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What is this talk about?
Edge Predictions with Uncertainty Quantification

• Traditional GSP: study signals/filters with known graph


• But often graph not observed


• Graph Structure Learning (GSL): Learning graphs from nodal observations. 2 Main Approaches.


1. Model Based 

• Solve an optimization problem [Friedman’08], [Kalofolias’16], [Saboksayr’21]


2. Unrolling Based


• Constructs deep network using Model Based solution iterations [Pu’21], [Wasserman’22]


• Both only provide point estimates of graph structure


• Goal: point & uncertainty estimates of graph structure from nodal observation
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Talk Outline
Edge Predictions with Uncertainty Quantification

• Develop a point estimate function


• Pose and solve inverse optimization problem to estimate graph structure 
from nodal observations


• ‘Unroll’ solution iterations to form a deep network


• Make it Bayesian


• Parameter priors, inference, derive predictive point & uncertainty estimates 
over unobserved edges
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Graph Signal Processing
Notation & Background

• Given graph  with adjacency matrix  


• Collect node signals , where  denotes it’s i-th row.


• Form Euclidean Distance Matrix , where 


• Work with undirected graphs without self-loops. Reduce dimensionality.


• , 


• Total Variation of  w.r.t.  

𝒢 A ∈ ℝN×N

X = [x1, …, xp] ∈ ℝN × p x̄⊤
i

E ∈ ℝN × N Eij := ∥x̄⊤
i − x̄⊤

j ∥2

a = vec[triu[A]] ∈ ℝN(N−1)/2 e = vec[triu[E]] ∈ ℝN(N−1)/2

X 𝒢 := Trace(X⊤LX) = ∥A ∘ E∥1 = 2a⊤e
Smoothness <—> Sparsity!

[Kalofolias’16]
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Learning Graphs from Smooth Signals
Point Estimate with Convex Optimization

• Goal: Identify undirected graph  such that signals  are smooth on 


• Why? Many real world graph signals are smooth (i.e. Total Variation is small)


• Examples: Sensor measurements [Chepuri’17], product ratings [Huang’18]


• How? Formulate and solve convex inverse problem

𝒢 X 𝒢

Data fidelity Regularization

Under review as submission to TMLR
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Point Estimate Approaches via Optimization
SOTA Convex Formulation Nodal Degrees 

Vector: A1 = Sa

Data Fidelity

Smoothness

Regularizer

Isolated Nodes

Regularizer 

Small Edge 

Constraint 

Edge Non-negativity

We can reparameterize from  to (α, β) (θ, δ) [Kalofolias’16]

Under review as submission to TMLR

3.1 Graph structure learning from smooth signals

Given X assumed to be smooth on G, a popular model-based GSL approach is to minimize the Dirichlet
energy in (1) w.r.t. A; see e.g., (Hu et al., 2013; Dong et al., 2016; Kalofolias, 2016; Kalofolias & Perraudin,
2017). The inverse problems posed in these works can be unified under the general composite formulation

Aú = arg min
AœA

{ÎA ¶ EÎ1,1 + h(A)} , (2)

where the feasible set is A := {A œ RN◊N : diag(A) = 0, Aij = Aji Ø 0, ’i, j œ V}, i.e., hollow, symmetric,
non-negative matrices. The regularization term h(A) typically promotes desired structure on the estimated
edge set (e.g., sparsity, no isolated nodes) and can be used to avoid the trivial solution Aú = 0. We henceforth
use h(A) = ≠–1€log(A1) + —

2 ÎAÎ
2
F (–, — Ø 0 are regularization parameters), which excludes the possibility

of isolated nodes and has achieved state-of-the-art results (Kalofolias, 2016).

It is convenient to reformulate (2) in an unconstrained, yet equivalent form. We start by compactly representing
variable A and data matrix E with their vectorized upper triangular parts a, e œ RN(N≠1)/2

+ , implicitly
enforcing symmetry and hollowness, while also halving the problem dimension. To enforce non-negativity the
indicator function I{a Ø 0} = {0 if a Ø 0 else Œ} is included in the objective. Finally, we substitute the
nodal degrees d = A1 with the vectorized equivalent d = Sa, where S œ {0, 1}

N◊N(N≠1)/2 is a fixed binary
matrix that maps vectorized edge weights to degrees. The resulting optimization problem is given by

aú(e, –, —) = arg min
aœRN(N≠1)/2

;
2a€e ≠ –1€log(Sa) + —

2 ÎaÎ
2
2 + I{a Ø 0}

<
, (3)

which is convex and admits a unique optimal solution; see e.g., (Saboksayr & Mateos, 2021). Next, we
comment on the role of the regularization parameters –, — and their interpretability properties. We then o�er
a brief discussion on optimization algorithms to tackle problem (3) and conclude this section with a formal
statement of the supervised GSL problem we address in this paper.

Independent interpretability of regularization parameters. The weights – and — are not independently
interpretable w.r.t. to relevant graph characteristics, frustrating straightforward interpretation of their e�ect
on the solution aú(e, –, —). Specifically, for fixed –, increasing — leads to denser edge patterns, as we have
(quadratically) increased the relative cost of large edge weights. Indeed, the sparsest graph is obtained for
— = 0. But in general, many interesting graph characteristics, e.g., sparsity, connectivity, diameter, and edge
weight magnitude, are non-trivial functions of both – and —; see also (Dong et al., 2016) for a similar issue.

To facilitate independent control over the sparsity pattern and scale of the edge weights of recovered
graphs, (Kalofolias, 2016, Prop. 2) introduced an equivalent (◊, ”)-parameterization of (3), namely

aú(e, –, —) =
Ú

–

—
aú

3
1

Ô
–—

e, 1, 1
4

= ”aú(◊e, 1, 1). (4)

We can map from the former parameterization to the latter by first scaling e by ◊ = 1/
Ô

–—, solving (3) with
◊e using – = — = 1, and finally scaling the recovered edges by the constant ” =


–/—; we refer the reader

to (Kalofolias, 2016; Kalofolias & Perraudin, 2017) for a proof of the equivalence claim. Due to the separable
structure of the right-hand-side of (4), any GSL algorithm would require a single input parameter ◊, and the
obtained solution aú(◊e, 1, 1) can then be scaled by ”. All in all, the sparsity level of the optimal graph is

determined solely by ◊, making ◊ independently interpretable w.r.t. sparsity. Moreover, ” is interpretable w.r.t.
edge weight magnitude, but not independently so, as larger ◊ produces smaller weights [see Figure 3 (right)].

3.2 Optimization algorithms

Problem (3) has a favorable structure that has been well documented, and several e�cient optimization
algorithms were proposed to obtain a solution aú(e, –, —) with O(N2) complexity per iteration. Specifically, a
forward-backward-forward PDS algorithm was first proposed in (Kalofolias, 2016). PDS introduces a step-size
parameter which must be tuned to yield satisfactory empirical convergence properties, thus increasing the

5
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Point Estimate Approaches via Optimization
DPG’s Independent Interpretability

…

Under review as submission to TMLR
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Iterations ONLY contain  


Sparsity pattern of solution determined by  independently of all 
other parameters


Higher   Higher sparsity


Defn:  is independently interpretable w.r.t. sparsity of recovered 
graph


A bridge between prior information on sparsity and the value of 


θ

θ

θ →

θ

θ

DPG 7



Point Estimate Approaches via Deep Unrollings

1. Assume generative process 


• ties data to the graph


2. Propose optimization framework & iterative solution procedure 
for inverse problem 


3. Unroll iterative algorithm to motivate deep network 
architecture

X ∼ ℱ(A)

A = ℱ−1(X)

[Monga’19]
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Point Estimate Approaches via Deep Neural Network Unrollings

…
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• Regularization parameters —> 
Learnable parameters with 
backprop.


• Truncate after D DPG iterations. 
We now approximate solutions.


• The first GSL Neural Network! 


• Layers of linear 
transformations and point 
wise non-linearities.
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Unrolled DPG: A Graph Valued NN
With Interpretability!

10

• Unrolled DPG is a neural network function


• Gradient w.r.t. parameters well-defined!


• Dataset 


• We use unweighted graphs                        . Subtract mean . Drive through sigmoid .


• Bernoulli likelihood: Unrolling encodes the mean.

b σ

Final 3 Parameter

GSL Neural Network
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Bayesian Neural Networks (BNN)
Background

11

• A Bayesian NN: a NN with stochastic weights.


• Posterior Distribution: Distribution over weights 
conditioned on observed data.


• Pushing posterior distribution through the NN produces 
a distribution over predictions.


• We can use this distribution to derive a measure of 
uncertainty.


• Key Ingredients


• Weight Prior


• Likelihood


• Posterior
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p(ã | T ; ẽ) =¥ 1
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M

qM
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Difficulties

1. How do we set the prior?

2. How do we approximate the posterior?
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• BNNs require parameter priors .


• To construct : 


• Use independent interpretability of .


• Subset of inputs      .


• prior beliefs over sparsity —> prior distribution over .


• Weakly informative prior for .


• Inspect edge weight magnitudes at performant ’s.
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GL_Uncertainty_Quantification/figures/predictive_check_RG_edgeDensityHist_labelMeanStdvErrorlabel.png

Figure 2: Left: Predictive Checks. The prior predictive check ensures the average edge densities of replicated
data sets encompass plausible data sets. The original prior generates very few data sets with densities of
¥ .9, a value we feel is plausible. We can use the independent interpretability of ◊ w.r.t. edge density to alter
it’s prior accordingly. A prior predictive check with this altered prior now encompasses these plausible data
sets. The posterior predictive check ensures the replicated data sets - now sampled after conditioning on the
training data - have similar edge densities to the observed training labels; indeed these edge densities, denoted
as ‘posterior’, are tightly distributed around the average edge density of the labels. Right: Qualitative I.I.D.
Generalization. For a random test sample we show the label ỹ, and estimated mean (pred. mean( and
standard deviation (pred. stdv) of the posterior predictive p(ỹ | �; e). Comparing the mean to the label ỹ
adds qualitative evidence that the model is well fit to the data. The standard deviation, interpreted as the
uncertainty, and error |yi ≠ E�|T [ỹi; e]| have a strong positive Pearson correlation of 0.79.

is to shape priors that encompass all plausible data sets, while still guiding the model towards data sets we
deem more likely w.r.t. prior beliefs. Thus prior predictive checking often consists of visual inspection of the
histogram to ensure this holds, and adjusting the location and/or scale of prior distributions until it does.
The goal in posterior predictive checking is to subjectively validate model fit; here we compare the statistics
on the replicated data (a histogram) to the same statistic applied to the actual data T (a single real value).
A well-fit model should have a histogram tightly concentrated around the real data statistic. OPTIONAL
NOTE: Note in typical BNNs, the lack of parameter interpretability prevents e�ective parameter modeling, a
key prerequisite for predictive checking techniques. Consider, e.g., using N (0, ‡2I) as parameter prior on a
convolutional neural network for image classification: it can be unclear how to change the prior to make the
network generate classifications closer to prior beliefs.

Below, we instantiate predictive checking on our unrolled DPG BNN. We take the average edge density as
our data characteristic statistic.
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}
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Prior Predictive Check To perform a prior predictive check we use the 5 inputs from T
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patterns as we increase relative cost of large edge values, but in general, sparsity and edge weight magnitude
are functions of both – and —. To facilitate independent control over the sparsity pattern and scale of the
edge weights of recovered graphs, (Kalofolias, 2016) introduced a reparameterization of (1), transforming to
an equivalent (◊, ”)-parameterization via

aú(e, –, —) =
Ú

–

—
aú! 1

Ô
–—

e, 1, 1
"

= ”aú(◊e, 1, 1). (2)

We can map from the former parameterization to the latter by first scaling e by ◊ = 1Ô
–—

, solving (1) with

◊e using – = — = 1, and finally scaling the recovered edges by the constant ” =
Ò

–

—
; we refer the reader

to (Kalofolias & Perraudin, 2017) for a proof of the equivalence claim. Due to the separable structure of
the right hand side of (2), any solution iterations would involve only a single parameter ◊, who’s convergent
output aú(◊e, 1, 1) is then scaled by ”. The sparsity level of the optimal point is determined solely by ◊,

making ◊ independently interpretable w.r.t. sparsity. Moreover, ” is interpretable w.r.t edge weight magnitude,
but not independently so, as larger ◊ produces smaller edge weights, as seen in Figure 4.
A novel GSL solution. To find the unique optimal solution to (1), (Kalofolias, 2016) uses Algorithm 2,
given in Appendix A.1, a forward-backward-forward primal-dual splitting algorithm (PDS). PDS introduces a
step-size parameter “ which must be tuned for convergence. The step-size expands the computational burden
of tuning parameters in a discretized search space, and can be di�cult to work with: “ values too large
produce NaN’s from divergent behavior and “ values too small can produce impractically slow convergence.
We also empirically find optimal values of “ tend to be close to values which produce divergent behavior,
further frustrating tuning; see Appendix A.1 for further discussion. Recently, (Saboksayr & Mateos, 2021)
introduced Fast Dual Proximal Gradient (FDPG) iterations to solve (1), which removes the need for a tunable
step-size and provides global convergence guarantees. In this work, we use FDPG iterations with acceleration
removed, henceforth called DPG iterations, shown in Algorithm 2, which are novel. DPG iterations require
the fewest operations per iteration and fewest number of parameters of any solution iterations to (1), and
lack any uninterpretable nuisance parameters, e.g. step-sizes. FDPG was only considered on the (–, —)-
parameterization of (1); by instead reparameterizing the DPG iterations to solve the (◊, ”)-parameterization
of (1), we reveal independent interpretability of ◊ w.r.t. the sparsity of optimal points. In the sequel, we
use algorithm unrolling on Algorithm 2 to produce a GSL neural network which retains these advantages -
namely simple, e�cient, minimally parameterized, with independent interpretability - forming the backbone
of our BNN.

Algorithm 1 Dual Proximal Gradient Descent (DPG)
Inputs: Fixed parameters ◊, ” œ R & data e
Initialize: a0 and ⁄0 at random.
for k = 1, 2, . . . do

uk = Sak≠1 ≠ (N ≠ 1)⁄k≠1

⁄k = ≠1
2(N≠1)

1
uk ≠


u2

k
+ 4(N ≠ 1)1

2

ak = max
1

0, 1
2 S€⁄k ≠ ◊e

2

end for

Return: ”a≠1

Figure 1: Place holder

So far we have described a model-based approach to (point) estimation of graphs from smooth signals. In this
work, we assume observation of a labeled training dataset. We aim to construct a model to produce uncertainty
estimates on graph predictions for unseen test data. To do so, we first use the algorithm unrolling approach
on novel Algorithm 2 to construct a GSL neural network. This neural network maps nodal observations
to edge-wise probabilities. By treating the model parameters of this unrolled neural network as stochastic,
setting appropriate priors, and choosing a likelihood function, we produce a BNN. We use MCMC to sample
from the parameter posterior of the BNN. Each parameter sample defines an GSL neural network. Passing
the test inputs through each such GSL neural network and averaging the resulting predictive distributions
provides an approximation of the posterior predictive, from which we derive our edgewise point estimate and
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Figure 2: Left: Predictive Checks. The prior predictive check ensures the average edge densities of replicated
data sets encompass plausible data sets. The original prior generates very few data sets with densities of
¥ .9, a value we feel is plausible. We can use the independent interpretability of ◊ w.r.t. edge density to alter
it’s prior accordingly. A prior predictive check with this altered prior now encompasses these plausible data
sets. The posterior predictive check ensures the replicated data sets - now sampled after conditioning on the
training data - have similar edge densities to the observed training labels; indeed these edge densities, denoted
as ‘posterior’, are tightly distributed around the average edge density of the labels. Right: Qualitative I.I.D.
Generalization. For a random test sample we show the label ỹ, and estimated mean (pred. mean( and
standard deviation (pred. stdv) of the posterior predictive p(ỹ | �; e). Comparing the mean to the label ỹ
adds qualitative evidence that the model is well fit to the data. The standard deviation, interpreted as the
uncertainty, and error |yi ≠ E�|T [ỹi; e]| have a strong positive Pearson correlation of 0.79.

is to shape priors that encompass all plausible data sets, while still guiding the model towards data sets we
deem more likely w.r.t. prior beliefs. Thus prior predictive checking often consists of visual inspection of the
histogram to ensure this holds, and adjusting the location and/or scale of prior distributions until it does.
The goal in posterior predictive checking is to subjectively validate model fit; here we compare the statistics
on the replicated data (a histogram) to the same statistic applied to the actual data T (a single real value).
A well-fit model should have a histogram tightly concentrated around the real data statistic. OPTIONAL
NOTE: Note in typical BNNs, the lack of parameter interpretability prevents e�ective parameter modeling, a
key prerequisite for predictive checking techniques. Consider, e.g., using N (0, ‡2I) as parameter prior on a
convolutional neural network for image classification: it can be unclear how to change the prior to make the
network generate classifications closer to prior beliefs.

Below, we instantiate predictive checking on our unrolled DPG BNN. We take the average edge density as
our data characteristic statistic.
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are functions of both – and —. To facilitate independent control over the sparsity pattern and scale of the
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output aú(◊e, 1, 1) is then scaled by ”. The sparsity level of the optimal point is determined solely by ◊,

making ◊ independently interpretable w.r.t. sparsity. Moreover, ” is interpretable w.r.t edge weight magnitude,
but not independently so, as larger ◊ produces smaller edge weights, as seen in Figure 4.
A novel GSL solution. To find the unique optimal solution to (1), (Kalofolias, 2016) uses Algorithm 2,
given in Appendix A.1, a forward-backward-forward primal-dual splitting algorithm (PDS). PDS introduces a
step-size parameter “ which must be tuned for convergence. The step-size expands the computational burden
of tuning parameters in a discretized search space, and can be di�cult to work with: “ values too large
produce NaN’s from divergent behavior and “ values too small can produce impractically slow convergence.
We also empirically find optimal values of “ tend to be close to values which produce divergent behavior,
further frustrating tuning; see Appendix A.1 for further discussion. Recently, (Saboksayr & Mateos, 2021)
introduced Fast Dual Proximal Gradient (FDPG) iterations to solve (1), which removes the need for a tunable
step-size and provides global convergence guarantees. In this work, we use FDPG iterations with acceleration
removed, henceforth called DPG iterations, shown in Algorithm 2, which are novel. DPG iterations require
the fewest operations per iteration and fewest number of parameters of any solution iterations to (1), and
lack any uninterpretable nuisance parameters, e.g. step-sizes. FDPG was only considered on the (–, —)-
parameterization of (1); by instead reparameterizing the DPG iterations to solve the (◊, ”)-parameterization
of (1), we reveal independent interpretability of ◊ w.r.t. the sparsity of optimal points. In the sequel, we
use algorithm unrolling on Algorithm 2 to produce a GSL neural network which retains these advantages -
namely simple, e�cient, minimally parameterized, with independent interpretability - forming the backbone
of our BNN.

Algorithm 1 Dual Proximal Gradient Descent (DPG)
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Figure 1: Place holder

So far we have described a model-based approach to (point) estimation of graphs from smooth signals. In this
work, we assume observation of a labeled training dataset. We aim to construct a model to produce uncertainty
estimates on graph predictions for unseen test data. To do so, we first use the algorithm unrolling approach
on novel Algorithm 2 to construct a GSL neural network. This neural network maps nodal observations
to edge-wise probabilities. By treating the model parameters of this unrolled neural network as stochastic,
setting appropriate priors, and choosing a likelihood function, we produce a BNN. We use MCMC to sample
from the parameter posterior of the BNN. Each parameter sample defines an GSL neural network. Passing
the test inputs through each such GSL neural network and averaging the resulting predictive distributions
provides an approximation of the posterior predictive, from which we derive our edgewise point estimate and
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E[ãi | T ; ẽ] ¥ 1
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• Split stocks evenly into train/test


• For each split


• Input: 1 - |Pearson correlation 
matrix|


• Label:  if stocks i & j in 
same sector, 0 otherwise.


• = Block Diagonal with 3 blocks


• Run inference on DPG using this 
single training sample

Aij = 1

[Cardoso’23]
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• Error and Uncertainty Pearson Correlation: 0.70
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• We analyze recovering graphs from nodal observations


• DPG: simple iterations which produce a true neural network when unrolled


• Structure of DPG makes a parameter independently interpretable


• Use structure to construct informative parameter priors using priors on sparsity


• Conditioning on observed data —> posterior distribution 


• On unseen nodal observations X, push posterior distribution through Unrolled DPG to 
produce a distribution over edges 


• From which we recover point and uncertainty estimates


• Future Work: Scaling & Variational Inference

p(Θ ∣ 𝒯)

p(ã ∣ 𝒯; ẽ)
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• ArXiv


• https://arxiv.org/abs/2406.14786


• Github repo


• github.com/maxwass/gsl-bnn

http://github.com/maxwass/gsl-bnn

