
pyGSL: A Graph Structure Learning Toolkit
Max Wasserman and Gonzalo Mateos

University of Rochester

A Central Place for Graph Structure Learning

Brings together SOTA models with synthetic and real datasets. Models
are built in a unified way using PyTorch allowing faster development, ease
of extension, and seamless scaling to GPU settings.

Notation

Let G(V , E) denote an undirected and weighted graph, where
V = {1, . . . , N} is the set of nodes, and E ⊆ V × V collects the edges.
A graph signal x = [x1, . . . , xN ] ∈ RN is a map x : V → R which
assigns a real value (say, a feature) to each vertex. We collect the P
graph signal observations together into data matrix
X = [x(1), . . . , x(P )].
A similarity function S(X) : RN×P 7→ RN×N is chosen to compute
the observed direct similarity between nodes. Common choices for
S include sample covariance/correlation or Euclidean distance.

The Graph Structure Learning Problem: Inferring
Graphs from Data

Graph Structure Learning (GSL) is posed here as an inverse problem.
Given graph S(X), where X ∼ F(AL), recover the latent graph AL. The
generative model F ties the nodal data X to the latent graph AL, e.g.
statistical or diffusion processes. Here we focus on learning undirected
graphs in the supervised setting; we do not assume direct access to nodal
features X .

A Unifying View of GSL Methods

Ad Hoc methods rely on intuitive approaches such as thresholding or
kNN.Model‐Based (MB)methods use data model F to pose a (sometimes
convex) optimization problem with corresponding iterative solution proce‐
dures. When datasets are availableUnrolling‐Based (UB) approaches take
these iterative procedures and use them to motivate a deep network ar‐
chitecture that uses backpropogation on a dataset to learn its parameter
values; see Figure 1. Deep Learning (DL) approaches tend to parameter‐
ize a GNN with dense S(X), and decode latent node features into edge
predictions.

Model‐Based GSL. Pose optimization problem

A∗ ∈ argmin
A∈C

Ldata(A, X) + Lreg(A), (1)

where Ldata(A, X) is the data fidelity term, Lreg(A) is the regularization
term incorporating the structural priors (e.g. sparsity), and C encodes a
convex constraint on the optimization variable A. We introduce an itera‐
tive solution procedure (2) to solve (1) which takes generic form

A[i + 1] = hθ(A[i], S(X)) (2)

where A[i] is output on the i‐th iteration, hθ is the contractive function,
and θ are the regularization parameters.

Unrolling‐Based GSL. Use iterative solution procedure as inductive bias in
the design of deep network architecture by mapping truncated iterations
into layers, transforming regularization parameters into learnable parame‐
ters, and optimizing parameter values via backproprogation with a differ‐
entiable loss function on a given dataset.

Figure 1. Schematic of a UB method obtained by unrolling iterative procedure (2).

Data Model MB Iterative Procedure UB Model

Gaussian Alternating Minimization GLAD [2]
Smoothness Primal‐Dual Splitting L2G [1]
Diffusion Proximal Gradient Descent GDN [3]

Table 1. Model‐Based methods with the associated Unrolling‐Based method it inspires.

UB: A Compromise Between MB and DL

UB methods gain interpretability, parameter efficiency, and graph‐size‐
inductiveness from the inductive bias inherited from their respectiveMB
methods. As in DL methods, UB methods gain expressivity by forgoing
the convexity constraint and directly optimizing a (differentiable) metric
of interest, explicit controls on complexity by truncating layers, and a
tuneable trade off on training time and inference speed via network
depth and width of layers.

The Layer and Unrolling classes

UB methods differ in the
types of layers to stack
and thus pyGSL provides
the Layer and Unrolling
abstract classes
encapsulating their
shared functionality. By
implementing the
required abstract
methods in each, users
automatically gain the
ability to scale to many
GPUs and leverage
pre‐configured logging
and visualization tools. Figure 2. Class diagram for UB methods in pyGSL.

Workflow for UB Model Development

1. Define Layer hθ: Subclass Layer specifying learned parameters θ in
__init__() and the differentiable function hθ in forward()

2. Create Unrolling: Subclass Unrolling and implement forward() to
specify how a layers outputs should be fed as inputs to the following
layer, applying e.g. normalization between layers. Optionally
implement __init__() for custom functionality.

3. Perform Learning: Specify loss function in the unrolling and choose
a dataset, e.g. ‘squared_error‘ with AL’s being ErdősRényi graphs,
X ∼ N (0, (AL + ϵI)−1), and S(X) being sample covariance
matrices.

4. Evaluate: Compare performance with other provided models.

Scaling to Larger Network Tasks

GPUs make the GSL
problem feasible on
significantly larger
graphs: Figure 3
shows the dramatic
speed‐up GPUs
provide in the
learning process. An
advantage of UB
methods is the ability
to explicitly choose
inductive bias, e.g.
sparsity. Future work
will explore the use of
sparse data
representations to
scale to graphs with
orders of magnitude
larger size.

Figure 3. Time for the forward and backward pass in the
GDN model on CPUs/GPU of g4dn.xlarge AWS instance.

References

[1] Xingyue Pu, Tianyue Cao, Xiaoyun Zhang, Xiaowen Dong, and Siheng Chen. Learning to learn graph
topologies, 2021.

[2] Harsh Shrivastava, Xinshi Chen, Binghong Chen, Guanghui Lan, Srinvas Aluru, Han Liu, and Le Song.
Glad: Learning sparse graph recovery, 2019.

[3] Max Wasserman, Saurabh Sihag, Gonzalo Mateos, and Alejandro Ribeiro. Learning graph structure
from convolutional mixtures, 2022. URL https://arxiv.org/abs/2205.09575.

https://github.com/maxwass/pygsl NeurIPS 2022 Workshop: New Frontiers in Graph Learning mwasser6@ur.rochester.edu

https://arxiv.org/abs/2205.09575
https://github.com/maxwass/pygsl
mailto:mwasser@ur.rochester.edu

	References

