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Abstract—Graphs are mathematical tools that can be used to
represent complex real-world systems, such as financial markets
and social networks. Hence, machine learning (ML) over graphs
has attracted significant attention recently. However, it has
been demonstrated that ML over graphs amplifies the already
existing bias towards certain under-represented groups in various
decision-making problems due to the information aggregation
over biased graph structures. Faced with this challenge, here we
take a fresh look at the problem of bias mitigation in graph-
based learning by bringing to bear insights from graph signal
processing. Specifically, we design a fair graph filter that can be
employed in a versatile manner for graph-based learning tasks.
The design of the proposed filter is based on a bias analysis and
its optimality in mitigating bias compared to its fairness-agnostic
counterpart is established. Experiments on real-world networks
for node classification demonstrate the efficacy of the proposed
filter design in mitigating bias, while attaining similar utility and
better stability compared to baseline algorithms.

Index Terms—Fairness, graph filter, graph neural network,
node classification, bias mitigation.

I. INTRODUCTION

We live in the era of connectivity, where the actions of
humans and devices are increasingly driven by their relations
to others. Concurrently, a significant amount of data that
describes different interconnected systems, such as social
networks, Internet of Things (IoT), the Web, and financial
markets, is increasingly available. Processing and learning
from such data can provide significant understanding and
advancements for the corresponding networked systems [1],
[2]. In this context, machine learning (ML) over graphs has
attracted increasing attention [3], [4], since graphs are widely
utilized to represent complex underlying relations in real-world
networks [5].

These relational patterns can be captured by graph edges,
while attributes of nodes (nodal features) can be interpreted
as signals defined on the vertices. For example, in a social
network, user ages can be modeled as a graph signal, and the
friendship information can be encoded by the edges. Graph
signal processing (GSP) extends the tools in classical signal
processing to graph signals [6], such as frequency analysis,
sampling and filtering [7]–[12]. GSP and ML over graphs
are closely intertwined, where the tools in one domain can
be useful in the other one [6], [13]. For instance, it has
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been demonstrated that graph neural networks (GNNs) can be
designed, analyzed, and improved by leveraging GSP-based
insights [13]–[15], which underscores the advancements that
can be made by cross-pollinating the findings in both domains.
In this paper, we align with this vision and leverage GSP
advances to enhance fairness in ML over graphs pipelines.
Fairness in ML. Despite the growing interest towards learning
over graphs, the widespread deployment of these algorithms in
real-world decision systems depends heavily on how socially
responsible they are. Indeed, several studies have demonstrated
that ML models propagate the historical bias within the train-
ing data and lead to discriminatory results in ensuing applica-
tions [16]. Note that algorihmic bias refers to the stereotypical
correlations the ML models encode and propagate with respect
to certain sensitive attributes (e.g., gender, race). Specific
to graph-based learning, the utilization of graph structure in
the algorithm design has been shown to amplify the already
existing bias [17]. Motivated by this concern, recent works
focus on fairness-aware learning over graphs and advocate
different techniques, such as adversarial regularization [17],
[18], fairness constraints [19], [20], and fairness-aware graph
data augmentation [21]–[23].
Proposed approach and contributions. Here, we first analyze
the sources of bias inherent to the graph topology and design
a general purpose bias-mitigation scheme by bringing to bear
GSP notions. Our previous endeavor [24] is also built upon
spectral analysis of graph signals, where a fairness-aware
dimensionality reduction algorithm was developed. However,
in [24], the information carried in certain frequencies is com-
pletely removed, which can adversely affect the overall utility
(accuracy for node classification) of the underlying ML task.
Hence, in the present work, we design a more flexible bias
mitigation algorithm that filters out the information coming
from the sensitive attribute signal (e.g. race, gender in social
networks), while also providing a better fairness-utility trade-
off. To this end, we design a graph filter which selectively
changes the graph Fourier coefficients [7] of input signals,
while taking fairness into account. Overall, our contributions
are:
i) Based on theoretical analysis of bias in graph topologies,
a graph filter is designed to mitigate bias. The novel filter
is versatile and can be employed in different stages of the
learning pipeline;
ii) The proposed filter is proved to be more effective than the
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Fig. 1: Spectra of the graph signals s (sensitive attributes) and y (labels) over different graph frequencies. There are few low
frequencies where the magnitudes of s̃ are markedly higher than those of ỹ. Pokec-z and Pokec-n are real-world networks,
whose statistics are presented in Table II.

fairness-agnostic counterpart in reducing bias; and
iii) Experimental results for node classification on real-world
networks corroborate the effectiveness of the proposed method
in mitigating bias, while providing similar utility to state-of-
the-art algorithms.

II. PRELIMINARIES AND PROBLEM STATEMENT

The focus of this study is to mitigate bias in graph-based
learning algorithms by employing a graph filter for a given
undirected graph G := (V, E), where V := {v1, v2, . . . , vN}
denotes the set of nodes and E ⊆ V × V is the set of
edges. Connectivity of the input graph is encoded in the graph
adjacency matrix A ∈ {0, 1}N×N , where Aij = 1 if and only
if (vi, vj) ∈ E . In addition, X ∈ RN×F represents the nodal
features of the input graph. The diagonal graph degree matrix
is D ∈ RN×N , where Dii denotes the the degree of vi, and
L = IN − D− 1

2AD− 1
2 is the normalized graph Laplacian

matrix. The sensitive attribute is defined to be the nodal feature
on which the decisions should not be dependent on for fair
decision making. Herein, the sensitive attribute is assumed to
be binary and is denoted by s ∈ {−1, 1}N . The feature vector
and the sensitive attribute of node vi are denoted by xi ∈ RF

and si ∈ {−1, 1}, respectively.
Graph signal processing fundamentals. The graph Fourier
transform (GFT) is an orthonormal transform that provides
the representation of a graph signal z ∈ RN in the graph
spectral domain [7], [25], [26]. Specifically, taking the GFT
of a graph signal amounts to projecting the signal onto a
space spanned by the orthogonal eigenvectors of the positive
semi-definite (PSD) normalized graph Laplacian matrix L [7].
Let the eigendecomposition of the normalized Laplacian be
L = VΛV⊤, where Λ = diag(λ1, . . . , λN ) collects the
non-negative eigenvalues and V is the matrix of Laplacian
eigenvectors. Then, the GFT of the graph signal z ∈ RN

is given by z̃ = V⊤z. Graph frequencies correspond to
the eigenvalues of the Laplacian (a measure of smoothness
of the eigenvectors with respect to the graph), meaning that

the GFT decomposes signals into frequency modes (i.e., the
eigenvectors of L) of different variability over G.

In classical signal processing, filters are utilized to manip-
ulate signals such that their, e.g., unwanted components are
attenuated or removed. Similarly, graph filters can be used to
modify graph signals for different purposes including graph
signal classification [27], [28], smoothing and denoising [29],
[30]. Filtering an input graph signal zin ∈ RN via a filter with
frequency response h̃ := [h̃1, . . . , h̃N ]⊤ can be mathematically
expressed as (e.g., [6], [7], [14])

zout = V diag(h̃1, . . . , h̃N )z̃in︸ ︷︷ ︸
Frequency domain filtering

.
(1)

Therefore, filtering in the frequency domain corresponds to
point-wise multiplication of the input signal’s GFT z̃in with
the frequency response of graph filter h̃. In this paper, given
G and s, we address the problem of designing a graph filter
with frequency response h̃ ∈ RN , so that the bias caused by
the graph topology can be attenuated when the filter is applied
to input/output graph signals in the learning algorithm.

III. BIAS MITIGATING GRAPH FILTER DESIGN

A. Spectrum Analysis

The homophily principle suggests that nodes with similar
attributes are more likely to connect in networks, which hints
at denser connectivity between the nodes with the same sensi-
tive attributes and also with the same label [31]. Accordingly,
both the sensitive attribute s and node labels y are expected
to be smooth signals over G. This implies higher energy
concentration for s̃ and ỹ over lower frequencies. However,
the extent of the overlap between the spectra of s̃ and ỹ plays
an important role in fairness-aware filter design, since we want
to preserve the necessary information for a downstream task
(node classification in this paper) after “filtering out” traces of
the sensitive attribute. Indeed, the spectra of s̃ and ỹ should
not match completely for the feasibility of our main idea.

To examine this, the GFT coefficients in s̃ and ỹ over
different frequencies are depicted for two real-world networks
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in Figure 1. Notice how the spectra of s̃ and ỹ exhibit similar
characteristics. However, there are certain frequencies where
the magnitudes of s̃ take significantly higher values than those
of ỹ. Such observation inspires us to design a graph filter
which attenuates the sensitive information while preserving
the data structure necessary for downstream ML tasks.

B. Bias Analysis

Features which are correlated with the sensitive attribute
lead to intrinsic bias, even when the sensitive attribute is not
utilized in learning [32]. The correlation between the input to
a learning algorithm and sensitive attributes is thus a measure
of the resulting bias. Motivated by this, the linear correlation
between the sensitive attribute signal s and graph topology
Â = D− 1

2AD− 1
2 is considered for the ensuing bias analysis.

Several graph-based learning approaches rely on node rep-
resentations obtained via local aggregration of information, a
process that can be summarized as

R = ÂXW, (2)

where R denotes the obtained node representations, X is the
input graph signal, and W represents the learnable weight
matrix; see e.g., [3], [4]. Hence, if a filtered graph signal Xf =
Vdiag(h̃)V⊤X is input, the obtained representation becomes

Rf = ÂXfW

= V(IN −Λ)V⊤XfW

= V(IN −Λ)V⊤Vdiag(h̃)V⊤XW

= V(IN −Λ)diag(h̃)V⊤XW

= AfXW,

(3)

where Af := V(IN − Λ)diag(h̃)V⊤. Therefore, if we
feed the aggregation process with a filtered signal Xf , the
effective graph topology that is utilized in the information
aggregation becomes Af . Building on this key observation,
the linear correlation between the sensitive attributes s and
Af is employed as a bias measure, which is proportional to
s⊤Af

:,i for the ith column of Af . The following Proposition
reveals the sources of bias and provides an upper bound on
the total correlation between s and Af , where total correlation
is given by ρ := ∥s⊤Af∥1. The proof is omitted due to lack
of space.

Proposition 1: For a filtered input graph signal Xf by a
graph filter with frequency response h̃, ρ := ∥s⊤Af∥1 can be
bounded by

ρ ≤
√
N

N∑
i=1

|s̃i||(1− λi)||h̃i|. (4)

Proposition 1 shows that the linear correlation between the
effective graph topology and sensitive attributes is a function
of

∑N
i=1 |s̃i||(1−λi)||h̃i|. In the sequel we design a “matched”

graph filter to reduce this term and hence the bias.

C. Fair Filter Design

Here we design a fair filter h̃fair to “filter-out” the sensitive
information from the bias-amplifying graph connectivity. The
novel filter can be applied to input/output graph signals used
in general purpose learning algorithms; see also Remark 1.

From Proposition 1, it follows that the intrinsic bias is
bounded above by

∑N
i=1 |s̃i||(1− λi)||h̃i|. Hence, a filter can

be designed that suppresses frequencies where mi := |s̃i||(1−
λi)| are largest. To this end, let C := {i|mi > τmmax}, where
τ is a hyperparameter and mmax = maxi{mi}. The frequency
response corresponding to larger mi are designed to reduce the
value of |s̃i||(1−λi)||h̃i| = mi|h̃i| in the upper bound of ρ in
(4). Accordingly, the frequency response of the fairness-aware
graph filter h̃fair is given by

h̃fair
i =

{ 1
N−k

∑
1≤j≤N,j ̸∈C mj

mi
, if i ∈ C

1, otherwise
, (5)

where k is the cardinality of set C. It can be observed
that with the designed filter the resulting term mi|h̃fair

i | =
1

N−k

∑
1≤j≤N,j ̸∈C mj ≤ mi,∀i ∈ C. While for i ̸∈ C,

mi|h̃fair
i | = mi is unchanged for frequencies that are less

relevant to the bias in order to preserve the information in
the original graph structure.

It is important to emphasize that ρ can be minimized by
setting h̃fair = 0, which is equivalent to filtering out all
information. However, such trivial design is uninteresting,
since it maximally sacrifices the utility in the ensuing task.
Therefore, there needs to be a trade-off between the utility
and fairness. This trade-off can be empirically adjusted via
the design parameter τ . Furthermore, we also theoretically
demonstrate in Proposition 2 that the proposed fair filter
h̃fair decreases the upper bound on ρ more effectively than a
uniform fairness-agnostic filter h̃u incurring the same amount
of information loss, i.e., ∥h̃fair∥1 = ∥h̃u∥1.

Proposition 2: The proposed fair filter h̃fair results in a
lower upper bound for the correlation measure ρ between s
and Af , when compared to the fairness-agnostic counterpart
h̃u
j = 1

N

∑N
i=1 h̃

fair
i ,∀j = 1, . . . , N , meaning

N∑
i=1

|s̃i||(1− λi)||h̃fair
i | ≤

N∑
i=1

|s̃i||(1− λi)||h̃u
i |. (6)

Remark 1: The designed fair filter h̃fair can be employed
in a flexible way to mitigate bias for different graph-based
learning algorithms. It can be applied to the graph signals that
are input to, or, output from the learning algorithms. Models
that are designed for attributed graphs generally utilize the
information coming from both the nodal features and graph
topology. Thus, the proposed filter h̃fair can be applied to the
nodal features before they are fed to the learning pipeline, in
order to prevent the amplification of bias due to the graph
connectivity. Alternatively, for any algorithm that outputs a
graph signal (e.g., node labels in node classification), h̃fair can
be employed on the output graph signal as a fairness-aware
post-processing operation. Overall, impact of the proposed fair
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TABLE I: Proposed filter as fairness-aware pre-processing operator for a GNN model.

Pokec-z Pokec-n

Accuracy (%) ∆SP (%) ∆EO (%) Accuracy (%) ∆SP (%) ∆EO (%)

GNN 66.52 ± 0.27 6.79 ± 2.45 7.26 ± 3.29 64.96 ± 0.19 6.79 ± 2.45 7.26 ± 3.29

Adversarial 64.26 ± 1.79 4.85 ± 2.16 5.99 ± 2.71 64.22 ± 0.71 4.34 ± 3.87 3.84 ± 2.71

EDITS 62.67 ± 2.64 3.17 ± 2.49 4.54 ± 2.99 62.67 ± 0.51 4.40 ± 2.41 5.38 ± 1.92

FairDrop 66.79 ± 0.65 9.11 ± 1.89 8.35 ± 3.81 64.33 ± 0.44 4.46 ± 1.67 5.02 ± 1.84

h̃fair+ GNN 66.34 ± 0.27 1.23 ± 1.43 2.15 ± 1.96 65.05 ± 0.21 2.13 ± 0.93 2.39 ± 1.78

filter can permeate several GNN-based learning frameworks in
a versatile manner.

IV. EXPERIMENTAL RESULTS

A. Dataset and Experimental Setup

TABLE II: Dataset statistics.

Dataset |S−1| |S1| Inter-edges Intra-edges F

Pokec-z 4851 2808 1730 39370 59
Pokec-n 4040 2145 1422 29220 59

Datasets. The performance of the proposed fair filter design is
evaluated on the node classification task over real-world social
networks Pokec-z and Pokec-n [17]. Pokec-z and Pokec-n are
the sampled versions of the 2012 Pokec network [33], which is
a Facebook-like social network in Slovakia [17]. The region of
the users is utilized as the sensitive attributes, where the users
are from two major regions. Labels for the node classification
task are the binarized working field of the users. Statistical
information for the utilized datasets are presented in Table II,
where Si represents the set of nodes with sensitive attribute
i and inter-edges connect different sensitive attributes, while
intra-edges are the edges between the same sensitive attribute.
Note that N = |S−1|+ |S1|.
Evaluation metrics. For the utility metric of node classi-
fication, accuracy is utilized. For fairness assessment, two
quantitative measures of group fairness metrics are reported,
namely statistical parity: ∆SP = |P (ŷ = 1 | s = −1)−P (ŷ =
1 | s = 1)| and equal opportunity: ∆EO = |P (ŷ = 1 | y =
1, s = −1)−P (ŷ = 1 | y = 1, s = 1)|, where y represents the
ground truth label, and ŷ is the predicted label. Lower values
for ∆SP and ∆EO indicate better fairness performance [17]
and are more desirable.
Implementation details. In the experiments, the designed
filter is employed as a pre-processing operator on the features
that are input to GNN layers in a two-layer graph convolutional
network [4]. The model is trained over 40% of the nodes,
while the remaining nodes are equally divided to validation
and test sets. The hyperparameter τ is selected as 0.05 for
Pokec-z and 0.04 for Pokec-n via grid search among the val-
ues {0.04, 0.05, 0.06}. Furthermore, adversarial regularization
[17], EDITS [23], and FairDrop [22] are employed as fairness-
aware baselines in the experiments. For adversarial regular-
ization, the multiplier of the regularizer is tuned via a grid

search among the values {0.1, 1, 10, 100, 1000} (the multiplier
of classification loss is assigned to be 1). Furthermore, for
EDITS, the threshold proportion is tuned among the values
{0.015, 0.02, 0.29}, where these values are the optimized
thresholds for other datasets used in the corresponding work.
Finally, δ in FairDrop algorithm is tuned among the values
{0.7, 0.8, 0.9}. For all experiments, results are obtained for
five random data splits, and their average along with the
standard deviations are reported.

B. Results

Results for GNN-based node classification are presented in
Table I. For the proposed scheme, the natural baseline is to
employ the exactly same GNN model without the fair filter
as a pre-processing operator (denoted as GNN in Table I).
Moreover, Adversarial, EDITS, and FairDrop in Table I stand
for the employment of adversarial regularization in training
[17], and state-of-the-art fairness-aware baselines EDITS [23],
and FairDrop [22], respectively. Results in Table I demonstrate
that the proposed fair filter consistently achieves better fairness
measures compared to the fairness-aware baselines Adversarial
and EDITS [23], along with better utility values. While our
approach outperforms FairDrop [22] in terms of both fairness
and utility on Pokec-z, FairDrop [22] achieves lower ∆EO

on Pokec-n. However, this better ∆EO result of FairDrop on
Pokec-n is accompanied by a drop in the utility. Furthermore,
it can be observed that the employment of the proposed filter
leads to the lowest standard deviation values, and therefore
enhances the stability of the results. Overall, the results cor-
roborate the efficacy of the proposed filter design in mitigating
bias while also providing similar utility measures compared to
the state-of-the-art fairness-aware baselines.

V. CONCLUSION

We developed a fairness-aware graph filter that can be
flexibly employed in various graph-based ML and signal
processing algorithms. Theoretical analysis on the source of
bias is provided, which guides the design of the fairness-aware
filter. The novel filter is provably more effective in terms of
mitigating bias with the same amount of filtered information
compared to the fairness-agnostic counterpart. Node classifica-
tion experiments on real-world networks demonstrate that the
proposed fair filter consistently provides better fairness and
robustness together with similar utility compared to baselines.
This work opens up exciting future directions. For instance,
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the proposed design requires a Laplacian eigendecomposition,
which incurs a complexity of O(N3) and may not be ideal for
large-scale graphs. Computationally-efficient designs are part
of our ongoing research agenda.
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