned directly from data rather than being prescribed [9].

The iterative nature of DP makes it particularly well-
suited for unrolling strategies. In our approach, we unroll the
steps of policy and value iteration into a deep architecture
termed BellNet, enabling a compact, data-driven alternative to
traditional DP solvers. To design and customize BellNet, we
draw on tools from GSP. Specifically, we observe that each
step in policy iteration can be formulated as a polynomial of
the transition probability matrix, followed by a nonlinearity.
By interpreting the transition matrix as the adjacency of a
weighted digraph, we identify this matrix polynomial as a
graph filter [10]. All in all, we find that unrolled policy
iteration boils down to a cascade of nonlinear graph filters.
This GSP crossover enables the design of encompassing
unrolled architectures that (i) require fewer (inference) steps
to approximate policy iteration; and (ii) transfer across similar
environments. The summary of our contributions are
C1 We introduce BellNet, an unrolled version of policy

iteration structured as a cascade of nonlinear graph filters;
C2 We put forth a learning problem, where the filter coef-

ficients are trained to minimize the so-termed Bellman
error from random VF initializations; and

C3 We experimentally show in a grid-world setting that the
learned BellNet model converges in significantly fewer
iterations and generalizes well to similar environments.

Prior work. In reinforcement learning (RL), unrolling has
been used in image-based settings [11], and to learn the MDP
topology by interpreting the transition matrix as a graph [12],
[13]. Unlike our work, existing approaches (a) focus on value
iteration, a special case of the more general policy iteration
framework; (b) address RL rather than DP, thus they estimate
transition probabilities instead of exploiting the graph structure
to design the unrolled architecture; and (c) target single tasks
instead of enabling generalization across MDPs.

Prior RL works have used GSP tools to improve algorithmic
efficiency. For instance, [14] postulates the VFs lie in a low-
dimensional subspace induced by the state transition digraph;
[15] estimates the optimal policy on a subset of states and
extends it via graph interpolation; and [16] applies graph
reduction to simplify the decision process. While effective,
these methods are task-specific. In contrast, BellNet is task-
agnostic and applicable across different MDPs.

Finally, a growing body of work in GSP investigates the
properties of graph filters, e.g., permutation equivariance,
stability, or transferability [17]–[22]. We empirically show that
BellNet inherits some of these desirable properties, although
a deeper theoretical analysis is left for future work.
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II. PRELIMINARIES: FUNDAMENTALS OF DP AND GSP

DP. In DP, we consider an MDP defined by the tuple
(S,A,P,R), where S and A are discrete state and action
spaces, P ∈ [0, 1]|S||A|×|S| is a known transition probability
matrix whose rows, indexed by state-action pairs (s, a), define
distributions over next states s′, and R ∈ R|S|×|A| contains
the rewards. Solving the MDP amounts to finding a policy
π : S 7→ [0, 1]|A| that maximizes the VFs, defined as
expected cumulative rewards. A policy maps each state s to
a distribution over actions a, and the VF under π is given by
Qπ(s, a) = Eπ [

∑∞
t=0 γ

trt | s0 = s, a0 = a], where γ ∈ [0, 1)
is a discount factor and the instantaneous reward rt is the entry
of R indexed by the state-action pair at time t. We arrange
policy probabilities in the matrix Π ∈ [0, 1]|S|×|A| and the
VFs in Qπ ∈ R|S|×|A|. For convenience, we henceforth use
the vectorizations r = vec(R) and qπ = vec(Qπ).

The BEQs characterize the VFs qπ for a fixed policy π [23].
Denoting Pπ = P(I ⊙ Π⊤)⊤, where ⊙ is the Khatri-Rao
product and I the identity matrix, we have that

qπ = r+ γPπqπ. (1)

This fixed-point linear system of equations can be solved
iteratively. Iterating until convergence is referred to as policy
evaluation in DP parlance. Greedy maximization of Qπ with
respect to actions (columns) produces a new policy Π′, i.e.,

Π′
i,j =

{
1 if j = argmaxk Qik,

0 otherwise.
(2)

This step, known as policy improvement, produces a policy Π′

that is guaranteed to outperform Π in terms of the attained
VFs [3]. Crucially, if Π′ = Π, then Π = Π⋆ is optimal,
i.e., attains the maximum VFs Qπ = Q⋆ for all state-action
pairs. This process underpins policy iteration, an iterative
method that alternates between policy evaluation and policy
improvement to compute the optimal VFs and policy.

Interestingly, for the optimal VFs Q⋆, it also holds that

q⋆ = r+ γPv⋆ with v⋆i = max
k

Q⋆
ik. (3)

This defines a nonlinear fixed-point system that can be solved
iteratively through a procedure known as value iteration. Value
iteration is equivalent to performing one step of the policy
evaluation iteration followed by policy improvement [23].

GSP. A graph G = (V, E) is defined by a set of N nodes
V and a set of edges E ⊆ V × V . The connectivity of G is
captured by the sparse adjacency matrix A ∈ RN×N , where
Aij ̸= 0 if and only if (i, j) ∈ E , and the entry Aij denotes the
weight of the edge from node i to node j. A graph signal is
a function defined on the set of nodes, represented as a vector
x ∈ RN , where xi denotes the signal value at node i.

Graph filters are linear, topology-aware operators that pro-
cess graph signals. They can be expressed as matrix polyno-
mials of the adjacency matrix A [10], [24], namely

H =
∑N−1

j=0 hjA
j , (4)

where h = [h0, . . . , hN−1]
⊤ is the vector of filter coefficients.

Since each power Aj encodes information about the j-hop
neighborhood of G, the output y = Hx can be interpreted
as a diffusion (or aggregation) of the input signal x across
neighborhoods of increasing size, with the coefficients hj

weighting the contribution from each j-hop component [25].

III. UNROLLING DP VIA GSP
Algorithm unrolling is a foundational technique for infusing

model-based inductive bias into data-driven learning [8]. Given
an iterative algorithm, unrolling builds a parametric mapping,
typically a neural network, by assigning each iteration to a cor-
responding block, such as a network layer. The operations of
the original algorithm are preserved and reinterpreted as layer-
wise computations, enabling the model to learn algorithm-
specific behavior from data. Next, we unroll policy iteration
and draw GSP connections in the process. Each unrolled block
consists of two main steps: policy evaluation, which involves
solving (1), and policy improvement, where (2) is applied.
Policy evaluation. The BEQ (1) is a linear system of equa-
tions. However, solving it directly is often impractical due
to the large size of state-action spaces. Instead, one typically
iterates by applying the right-hand-side (rhs) of (1) repeatedly
until convergence is reached. Additional simplifications exploit
structural properties of the MDP, such as linear dynamics [26],
[27], low-rank structure [28]–[30], or kernel-based represen-
tations [31], [32]. Here, instead, we propose leveraging the
graph structure of the MDP. To elucidate this connection, we
expand the BEQ recursion as follows

q(k) = r+ γPπq
(k−1) = r+ γPπr+ γ2 (Pπ)

2
q(k−2)

= . . . =
∑k−1

j=0 γ
j (Pπ)

j
r+ γk (Pπ)

k
q(0). (5)

This expression has two terms: an exponentially decaying
bias b(k) := γk (Pπ)

k
q(0) that depends on the initial value

q(0); and a graph filter H(k) :=
∑k−1

j=0 γ
j (Pπ)

j applied
to r. The latter characterization follows since H(k) is a
polynomial of Pπ , which represents the adjacency matrix
of a weighted digraph G. The nodes are state-action pairs
while the edge weights correspond to the Markovian transition
probabilities P and the current policy Π. From this viewpoint,
the powers of the discount factor γ act as the filter coefficients
in (4), i.e., hj = γj . Consequently, policy evaluation can be
interpreted as applying a graph filter to the reward signal.
Due to the fixed-point theorem [3], an infinite-order filter
is guaranteed to recover the true VF for policy π, so that
qπ = H(∞)r+ b(∞) =

∑∞
j=0 γ

j (Pπ)
j
r.

Moreover, our GSP perspective enables concrete simplifica-
tions of the proposed model. While the graph filter underlying
policy evaluation is, in principle, of infinite degree, an equiv-
alent filter with limited degree exists.

Proposition 1. The value function qπ under a fixed policy π
can be expressed as a finite-order graph filter

qπ =
∑∞

j=0 γ
j(Pπ)

jr =
∑K

j=0 h̄j(Pπ)
jr, (6)

with K ≤ |S||A|. If Pπ is diagonalizable, then K ≤ |S|.
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Fig. 1: BellNet schematic. A cascade of learnable graph filters and
row-wise softmax nonlinearities that unrolls policy iteration.

Proof. By the Cayley–Hamilton theorem [33], any matrix
polynomial of Pπ ∈ [0, 1]|S||A|×|S||A| can be reparameterized
as a polynomial of degree at most K = |S||A|. If Pπ is
diagonalizable, the degree of its minimal polynomial is at most
rank(Pπ) = rank(P) = |S|, so any polynomial of Pπ can
be expressed with order at most K = |S|.

Beyond exact policy evaluation, our approach also en-
compasses approximate policy evaluation via early stopping
after a fixed number of iterations. Recall that value iteration
corresponds to a single application of the rhs of (1). In any
case, early stopping is equivalent to a graph filter of some
order K and fixed coefficients hj = γj . This also introduces
a non-vanishing bias term that must be accounted for [cf. (5)].
Furthermore, the estimate q̂π may not converge to the true VF
qπ , so it must be reused to initialize the next policy evaluation
under the updated policy Π′. Identity (6) can be extended to
this case by explicitly incorporating the bias term as

q̂π =
∑K−1

j=0 hj(Pπ)
jr+ hK (Pπ)

K
q(0). (7)

Policy improvement. As defined in (2), policy improvement is
a nonlinear row-wise max operation applied to Qπ , analogous
to max-pooling, selecting the maximum in each row. For
differentiability, we replace the max operation with a softmax,
as detailed in the next section.

IV. BELLNET: LEARNING POLICY ITERATION

Through the GSP lens, policy iteration is a cascade of non-
linear graph filtering operations that converge to the optimal
VFs of the MDP. This perspective motivates BellNet, our
proposed unrolling of policy iteration to solve BEQs. BellNet
is a deep architecture composed of L + 1 layers. Each layer
takes as input a VF vector q ∈ R|S||A| and its associated
softmax policy Π ∈ [0, 1]|S|×|A|, and outputs an enhanced VF
vector and policy. The mapping between the input and output
of the l-th layer is realized by a graph filter with learnable
coefficients h(l). Formally, let q̄ be the (possibly random)
initial estimate of the VF, and let H = {h(l)}Ll=0 collect
all the learnable coefficients. Then, BellNet, represented by

the mapping Φ(·;H), implements {q̂, Π̂} := Φ(q̄;H) with
q̂=q(L+1), Π̂=Π(L+1), q(0) = q̄, and layer-wise updates:

q(l+1) =
∑K−1

j=0 h
(l)
j (Pπ(l))

j
r+ h

(l)
K (Pπ(l))

K
q(l)

Π(l+1) = στ (Q
(l+1)), with [στ (Q)]ij =

eQij/τ∑|A|
k=1 e

Qik/τ
,

for l = 0, . . . , L, where Q(l) = unvec(q(l)), στ is a row-
wise softmax operator with temperature parameter τ , and
h(l) = [h

(l)
0 , . . . , h

(l)
K ] are the filter coefficients of the l-

th layer. Each layer implements two reduced-order, parallel
graph filters, sums their respective outputs, and then applies a
softmax nonlinearity. The BellNet model is illustrated in Fig.
1. Notably, setting L = ∞ and K = ∞ with h

(l)
j = γj and

replacing the softmax with the max operator recovers policy
iteration. Similarly, setting K = 1 yields value iteration.
Learning. To complete the approach, we formulate the op-
timization adopted to learn the filter coefficients H. The loss
function is inspired by temporal difference (TD) methods [34],
[35]. We solve a sequential optimization problem that mini-
mizes the Bellman error [36], [37], which is the discrepancy
between the left and rhs of the optimal BEQ defined in (3).
Specifically, with n being an iteration index, we solve

H[n+1] = argminH ∥r+ γPΠ[n]
q[n] −Φ(q̄,H)∥22, (8)

where {q[n],Π[n]} := Φ(q̄,H[n]). Note that {q[n],Π[n]}
depends on the current iterate H[n] and not on the optimized
coefficients H. By slight abuse of notation, Φ in (8) refers only
to the VF output q̂. We also highlight that: (a) as customary
in TD, for each n we update the filter coefficients via gradient
descent; (b) our DP method does not require data samples, but
the transition probability matrix P instead; and (c) BellNet is
initialized with an arbitrary VF q̄ and trained to converge to
the optimal VF and policy regardless of q̄.
Transferability. Graph filters are permutation-equivariant and
transferable to larger graphs from a convergent sequence [18],
making them particularly well suited to generalize across
related problems. In our DP context, this property can be
leveraged to train BellNet on a single MDP and deploy it
on other similar or larger MDPs. Doing so yields solutions
faster than evaluating policies from scratch, as we demonstrate
numerically in Section V. Moreover, the vanilla BellNet de-
scribed so far operates with a fixed unrolling depth and distinct
parameters per block. An attractive alternative is to share
weights across blocks. Although weight sharing admittedly
reduces expressiveness, it markedly decreases the number of
learnable parameters [5], [38]. Crucially, it allows the same
block to be reused as many times as desired during inference–
exceeding the original training depth to enable efficient, scal-
able transfer as well as to delineate favorable complexity
versus policy approximation tradeoffs.

V. NUMERICAL RESULTS AND CONCLUDING REMARKS

We assess the performance of BellNet in the cliff walking
environment, a grid-world setup where the goal is to reach a
target location in the minimum number of steps without falling

98



2 4 6 8 10
0

0.1

0.2

0.3

(a) Number of unrolling layers

n
er
r(
q̂
,q

∗
)

Val-it BN-5 BN-WS-5
Pol-it-10 BN-10 BN-WS-10

1 5 10 15
0

0.1

0.2

0.3

(b) Filter order

n
er
r(
q̂
,q

∗
)

Pol-it-5 Pol-it-10 Pol-it-15
BN-WS-5 BN-WS-10 BN-WS-15

2 4 6 8
0

0.1

0.2

0.3

(c) Number of unrolling layers

n
er
r(
q̂
,q

∗
)

Val-it Pol-it-5 Pol-it-10
BN-WS-3 BN-WS-5 BN-WS-10

Fig. 2: Evaluation of BellNet across different scenarios. We report the median error of the estimated q̂, computed as in (9), over 15 realizations.
a) Shows the error as L increases; b) illustrates the error as K increases; and c) evaluates the transferability capacity of BellNet.

Fig. 3: Cliff walking environment (top) and its mirrored version
(bottom). Cliff regions are shown in black; arrows indicate the policy
learned by BellNet, and the color map represents the corresponding
VFs. BellNet is trained on the top environment, while the policy in
the bottom environment is inferred without retraining.

off the grid. The state space S corresponds to positions on the
grid, and the action space consists of moving up, down, left, or
right. Two instances of this environment are depicted in Fig. 3.
Simulations are conducted using the Gymnasium library [39],
[40], and the code is available on GitHub1 for reproducibility.

We compute the true VF q∗ using policy iteration with
sufficiently many policy evaluation and improvement steps,
and report the normalized error defined as

nerr(q̂,q∗) =
∥∥q̂/∥q̂∥2 − q∗/∥q∗∥2

∥∥2
2
. (9)

Figure 2 depicts the median error along with the interquartile
range (between the 25th and 75th percentiles), computed
over 15 random realizations. We compare the performance of
BellNet with and without weight sharing (denoted “BN-WS”
and “BN” in the legend), as well as value iteration (“Val-it”)
and policy iteration (“Pol-it”), across multiple scenarios.
Test case 1 (Depth). We first examine how increasing the
number of unrolling layers (equivalently, the number of policy
improvement steps for “Val-it” and “Pol-it”) influences perfor-
mance. Figure 2a shows results using filter orders 5 and 10

1https://github.com/sergiorozada12/rl-unrolling

for “BN”, and 10 policy evaluation updates in “Pol-it”. Appar-
ently, the weight sharing strategy leads to better performance
with lower variance, whereas distinct filter coefficients results
in more unstable behavior. Moreover, BellNet consistently
outperforms policy iteration, recovering the optimal policy
with only 4 layers compared to 10 required by “Pol-it”.
Test case 2 (Filter order). Next, we investigate the role
of the filter order in the performance of BellNet. Figure 2b
shows the error of “Pol-it” and “BN-WS” as the number of
policy evaluation steps and, correspondingly, the filter order,
increases as indicated on the x-axis. We consider 5, 10, and 15
policy improvement steps for “Pol-it” and the same number
of unrolling layers for “BN-WS”. As expected, we find that
a higher filter order improves the performance of “BN-WS”,
with a smaller order being sufficient when the number of
unrolling layers increases. Interestingly, this is not the case
for “Pol-it”, where the number of policy improvement steps
has a greater impact than the number of evaluation steps in this
setting. Consistent with the previous experiment, these results
highlight how BellNet outperforms “Pol-it” when the number
of policy improvement steps is moderately small.
Test case 3 (Transferability). The last experiment inspects
BellNet’s transferability properties. We train BellNet in the
original grid-world setting used in previous test cases, and then
use it to predict the optimal policy in a modified environment
where the positions of the cliffs, origin, and destination
have changed. As shown in Fig. 2c, BellNet successfully
predicts the optimal policy in the new environment without
requiring retraining. For comparison, we compute the optimal
policy in the modified environment using value iteration and
policy iteration with 5 and 10 policy evaluation steps. We
observe that the error in the estimated q̂ decreases as the
number of layers (indicated on the x-axis) increases, or, when
higher-order filters are used. Notably, BellNet outperforms
the classical baselines when both the number of unrolling
layers and the filter order are sufficiently large. Overall, these
preliminary results demonstrate that BellNet not only offers
a novel approach to estimating the optimal policy, but also
generalizes effectively to other related environments not seen
during training.
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