@@

SIMELIORA J

%

ROCHESTER

A Central Place for Graph Structure Learning

Brings together SOTA models with synthetic and real datasets. Models
are built in a unified way using PyTorch allowing faster development, ease
of extension, and seamless scaling to GPU settings.

Notation

= Let G(V, &) denote an undirected and weighted graph, where
V =A{1,...,N}is the set of nodes, and & C V x V collects the edges.

= A graph signal @ = [x1,..., x| € RN isamap z : V — R which
assigns a real value (say, a feature) to each vertex. We collect the P
graph signal observations together into data matrix
X = [z, .)

« A similarity function S(X) : RVXF — R¥N*N is chosen to compute
the observed direct similarity between nodes. Common choices for
S include sample covariance/correlation or Euclidean distance.

The Graph Structure Learning Problem: Inferring
Graphs from Data

Graph Structure Learning (GSL) is posed here as an inverse problem.
Given graph S(X), where X ~ F(Aj), recover the latent graph A;. The
generative model F ties the nodal data X to the latent graph Ay, e.g.
statistical or diffusion processes. Here we focus on learning undirected
graphs in the supervised setting; we do not assume direct access to nodal
features X.

A Unifying View of GSL Methods

Ad Hoc methods rely on intuitive approaches such as thresholding or
kNN. Model-Based (MB) methods use data model F to pose a (sometimes
convex) optimization problem with corresponding iterative solution proce-
dures. When datasets are available Unrolling-Based (UB) approaches take
these iterative procedures and use them to motivate a deep network ar-
chitecture that uses backpropogation on a dataset to learn its parameter
values; see Figure 1. Deep Learning (DL) approaches tend to parameter-
ize a GNN with dense S(X), and decode latent node features into edge
predictions.

Model-Based GSL. Pose optimization problem

A" € argmin Lya15(A, X) + Lreg(A), (1)
AeC
where Ly515(A, X)) is the data fidelity term, Lreg(A) is the regularization
term incorporating the structural priors (e.g. sparsity), and C encodes a
convex constraint on the optimization variable A. We introduce an itera-
tive solution procedure (2) to solve (1) which takes generic form

Ali + 1] = hy(Ali], S(X)) (2)

where Ali| is output on the i-th iteration, hy is the contractive function,
and 0 are the regularization parameters.

Unrolling-Based GSL. Use iterative solution procedure as inductive bias in
the design of deep network architecture by mapping truncated iterations
into layers, transforming regularization parameters into learnable parame-
ters, and optimizing parameter values via backproprogation with a differ-
entiable loss function on a given dataset.

A[O] ————— \All] R \A[Q] e \AL

e > § h92 [O —

I 9D=

Figure 1. Schematic of a UB method obtained by unrolling iterative procedure (2).

Data Model MB lterative Procedure UB Model
Gaussian Alternating Minimization ~ GLAD [2]
Smoothness Primal-Dual Splitting L2G [1]

Diffusion Proximal Gradient Descent GDN [3]

Table 1. Model-Based methods with the associated Unrolling-Based method it inspires.

pYyGSL: A Graph Structure Learning Toolkit

Max Wasserman and Gonzalo Mateos

University of Rochester

UB: A Compromise Between MB and DL

UB methods gain interpretability, parameter efficiency, and graph-size-
inductiveness from the inductive bias inherited from their respective MB
methods. As in DL methods, UB methods gain expressivity by forgoing
the convexity constraint and directly optimizing a (differentiable) metric
of interest, explicit controls on complexity by truncating layers, and a
tuneable trade off on training time and inference speed via network
depth and width of layers.

The Layer and Unrolling classes

UB methods differ in the

torch.nn.Module pytorch_lightning.LightningModule

types of layers to stack

and thus pyGSL provides } ?

the Layer and Unrolling Layer Unrolling

a b stract c | asses + stacked_layers: nn.ModuleList

encapsulating their +_init_ +_init_

. . + forward + forward
shared functionality. By " + compute_loss
implementing the + logging_funcs

. + viz_funcs
required abstract 7
methods in each, users GDN_Layer DN Unroling

automahcally galn the + theta: nn.Parameter ’stacks—

ability to scale to many

GPUs and leverage
pre-configured logging

2nd visualization tools. Figure 2. Class diagram for UB methods in pyGSL.

Workflow for UB Model Development

1. Define Layer hy: Subclass Layer specifying learned parameters 6 in
__init__() and the differentiable function hy in forward()

7. Create Unrolling: Subclass Unrolling and implement forward() to
specify how a layers outputs should be fed as inputs to the following
layer, applying e.g. normalization between layers. Optionally
implement __init__() for custom functionality.

3. Perform Learning: Specify loss function in the unrolling and choose
a dataset, e.g. ‘squared_error with A;’s being Erd6sRényi graphs,
X ~N(0,(A; +€eI)71), and S(X) being sample covariance
matrices.

/. Evaluate: Compare performance with other provided models.

Scaling to Larger Network Tasks

GPUs make the GSL
problem feasible on
significantly larger
oraphs: Figure 3
shows the dramatic
speed-up GPUs
provide In the
learning process. An
advantage of UB
methods is the ability
to explicitly choose
inductive bias, e.g.
sparsity. Future work
will explore the use of
sparse data 0 -
representations to
scale to graphs with
orders of magnitude
larger size.

s CPU
e GPU

30 -

= = N N
(@) Ul (@) Ul
] | | |

seconds per batch

Ul
|

50 100 200
graph size

Figure 3. Time for the forward and backward pass in the
GDN model on CPUs/GPU of g4dn.xlarge AWS instance.

References

[1] Xingyue Pu, Tianyue Cao, Xiaoyun Zhang, Xiaowen Dong, and Siheng Chen. Learning to learn graph
topologies, 2021.

[2] Harsh Shrivastava, Xinshi Chen, Binghong Chen, Guanghui Lan, Srinvas Aluru, Han Liu, and Le Song.
Glad: Learning sparse graph recovery, 2019.

[3] Max Wasserman, Saurabh Sihag, Gonzalo Mateos, and Alejandro Ribeiro. Learning graph structure
from convolutional mixtures, 2022. URL https://arxiv.org/abs/2205.09575.

mwasserb@ur.rochester.edu

https.//github.com/maxwass/pygsl

NeurlPS 2022 Workshop: New Frontiers in Graph Learning

https://arxiv.org/abs/2205.09575
https://github.com/maxwass/pygsl
mailto:mwasser@ur.rochester.edu

	References

