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Introduction
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» Contemporary data exhibit temporal dynamics and irregular structure
= Graphical models help explain and learn from such data

= Graph topology is often unknown or unavailable

Brain network Social network River flow data

» Graph learning aims to infer the graph structure from nodal observations

= As.: signal properties and temporal variations depend on the graph

» This work: learning directed acyclic graphs (DAGs) from time series
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» DAGs have become prominent models in various ML applications
= Conditional independencies among variables in Bayesian networks

= DAG edges may have causal interpretations

, genetics , finance

= Applications: biology
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Neural networks

Causal inference Bayesian networks

» Learning DAGs from observational data comes with challenges
Imposing acyclicity is a combinatorial constraint
= Multiple DAGs may generate the same data distribution



DAGs and linear SEM

> DAG D(V,E,W) € D with |V| = N nodes
= Adjacency matrix W ¢ RV*N
= Entry Wj; # 0 indicates a directed link i — j

» Random vector x = [x1,...,xy] € RV
= Joint p(x) Markov w.rt. D e D
= D encodes conditional independence on x
= x; depends on parents PA;={jeV: W;#0}

RNXT

» Linear structural equation model (SEM) to generate X € consists of
X=W'X+Z

= Exogenous input Z with diagonal covariance matrix



Structural vector autoregressive model (SVARM)
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» SVARM for time series X = [xq,...,x7] € RVXT
P P
X¢ :WTxt+ZA;xt,p+zt — X:WTX+ZA;YF,+Z
p=1 p=1

= DAG W and {A,} capture instantaneous and lagged dependencies

= Matrices Y, collect time-lagged versions of X

Time t —2 Timet—1 Time t

» SVARM in matrix form as X =W X+ ATY +Z
= With A=[A], ... AL]" and Y =[Yq1,...,Yp|"
= SEM is a particular case when A =0



Problem statement ty

Un )
of Rochester

» Given matrices and adhering to a ,
learn matrices W and A solving a score-minimization problem

\r/nviR S(W,A; ) subject to D(W) € D

» Learning a DAG from observational data is NP-hard
= Combinatorial acyclicity constraint D € D difficult to enforce

= Model may not be identifiable from samples of p(x) alone

» To address this challenging scenario we
= Discuss key advances in learning W from SEM (iid data)
= Propose a solution accounting for the time-series structure



Context and contributions
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Context

» Methods based on order search

= Recovering the causal ordering is challenging with limited data

» Methods based on continuous acyclicity functions
= From combinatorial search to non-convex continuous optimization
= Focus on iid data modeled via SEMs

» Methods leveraging acyclicity constraint from in time-series data
= New score functions for SVARMs

= Resulting optimization problems are non-convex

Contribution
» Learning DAG structure based on a convex acyclicity function
= Key simplifying assumption of non-negative weights



Non-convex acyclicity constraint -
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» In the iid case (P = 0) the score S only involves W and X

» Characterize acyclicity via a smooth function h(W):RV*N 5 R
= The zero-level set corresponds to DAGs: h(W) =0 <— D(W) €D

» From combinatorial search to non-convex continuous optimization

mv\iln S(W;X)s. toD(W) eD < mv\iln S(W;X)s. to h(W) =0

» Continuous acyclicity functions include:
= NOTEARS: hnotears(W) = Tr (eWOW) - N
= DAGMA: h3. . .(W) = Nlog(s) — log det(sl — W o W)

dagma

» Observation: Product W o W renders the acyclicity functions non-convex



Learning non-negative DAGs from a SEM
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» Learning DAGs with non-negative weights by solving
A 1 Ty |2
w argmv\|ln2THX W' Xz + s.to W>0, h(W)=0

= Least squares score function with regularization

Proposition

For any W € RY*N with spectral radius p(W) < s, D(W) € D iff

higet(W) := N log(s) — log det(sl — W) =10

> Convex acyclicity hge:(W) leads to an abstract convex optimization
= Enables finding the global minimum due to additional structure

= Guaranteed recovery of the true DAG in the infinite sample regime



Learning non-negative DAGs from a SVARM

» When data follow a SVARM with P > 0 we estimate W and A solving

H 1 T T 2
min 52X WX ATY[E 4w 3 W+ da Y A
ij=1 ij=1
s.toW>0, A>0, h/det(W):O

= Least squares term accounts for time-lagged dependencies
= W and A are assumed to be non-negative
= Only W is required to be a DAG

Key properties
» Additional structure leads to an abstract convex optimization

» Convexity enables finding the global minimizer



DAG learning algorithm

» Learn the DAG and time-lagged dependencies via
= lterative method with well-known

» Denote the augmented Lagrangian as
Lo(W, A, a) = F(W,A) + ah(W) + %h(W)2

= With Lagrange multiplier « and penalty parameter ¢

» Sequentially performs the following steps until convergence
Step 1: Estimate W(**1) and A1) solving
(k+1) p(k+1)y _ (k)
{W ) A } arg W>n(1)IR >0 Lc(k)(Wa A7 « )

Step 2: Update Lagrange multiplier as a(**1) = o(K) 4 c(k) p(W(k+1))

Step 3: Update the penalty parameter c(k+1)



Numerical evaluation (1) University
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» Non-negative ER graphs with d = 50 nodes and average degree 4
= Signals sampled from SVARM with P = 2 and z ~ N(0, o1)

—e— CvxLogdet W
100 § —-®- Cvxlogdet A
S DYNOTEARS W
DYNOTEARS A

Fro Error

102 10° 10*
Number of samples

» Convex acyclicity constraints outperform alternatives
= The proposed method achieves better error both for W and A

= Error of the convex method goes to 0 as number of samples grows



Numerical evaluation (1)
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» Non-negative ER graphs with a time series of length T = 5000
= Represent the F-score as the number of nodes increases

—e— AdamWw

-®- Adam A
DYNOTEARS W
DYNOTEARS A

10? 10°
Number of nodes

> F-score of estimated W consistently close to 1 with the proposed method

= lllustrates how convexity helps in recovering the true DAG structure



Concluding remarks
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» We address the problem of learning the DAG structure from time-series data
= Imposing acyclicity is challenging
= Combine non-convex cont. acyclicity functions with SVARM

» Leveraging the non-negative weights assumption allows us to
= Employ a convex acyclicity function
= Recover the global optimum using the method of multipliers
= Provide intuition about the recoverability of the true DAG

» Outperform state-of-the-art alternatives in synthetic experiments



Questions?
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Questions at: samuel.rey.escudero@urjc.es



