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What is this talk about?

Edge Predictions with Uncertainty Quantification

* Traditional GSP: study signals/filters with known

* But often graph not observed
 Graph Structure Learning (GSL): from nodal observations. 2 Main Approaches.
1. Model Based
* Solve an optimization problem [Friedman’08], [Kalofolias’16], [Saboksayr’21]
2. Unrolling Based
* Constructs deep network using Model Based solution iterations [Pu’21], [Wasserman’22]
* Both only provide point estimates of graph structure

 Goal: point & uncertainty estimates of graph structure from nodal observation
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Talk Outline

Edge Predictions with Uncertainty Quantification

 Develop a point estimate function

 Pose and solve inverse optimization problem to estimate graph structure
from nodal observations

e ‘Unroll’ solution iterations to form a deep network
« Make it Bayesian

e Parameter , , derive predictive point & uncertainty estimates
over unobserved edges



Graph Signal Processing
Notation & Background

« Given graph & with e RN
o Collect node signals X = [X,, ..., Xp] c RV P where XiT denotes it’s I-th row.
. Form Euclidean Distance Matrix E € RY * ¥ where E; = H)‘(iT — '].THZ

 Work with undirected graphs without self-loops. Reduce dimensionality.

. a = vec[triu[A]] € RMWV=D2 e = vec[triu[E]] € RNV-D/2

. of X w.rt. © := Trace(X'LX) = ||A o El, = 2a'e [Kalofolias'16]

Smoothness <—> Sparsity!
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Learning Graphs from Smooth Signals

Point Estimate with Convex Optimization

« Goal: Identify undirected graph & such that signals X are on &
 Why? Many real world graph signals are smooth (i.e. Total Variation is small)
 Examples: Sensor measurements [Chepuri’17], product ratings [Huang’18]
« How? Formulate and solve convex inverse problem
a* € arg min {Edata(a, e) + Lieg(a) }

acC T I
Regularization



Point Estimate Approaches via Optimization

SOTA Convex Formulation Nodal Degrees

Vector: A1 = Sa
|

l
a*(e,a,3) = argmin {ZaTe — alTlog(Sa) | b ||a,||§ + {a > O}} ,
aERN(N—1)/2 2

Data Fidelity Reqularizer Regularizer Constraint
Edge Non-negativity

We can reparameterize from (a, ) to (8, 0) [Kalofolias’16]

éa*(e,a, B) = ﬁa ( : 1,1) = da*(fe,1,1)

e?
Jap
— 5] argmin {QHaTe —1'"log(Sa) + =||a|? + I{a > ()}}

acRN(N—-1)/2




Point Estimate Approaches via Optimization
DPG’s Independent Interpretability

Algorithm 1 Dual Proximal Gradient Descent

Inputs: Fixed parameters 6,0 € R and data e
Initialize: ag and Ay at random.
for k=1,2,... do

— Sak_l — (N — 1)Ak_1

Ak = z(ﬁin( -V 2"‘4(N—1)1)
ajp — IMax (0, %ST)\]C — 98)

end for
Return: Ehk
Ak—1 g 77 7S AL
ak—1||l I:I I} ar
\/I \/I 1 |
\ v
9 f
&
DPG

lterations ONLY contain

Sparsity pattern of solution determined by &
other parameters

Higher & — Higher sparsity

Defn: 0 is
graph

of all

of recovered

A bridge between prior information on sparsity and the value of @




Point Estimate Approaches via Deep Unrollings

lterative Algorithm Unrolled Deep Network
Algorithm: Input z°, Output z*
L . .
21 | h(zl;0Y),
end for |
_____________________________________________________ [Monga’19]
1. Assume process X ~ F(A)
. Model
* ties data to the graph
Based
2. Propose optimization framework & GSL

for inverse problem A = F~1(X)

3. Unroll iterative algorithnm to motivate deep network

architecture
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Point Estimate Approaches via Deep Neural Network Unrollings

Ap | pom———mm—————— ~ \ « Regularization parameters —>
Single  a k_Tr"rl :'\'_T‘-a_l;’ Learnable parameters with
Layer —!'>\J—>w' |\ I—:—> backprop.
4
0 ' . .
N e e et T - * Truncate after D DPG iterations.
\ N € We now approximate solutions.
0 27 N AL /TN 2
L B g B * The first GSL Neural Network!
a a ap e firs eural Network!
Unrolled "*=! —» |[~— =510
DPG '\«2’,' '\’,' 0, » Layers of linear |
e 4 4 "T transformations and point

wise non-linearities.



Unrolled DPG: A Graph Valued NN

With Interpretability!

 Unrolled DPG is a neural network function Fé) e — a

e Gradient w.r.t. parameters well-defined!
» Dataset 7 = {7.,7,} = {eV),aV}I_,

. We use unweighted graphs a'”) € {0,1}/¢!. Subtract mean b. Drive through sigmoid o.

Final 3 Parameter
(GSL Neural Network

 Bernoulli likelihood: Unrolling encodes the mean.
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Bayesian Neural Networks (BNN)
Background

A Bayesian NN: a NN with stochastic weights.

» Posterior Distribution: Distribution over weights p(@ | T) X p(7; ‘ 7;, @)p(@)

conditioned on observed data.

* Pushing posterior distribution through the NN produces p(& | é7 7') — fp(& ‘ é) @)p(@ ‘ T)d@

a distribution over

e \WWe can use this distribution to derive a measure of

» Key Ingredients

 Weight Prior  p(©) Difficulties
. Likelihood — p(Ty | Te, ©O) 1. How do we set the prior?
. Posterior p(© | T) 2. How do we approximate the posterior?
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Producing a Bayesian Neural Network

Informative Prior Over Parameters

» BNNs require parameter priors p(®).
 To construct p(®):

» Use independent interpretability of &.
e Subset of inputsﬁ .

e prior beliefs over sparsity —> prior distribution over 6. Sparsity
» Weakly informative prior for p(o, b).

* Inspect edge weight magnitudes at performant 6’s.
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Producing a Bayesian Neural Network

Informative Prior Over Parameters Prior beliets
Sparsity

» BNNs require parameter priors p(®).

 To construct p(®):

» Use independent interpretability of &.
e Subset of inputsﬁ .

e prior beliefs over sparsity —> prior distribution over 6. Sparsity ( 9)
» Weakly informative prior for p(o, b).

* Inspect edge weight magnitudes at performant 6’s.
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GSL with Interpretable BNNs

Bayesian Modeling: Posterior Predictive

1. Inference: condition on the data O(m) p(© | T)

Via Hamiltonian Monte Carlo

2. Marginalize out parameters p(a | €,7T ) ~ ﬁ 2%21 p(a | €, @ﬁ))

3. Which we sample from ... &(m) ~ p(& | e, @(m))
4. To produce edge-wise and estimates!
(‘pred. mean’) (‘pred. stdv.’)

| “Posterior Predictive” |

over test sample

1

ST~ |~ 1 M  ~(m) R | M - e | s '
a; | e, T~ 57 ) m—10, Varla; | e,T|z ~ ﬁ M (@™ —Ela; 677-])2_

N |
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GSL with Interpretable BNNs

Synthetic Evaluation
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GSL with Interpretable BNNs

Synthetic Evaluation

label pred. mean pred. stdv
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GSL with Interpretable BNNs

Synthetic Evaluation

Strong Recovery
Some Mistakes

pred. mean pred. stdv
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GSL with Interpretable BNNs

Synthetic Evaluation Strong Recovery

Some Mistakes

= - He
g"',[ﬂ g"'[{: -Ef’ -
m = n . o

label pred. mean pred. stdv

18



GSL with Interpretable BNNs

Synthetic Evaluation

- - P o - -] -
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GSL with Interpretable BNNs

Recovering Sector Graphs from SP500 stock time series [Cardoso’23]

N

et

» Split stocks evenly into train/test

verizon’
Commun-
ications :
c * For each split
p)
(OUE S . - 1 - |Pearson correlation
L0 W matrix|
Utilities N =
Southerr ©
=== Dominion QO . . .
ZE g o Label: Alj = ] if stocks i &j in
A - same sector, 0 otherwise.
Real = Block Diagonal with 3 blocks
Estate
ifiyt * Run inference on DPG using this

single training sample




GSL with Interpretable BNNs

Evaluation: Recovering Sector Graphs from SP500 stock time series

* Error and Uncertainty Pearson Correlation: 0.70

Input pred. mean

pred. stdv.
| .
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Closing Remarks

We analyze recovering graphs from nodal observations
DPG: simple iterations which produce a true neural network when unrolled
Structure of DPG makes a parameter independently interpretable

Use structure to construct using priors on sparsity

Conditioning on observed data —> posterior distribution p(® | )

On unseen nodal observations X, push posterior distribution through Unrolled DPG to
produce a pla| T ;e)

 From which we recover point and uncertainty estimates

Future Work: Scaling & Variational Inference
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For more...

e ArXiv
https://arxiv.org/abs/2406.14786
Github repo

» github.com/maxwass/gsl-bnn
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Abstract

Graphs serve as generic tools to encode the underlying relational structure of data. Often

this oranh is naot oiven and so the task of inferrine it from nodal ohservations hecomes
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