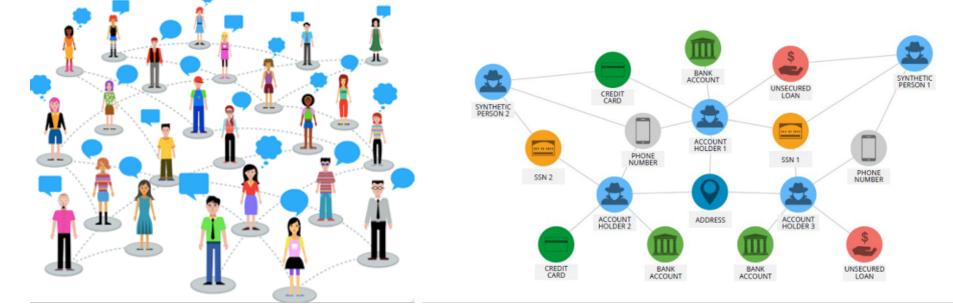


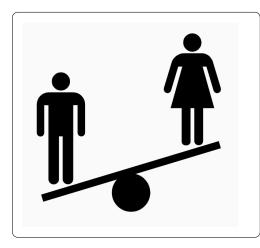
Department of Electrical Engineering and Computer Science

Motivation

• Connectivity era: Growing amount of data describing interconnected systems



- Graphs are utilized to model such complex data
 - Graph nodes: users in social networks, accounts holding money
 - Graph edges: friendship between users, money transactions
 - Nodal features: education level of users, locations of accounts
- Processing & learning from graph data can provide significant advancements
 - Increasing attention towards graph signal processing & ML over graphs
 - Cross-pollination of GSP and ML over graphs provides new insights [1]
- ML algorithms propagate algorithmic bias
 - Impact of ethnicity in crime prediction
 - Impact of gender in ad recommendation



- Use of network connectivity in learning amplifies existing bias [2]
- Motivation: Consideration of bias is necessary for graph-based learning
- Limitation of current works: Task/algorithm-specific, no theoretical analysis
- Intuition: Can we leverage GSP-based tools to design a general-purpose bias mitigation strategy?

Preliminaries & Problem Statement

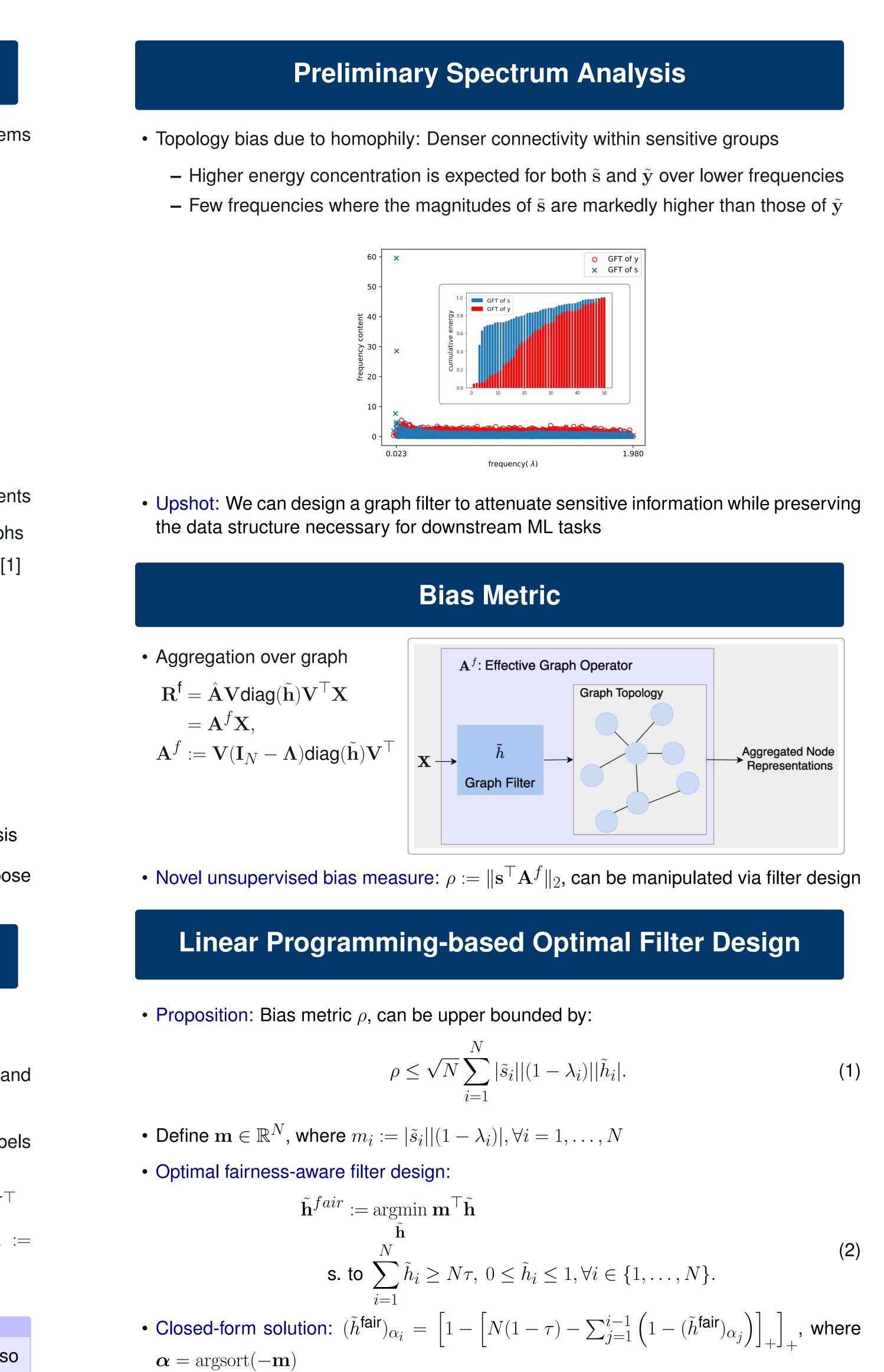
- Focus on undirected graphs, $\mathcal{G} := (\mathcal{V}, \mathcal{E})$
- Connectivity information described via graph adjacency $\mathbf{A} \in \{0,1\}^{N \times N}$ and normalized Laplacian matrices $\mathbf{L} = \mathbf{I}_N - \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$
- Sensitive attributes $s \in \{-1, 1\}^N$, nodal features $X \in \mathbb{R}^{N \times F}$ and labels $\mathbf{y} \in \{-1, 1\}^N$ for node classification
- Graph Fourier Transform of signal $z \in \mathbb{R}^N$ is $\tilde{z} = V^{\top}z$, where $L = V\Lambda V^{\top}$
- Filtering graph signal $\mathbf{z} \in \mathbb{R}^N$ via a filter with frequency response $ilde{\mathbf{h}}$:= $[h_1, \ldots, h_N]^{\top}$ yields the output signal $\mathbf{z}_{out} = \mathbf{V} \operatorname{diag}(h_1, \ldots, h_N) \tilde{\mathbf{z}}$.

Problem Statement

Given \mathcal{G} and s, design of graph filters with frequency response $\tilde{\mathbf{h}} \in \mathbb{R}^N$, so that algorithmic bias sourced from graph topology can be attenuated with the application of such filters.

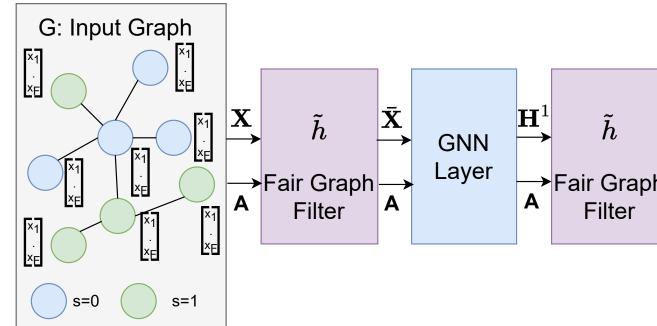
FAIRNESS-AWARE GRAPH FILTER DESIGN

O. Deniz Kose¹, Yanning Shen¹, and Gonzalo Mateos² ¹University of California, Irvine, Dept. of Electrical Engineering and Computer Science ²University of Rochester, Dept. of Electrical and Computer Engineering



- A flexible design that can be **pre-computed once** for different learning algorithms, and can be used at different stages of learning (i.e., pre-processing, post-processing)

Experimental Settings & Results



- Datasets: Real social networks, region is sensitive attribute & job is label
- Task: Node classification, classification accuracy is reported
- Fairness metrics (lower values are desired):

$$- \Delta_{SP} = |P(\hat{y} = 1 | s = 0) - P(\hat{y} = 1 | s = 1)|$$
$$- \Delta_{EO} = |P(\hat{y} = 1 | y = 1, s = 0) - P(\hat{y} = 1 | y = 1)$$

			Pokec-z			I
		Accuracy (%)	Δ_{SP} (%)	Δ_{EO} (%)	Accuracy (%)	Δ
-	GNN	66.52 ± 0.27	6.79 ± 2.45	7.26 ± 3.29	64.96 ± 0.19	6.'
	Adversarial	64.26 ± 1.79	4.85 ± 2.16	5.99 ± 2.71	64.22 ± 0.71	4.3
	EDITS	62.67 ± 2.64	3.17 ± 2.49	4.54 ± 2.99	62.67 ± 0.51	4.4
	FairDrop	66.79 ± 0.65	9.11 ± 1.89	8.35 ± 3.81	64.33 ± 0.44	4.4
	$ ilde{\mathbf{h}}^{ ext{fair}}+ ext{GNN}$	66.34 ± 0.27	1.23 ± 1.43	2.15 ± 1.96	65.05 ± 0.21	2 .:

- Similar utility performance compared to fairness-agnostic GNN model
- Enhanced stability for both utility and fairness measures
- Typically better fairness, utility compared to SOTA fairness-aware baselines
- An explanation for effective bias mitigation:

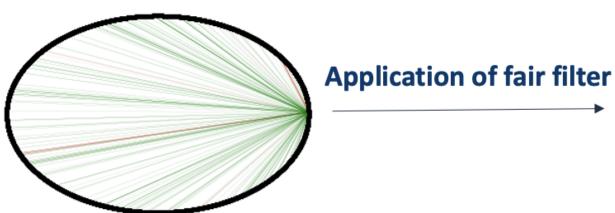
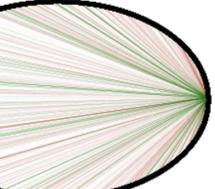


Figure 1: Distribution of the intra-edges (green) and inter-edges (red) in the effective network topology without (left) with (right) the application of $\tilde{\mathbf{h}}^{\text{fair}}$.

Conclusions

- A novel, unsupervised bias measure dependent on filter parameters
- Theory-based surrogate loss allowing efficient, LP-based design
- Closed-form solution, leading to optimal and efficient graph filter design
- Versatile use and pre-trained computation
- All results are reproducible: http://bit.ly/Kose_FairFilterDesign
- Future work: Computationally efficient (eigendecomposition-free) designs

[1] F. Gama et al., "Stability properties of graph neural networks", *IEEE Transactions on Signal Processing*, 2020. [2] E. Dai and S. Wang, "Say no to the discrimination: Learning fair graph neural networks with limited sensitive attribute information." Proc International Conference on Web Search and Data Mining, 2021.



Pokec-n Δ_{SP} (%) Δ_{EO} (%) 5.79 ± 2.45 7.26 ± 3.29 34 ± 3.87 3.84 ± 2.71 40 ± 2.41 5.38 ± 1.92 4.46 ± 1.67 5.02 ± 1.84 2.39 ± 0.93 **2**.39 ± 1.78

1, s = 1)

