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Introduction

▶ Contemporary data exhibit temporal dynamics and irregular structure

⇒ Graphical models help explain and learn from such data [Kolaczyk09]

⇒ Graph topology is often unknown or unavailable

Brain network Social network River flow data

▶ Graph learning aims to infer the graph structure from nodal observations

⇒ As.: signal properties and temporal variations depend on the graph

▶ This work: learning directed acyclic graphs (DAGs) from time series
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Why DAGs?

▶ DAGs have become prominent models in various ML applications

⇒ Conditional independencies among variables in Bayesian networks

⇒ DAG edges may have causal interpretations [Peters17]

⇒ Applications: biology [Sachs05], genetics [Zhang13], finance [Sanford12]

Causal inference Bayesian networks Neural networks

▶ Learning DAGs from observational data comes with challenges

⇒ Imposing acyclicity is a combinatorial constraint

⇒ Multiple DAGs may generate the same data distribution
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DAGs and linear SEM

▶ DAG D(V, E ,W) ∈ D with |V| = N nodes

⇒ Adjacency matrix W ∈ RN×N

⇒ Entry Wij ̸= 0 indicates a directed link i → j

▶ Random vector x = [x1, . . . , xN ] ∈ RN

⇒ Joint p(x) Markov w.r.t. D ∈ D
⇒ D encodes conditional independence on x

⇒ xi depends on parents PAi ={j ∈V :Wij ̸=0}
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▶ Linear structural equation model (SEM) to generate X ∈ RN×T consists of

X = W⊤X+ Z

⇒ Exogenous input Z with diagonal covariance matrix
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Structural vector autoregressive model (SVARM)

▶ SVARM for time series X = [x1, . . . , xT ] ∈ RN×T [Demiralp03]

xt = W⊤xt +
P∑

p=1

A⊤
p xt−p + zt =⇒ X = W⊤X+

P∑
p=1

A⊤
p Yp + Z

⇒ DAG W and {Ap} capture instantaneous and lagged dependencies

⇒ Matrices Yp collect time-lagged versions of X

X1

X2

X3

X1

X2

X3

X1

X2

X3

Time t − 2 Time t − 1 Time t

▶ SVARM in matrix form as X = W⊤X+ A⊤Y + Z

⇒ With A = [A⊤
1 , . . . ,A

⊤
P ]

⊤ and Y = [Y1, . . . ,YP ]
⊤

⇒ SEM is a particular case when A ≡ 0
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Problem statement

▶ Given matrices X∈RN×T and Y∈RNP×T adhering to a SVARM,
learn matrices W and A solving a score-minimization problem

min
W,A

S(W,A;X,Y) subject to D(W) ∈ D

▶ Learning a DAG solely from observational data is NP-hard [Chickering96]

⇒ Combinatorial acyclicity constraint D ∈ D difficult to enforce

⇒ Model may not be identifiable from samples of p(x) alone

▶ To address this challenging scenario we

⇒ Discuss key advances in learning W from SEM (iid data)

⇒ Propose a solution accounting for the time-series structure
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Context and contributions

Context

▶ Methods based on order search [Charpentier22,Deng23]

⇒ Recovering the causal ordering is challenging with limited data

▶ Methods based on continuous acyclicity functions [Zheng18,Bello22]

⇒ From combinatorial search to non-convex continuous optimization

⇒ Focus on iid data modeled via SEMs

▶ Methods leveraging acyclicity constraint from [Zheng18] in time-series data

⇒ New score functions for SVARMs [Pamfil20,Misiakos25]

⇒ Resulting optimization problems are non-convex

Contribution

▶ Learning DAG structure based on a convex acyclicity function

⇒ Key simplifying assumption of non-negative weights
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Non-convex acyclicity constraint

▶ In the iid case (P = 0) the score S only involves W and X

▶ Characterize acyclicity via a smooth function h(W) :RN×N 7→R [Zheng18]

⇒ The zero-level set corresponds to DAGs: h(W) = 0 ⇐⇒ D(W) ∈ D

▶ From combinatorial search to non-convex continuous optimization

min
W

S(W;X) s. to D(W) ∈ D ⇐⇒ min
W

S(W;X) s. to h(W) = 0

▶ Continuous acyclicity functions include:

⇒ NOTEARS: hnotears(W) = Tr
(
eW◦W)

− N [Zheng18]

⇒ DAGMA: hsdagma(W) = N log(s)− log det(sI−W ◦W) [Bello22]

▶ Observation: Product W ◦W renders the acyclicity functions non-convex
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Learning non-negative DAGs from a SEM

▶ Learning DAGs with non-negative weights by solving [Rey25]

Ŵ = argmin
W

1

2T
∥X−W⊤X∥2F + λ

N∑
i,j=1

Wij s. to W ≥ 0, h(W) = 0

⇒ Least squares score function with sparsity regularization

Proposition

For any W ∈ RN×N
+ with spectral radius ρ(W) < s, D(W) ∈ D iff

hldet(W) := N log(s)− log det(sI−W) = 0

▶ Convex acyclicity hldet(W) leads to an abstract convex optimization

⇒ Enables finding the global minimum due to additional structure

⇒ Guaranteed recovery of the true DAG in the infinite sample regime
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Learning non-negative DAGs from a SVARM

▶ When data follow a SVARM with P > 0 we estimate W and A solving

min
W,A

1

2t
∥X−W⊤X− A⊤Y∥2F + λW

∑
i,j=1

Wij + λA

∑
i,j=1

Aij

s. to W ≥ 0, A ≥ 0, hldet(W) = 0

⇒ Least squares term accounts for time-lagged dependencies

⇒ W and A are assumed to be non-negative

⇒ Only W is required to be a DAG

Key properties

▶ Additional structure leads to an abstract convex optimization

▶ Convexity enables finding the global minimizer
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DAG learning algorithm

▶ Learn the DAG and time-lagged dependencies via method of multipliers

⇒ Iterative method with well-known convergence guarantees

▶ Denote the augmented Lagrangian as

Lc(W,A, α) = F (W,A) + αh(W) +
c

2
h(W)2

⇒ With Lagrange multiplier α and penalty parameter c

▶ Sequentially performs the following steps until convergence

Step 1: Estimate W(k+1) and A(k+1) solving

{W(k+1),A(k+1)} = arg min
W≥0,A≥0

Lc(k)(W,A, α(k))

Step 2: Update Lagrange multiplier as α(k+1) = α(k) + c(k)h(W(k+1))

Step 3: Update the penalty parameter c(k+1)
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Numerical evaluation (I)

▶ Non-negative ER graphs with d = 50 nodes and average degree 4

⇒ Signals sampled from SVARM with P = 2 and z ∼ N (0, σ2I)

▶ Convex acyclicity constraints outperform alternatives

⇒ The proposed method achieves better error both for Ŵ and Â

⇒ Error of the convex method goes to 0 as number of samples grows
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Numerical evaluation (II)

▶ Non-negative ER graphs with a time series of length T = 5000

⇒ Represent the F-score as the number of nodes increases

▶ F-score of estimated Ŵ consistently close to 1 with the proposed method

⇒ Illustrates how convexity helps in recovering the true DAG structure
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Concluding remarks

▶ We address the problem of learning the DAG structure from time-series data

⇒ Imposing acyclicity is challenging

⇒ Combine non-convex cont. acyclicity functions with SVARM

▶ Leveraging the non-negative weights assumption allows us to

⇒ Employ a convex acyclicity function

⇒ Recover the global optimum using the method of multipliers

⇒ Provide intuition about the recoverability of the true DAG

▶ Outperform state-of-the-art alternatives in synthetic experiments
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Questions?

Questions at: samuel.rey.escudero@urjc.es
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