

A Random Dot Product Graph Model for Weighted and Directed Networks

Bernardo Marenco, Paola Bermolen, Marcelo Fiori, Federico Larroca and Gonzalo Mateos

Asilomar Conference on Signals, Systems, and Computers October 2024

Random dot product graphs

Consider a latent space $\mathcal{X}_d \subset \mathbb{R}^d$ such that for all

 $\mathbf{x}, \mathbf{y} \in \mathcal{X}_d \quad \Rightarrow \quad \mathbf{x}^\top \mathbf{y} \in [0, 1]$

 \Rightarrow Inner-product distribution $F: \mathcal{X}_d \mapsto [0, 1]$

■ Random dot product graphs (RDPGs) are defined as follows:

$$\mathbf{x}_1, \dots, \mathbf{x}_{N_v} \stackrel{\text{i.i.d.}}{\sim} F,$$

 $A_{ij} \mid \mathbf{x}_i, \mathbf{x}_j \sim \text{Bernoulli}(\mathbf{x}_i^\top \mathbf{x}_j)$

for $1 \leq i, j \leq N_v$, where $A_{ij} = A_{ji}$ and $A_{ii} \equiv 0$

■ A particularly tractable latent position random graph model ⇒ Vertex positions $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{N_v}]^\top \in \mathbb{R}^{N_v \times d}$

S. J. Young and E. R. Scheinerman, "Random dot product graph models for social networks," *WAW*, 2007

Estimation of latent positions

Q: Given G = (V, E) from an RDPG, find the 'best' $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{N_v}]^\top$? **MLE** is well motivated but it is intractable for large N_v

$$\hat{\mathbf{X}}_{ML} = \operatorname*{argmax}_{\mathbf{X}} \prod_{i < j} (\mathbf{x}_i^{\top} \mathbf{x}_j)^{A_{ij}} (1 - \mathbf{x}_i^{\top} \mathbf{x}_j)^{1 - A_{ij}}$$

Estimation of latent positions

Q: Given G = (V, E) from an RDPG, find the 'best' $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{N_v}]^\top$? **MLE** is well motivated but it is intractable for large N_v

$$\hat{\mathbf{X}}_{ML} = \operatorname*{argmax}_{\mathbf{X}} \prod_{i < j} (\mathbf{x}_i^{\top} \mathbf{x}_j)^{A_{ij}} (1 - \mathbf{x}_i^{\top} \mathbf{x}_j)^{1 - A_{ij}}$$

Instead, let P_{ij} = P ((i, j) ∈ E) and define P = [P_{ij}] ∈ [0, 1]^{N_v×N_v} ⇒ RDPG model specifies that P = XX^T ⇒ Key: Observed A is a noisy realization of P (E{A} = P)
Suggests a LS regression approach to find X s.t. XX^T ≈ A

$$\hat{\mathbf{X}}_{LS} = \operatorname*{argmin}_{\mathbf{X}} \|\mathbf{X}\mathbf{X}^{\top} - \mathbf{A}\|_{F}^{2}$$

A. Athreya et al, "Statistical inference on random dot product graphs: A survey," JMLR, 2018

Adjacency spectral embedding

\blacksquare Since **A** is real and symmetric, can decompose it as $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top}$

- $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_{N_v}]$ is the orthogonal matrix of eigenvectors
- $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_{N_v})$, with eigenvalues $\lambda_1 \geq \ldots \geq \lambda_{N_v}$

Adjacency spectral embedding

Since **A** is real and symmetric, can decompose it as $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top}$

- $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_{N_v}]$ is the orthogonal matrix of eigenvectors
- $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_{N_v})$, with eigenvalues $\lambda_1 \geq \ldots \geq \lambda_{N_v}$
- **Define** $\hat{\mathbf{\Lambda}} = \operatorname{diag}(\lambda_1^+, \dots, \lambda_d^+)$ and $\hat{\mathbf{U}} = [\mathbf{u}_1, \dots, \mathbf{u}_d] \ (\lambda^+ := \max(0, \lambda))$
- **B**est rank-*d*, positive semi-definite (PSD) approximation of **A** is $\hat{\mathbf{U}}\hat{\mathbf{A}}\hat{\mathbf{U}}^{\top}$

 \Rightarrow Ajacency spectral embedding (ASE) is $\hat{\mathbf{X}}_{LS} = \hat{\mathbf{U}}\hat{\boldsymbol{\Lambda}}^{1/2}$ since

$$\mathbf{A}pprox \hat{\mathbf{U}}\hat{\mathbf{\Lambda}}\hat{\mathbf{U}}^{ op}=\hat{\mathbf{U}}\hat{\mathbf{\Lambda}}^{1/2}\hat{\mathbf{\Lambda}}^{1/2}\hat{\mathbf{U}}^{ op}=\hat{\mathbf{X}}_{LS}\hat{\mathbf{X}}_{LS}^{ op}$$

Interpretability of the embeddings

Ex: Zachary's karate club graph with $N_v = 34$, $N_e = 78$ (left)

■ Node embeddings (rows of $\hat{\mathbf{X}}_{LS}$) for d = 2 (right)

• Club's administrator (i = 0) and instructor (j = 33) are orthogonal

■ Interpretability of embeddings a valuable asset for RDPGs

- \Rightarrow Vector magnitudes indicate how well connected nodes are
- \Rightarrow Vector angles indicate nodes' affinity

Weighted graphs

Q: Can we extend the RDPG model to the weighted case?

Idea latent positions related to the moment generating function (MGF) of weights ω_{ij}

 \Rightarrow Weighted RDPG: Each node now has a sequence of vectors $(\mathbf{x}_i[k] \in \mathbb{R}^{d_k})_{k \in \mathbb{N}}$ where

$$\mathbb{E}[\omega_{ij}^k] = \mathbf{x}_i[k]^\top \mathbf{x}_j[k]$$

 \Rightarrow Weights are independently drawn from distributions with MGF

$$\mathbb{E}\{e^{t\omega_{ij}}\} = \sum_{k=0}^{\infty} \frac{t^k \mathbb{E}\{\omega_{ij}^k\}}{k!} = \sum_{k=0}^{\infty} \frac{t^k \mathbf{x}_i[k]^\top \mathbf{x}_j[k]}{k!}$$

Weighted graphs

Q: Can we extend the RDPG model to the weighted case?

Idea latent positions related to the moment generating function (MGF) of weights ω_{ij}

 \Rightarrow Weighted RDPG: Each node now has a sequence of vectors $(\mathbf{x}_i[k] \in \mathbb{R}^{d_k})_{k \in \mathbb{N}}$ where

$$\mathbb{E}[\omega_{ij}^k] = \mathbf{x}_i[k]^\top \mathbf{x}_j[k]$$

 $\Rightarrow\,$ Weights are independently drawn from distributions with MGF

$$\mathbb{E}\{e^{t\omega_{ij}}\} = \sum_{k=0}^{\infty} \frac{t^k \mathbb{E}\{\omega_{ij}^k\}}{k!} = \sum_{k=0}^{\infty} \frac{t^k \mathbf{x}_i[k]^\top \mathbf{x}_j[k]}{k!}$$

• We now have a sequence of matrices $\mathbf{X}[k] = [\mathbf{x}_1[k], \dots, \mathbf{x}_{N_v}[k]]^\top$ such that

$$\mathbb{E}\left\{\underbrace{\mathbf{A} \circ \mathbf{A} \circ \cdots \circ \mathbf{A}}_{k \text{ times}}\right\} = \mathbb{E}\left\{\mathbf{A}^{(k)}\right\} := \mathbf{M}[k] = \mathbf{X}[k]\mathbf{X}[k]^{\top}$$

Weighted RDPG

Advantages

- ✓ Backwards compatibility: vanilla RDPG is recovered by setting $\mathbf{x}_i[k] = \mathbf{x}_i$ for all k > 0
- $\checkmark\,$ Flexible way of specifying a distribution per edge
 - Acommodates discrete and/or continuous distribution
 - Prior art relied on fixed, known, parametric distribution $F\left(A_{ij}; \boldsymbol{\theta} = \{\mathbf{x}_i^\top[k]\mathbf{x}_j[k]\}_{k=1}^K\right)$

R. Tang et al, "Robust estimation from multiple graphs under gross error contamination", arXiv:1707.03487, 2017
D. DeFord et al, "A Random Dot Product Model for Weighted Networks", arXiv:1611.02530, 201

Weighted RDPG

Advantages

- ✓ Backwards compatibility: vanilla RDPG is recovered by setting $\mathbf{x}_i[k] = \mathbf{x}_i$ for all k > 0
- $\checkmark\,$ Flexible way of specifying a distribution per edge
 - Acommodates discrete and/or continuous distribution
 - Prior art relied on fixed, known, parametric distribution $F\left(A_{ij}; \boldsymbol{\theta} = \{\mathbf{x}_i^\top[k]\mathbf{x}_j[k]\}_{k=1}^K\right)$
- $\checkmark\,$ Sparsity pattern of $\mathbf{A}^{(k)}$ is maintained for all k
- \checkmark Observation $\mathbf{A}^{(k)}$ is a noisy realization of $\mathbf{M}[k]$
 - \Rightarrow Inference of the embedding sequence $(\hat{\mathbf{X}}[k])$ via the ASE of $\mathbf{A}^{(k)}$

R. Tang et al, "Robust estimation from multiple graphs under gross error contamination", arXiv:1707.03487, 2017 D. DeFord et al. "A Bandom Dot Product Model for Weighted Networks" arXiv:1611.02530

Weighted RDPG: Discriminative power

■ Ex: Q = 2 block weighted SBM graph G with $N_v = 2000$, edges present w.p. p = 0.5⇒ Weights $A_{ij} \sim \mathcal{N}(5, 0.1)$ except among nodes i > 1000, where $A_{ij} \sim \text{Poisson}(5)$

■ ASE estimates $\hat{\mathbf{x}}_i[k]$ for k = 1 (left), k = 2 (center), k = 3 (right), where d = 2

- Indistinguishable for k = 1, since $\hat{\mathbf{x}}_i[1]$ are centered around $(\sqrt{\mu p}, 0) = (\sqrt{\lambda p}, 0) \approx (1.58, 0)$
- Noise hinders discriminability for k = 2, even though

$$\mathbf{x}_{i}[2] = \begin{cases} (\sqrt{p(\mu^{2} + \sigma^{2})}, 0) \approx (3.55, 0) & i \le 1000, \\ (\sqrt{p(\mu^{2} + \sigma^{2})}, \sqrt{p(\lambda^{2} + \lambda - (\mu^{2} + \sigma^{2})}) \approx (3.55, 1.58) & i > 1000 \end{cases}$$

• Skewness kicks in for k = 3 and group separation is apparent

Weighted and Directed Graphs

So far, matrix $\mathbf{M}[k]$ is restricted to be

- ✗ Positive semi-definitive: what about heterophilous behaviour?
- ✗ Symmetric: what about directed graphs?

Weighted and Directed Graphs

So far, matrix $\mathbf{M}[k]$ is restricted to be

✗ Positive semi-definitive: what about heterophilous behaviour?

✗ Symmetric: what about directed graphs?

Extension to digraphs

- Each node has an associated sequence $\mathbf{x}_i[k]$ now in \mathbb{R}^{2d}
- Or two vectors: $\mathbf{x}_i^l[k]$ and $\mathbf{x}_i^r[k]$ (first and last d entries of \mathbf{x}_i)

■ Model:

$$\mathbb{E}\left\{\mathbf{A}^{(k)}\right\} := \mathbf{M}[k] = \mathbf{X}^{l}[k]\mathbf{X}^{r}[k]^{\top}$$
(1)

Weighted and Directed RDPG

Inference:

- $\mathbf{M}[k] = \mathbb{E}\left\{\mathbf{A}^{(k)}\right\}$ still holds
- $\Rightarrow \text{ Seek } \{ \hat{\mathbf{X}}^{l}[k], \hat{\mathbf{X}}^{r}[k] \} \text{ s.t. } \hat{\mathbf{X}}^{l}[k] \hat{\mathbf{X}}^{r}[k]^{\top} \text{ is the best rank-} d \text{ approximation of } \mathbf{A}^{(k)}$

Weighted and Directed RDPG

Inference:

- $\mathbf{M}[k] = \mathbb{E}\left\{\mathbf{A}^{(k)}\right\}$ still holds
- $\Rightarrow \text{ Seek } \{ \hat{\mathbf{X}}^{l}[k], \hat{\mathbf{X}}^{r}[k] \} \text{ s.t. } \hat{\mathbf{X}}^{l}[k] \hat{\mathbf{X}}^{r}[k]^{\top} \text{ is the best rank-} d \text{ approximation of } \mathbf{A}^{(k)}$

• SVD:
$$\mathbf{A}^{(k)} = \mathbf{U}[k]\mathbf{D}[k]\mathbf{V}[k]^{\top}$$

$$\Rightarrow \hat{\mathbf{X}}^{l}[k] = \hat{\mathbf{U}}[k]\hat{\mathbf{D}}[k]^{1/2} \text{ and } \hat{\mathbf{X}}^{r}[k] = \hat{\mathbf{V}}[k]\hat{\mathbf{D}}[k]^{1/2}$$

- What about backwards compatibility? Enforced by the choice of $\hat{\mathbf{D}}[k]^{1/2}$
 - $\mathbf{M}[k]$ is symmetric $\Leftrightarrow \mathbf{X}^{l}[k] = \mathbf{X}^{r}[k]$

• A weighted SBM graph G with $N_v = 2000$, number of classes Q = 2, inter-class connection probability matrix $\Pi = \begin{pmatrix} 0.7 & 0.3 \\ 0.1 & 0.5 \end{pmatrix}$ and weights $A_{ij} \sim \mathcal{N}(1, 0.5)$

• A weighted SBM graph G with $N_v = 2000$, number of classes Q = 2, inter-class connection probability matrix $\mathbf{\Pi} = \begin{pmatrix} 0.7 & 0.3 \\ 0.1 & 0.5 \end{pmatrix}$ and weights $A_{ij} \sim \mathcal{N}(1, 0.5)$

• $\hat{\mathbf{X}}^{l}[k]$ and $\hat{\mathbf{X}}^{r}[k]$ for $k = 1, \dots, 6$

A weighted SBM graph G with $N_v = 2000$, number of classes Q = 2, inter-class connection probability matrix $\mathbf{\Pi} = \begin{pmatrix} 0.7 & 0.3 \\ 0.1 & 0.5 \end{pmatrix}$ and weights $A_{ij} \sim \mathcal{N}(1, 0.5)$

• $\hat{\mathbf{X}}^{l}[k]$ and $\hat{\mathbf{X}}^{r}[k]$ for $k = 1, \dots, 6$ can reconstruct accurate values of $\hat{\mathbf{M}}[k]$ up to $k \approx 4$

• A weighted SBM graph G with $N_v = 200$, number of classes Q = 2, inter-class connection probability matrix $\Pi = \begin{pmatrix} 0.7 & 0.3 \\ 0.1 & 0.5 \end{pmatrix}$ and weights $A_{ij} \sim \mathcal{N}(1, 0.5)$

• $\hat{\mathbf{X}}^{l}[k]$ and $\hat{\mathbf{X}}^{r}[k]$ for $k = 1, \dots, 6$

- A weighted SBM graph G with $N_v = 200$, number of classes Q = 2, inter-class connection probability matrix $\Pi = \begin{pmatrix} 0.7 & 0.3 \\ 0.1 & 0.5 \end{pmatrix}$ and weights $A_{ij} \sim \mathcal{N}(1, 0.5)$
 - $\hat{\mathbf{X}}^{l}[k]$ and $\hat{\mathbf{X}}^{r}[k]$ for k = 1, ..., 6 reconstructs accurate values of $\hat{\mathbf{M}}[k]$ up to $k \approx 2$ (somewhat)

Consistency of ASE for WD-RDPG

Theorem (Consistency): Let $\mathbf{B} \in \mathbb{R}^{N \times N}$ be a random matrix such that $\{B_{ii}\} = 0$, and $\{B_{ij}\}_{i \neq j}$ are bounded and independent with $\mathbb{E}[B_{ij}] = E_{ij}$, $\mathbf{E} = \mathbf{X}\mathbf{Y}^{\top}$ for fixed $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{N \times d}$. Assume rank $(\mathbf{E}) = d$ and that the singular values of $\mathbf{E} \sigma_1 > \sigma_2 > \ldots > \sigma_d > 0$ are such that $\min_{i \neq j} |\sigma_i - \sigma_j| > \delta N$ and $\sigma_d > \delta N$ for some $\delta > 0$. Let $\hat{\mathbf{X}}, \hat{\mathbf{Y}} \in \mathbb{R}^{N \times d}$ be the ASE of \mathbf{B} . Then, there almost always exist an invertible matrix $\mathbf{W} \in \mathbb{R}^{d \times d}$ such that, for all $i \in \{1, \ldots, N\}$ and all $\gamma < 1$,

$$\mathbb{P}\left[||(\hat{\mathbf{X}}\mathbf{W} - \mathbf{X})_i||_2^2 > N^{-\gamma}\right] = o\left(N^{\gamma - 1}\log N\right)$$
$$\mathbb{P}\left[||(\hat{\mathbf{Y}}\mathbf{W}^{-\top} - \mathbf{Y})_i||_2^2 > N^{-\gamma}\right] = o\left(N^{\gamma - 1}\log N\right)$$

where \mathbf{C}_i is the *i*-th row of matrix \mathbf{C} .

Consistency of ASE for WD-RDPG

Theorem (Consistency): Let $\mathbf{B} \in \mathbb{R}^{N \times N}$ be a random matrix such that $\{B_{ii}\} = 0$, and $\{B_{ij}\}_{i \neq j}$ are bounded and independent with $\mathbb{E}[B_{ij}] = E_{ij}$, $\mathbf{E} = \mathbf{X}\mathbf{Y}^{\top}$ for fixed $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{N \times d}$. Assume rank $(\mathbf{E}) = d$ and that the singular values of $\mathbf{E} \sigma_1 > \sigma_2 > \ldots > \sigma_d > 0$ are such that $\min_{i \neq j} |\sigma_i - \sigma_j| > \delta N$ and $\sigma_d > \delta N$ for some $\delta > 0$. Let $\hat{\mathbf{X}}, \hat{\mathbf{Y}} \in \mathbb{R}^{N \times d}$ be the ASE of \mathbf{B} . Then, there almost always exist an invertible matrix $\mathbf{W} \in \mathbb{R}^{d \times d}$ such that, for all $i \in \{1, \ldots, N\}$ and all $\gamma < 1$,

$$\mathbb{P}\left[||(\hat{\mathbf{X}}\mathbf{W} - \mathbf{X})_i||_2^2 > N^{-\gamma}\right] = o\left(N^{\gamma - 1}\log N\right)$$
$$\mathbb{P}\left[||(\hat{\mathbf{Y}}\mathbf{W}^{-\top} - \mathbf{Y})_i||_2^2 > N^{-\gamma}\right] = o\left(N^{\gamma - 1}\log N\right)$$

where \mathbf{C}_i is the *i*-th row of matrix \mathbf{C} .

\blacksquare For each fixed k, we let $\mathbf{B} = \mathbf{A}^{(k)}$ to ensure consistency of the ASE to $\mathbf{X}^{l}[k], \mathbf{X}^{r}[k]$

Asymptotic Normality of ASE for WD-RDPG

Theorem (Central Limit Theorem): Let F be a weighted, directed, innerproduct distribution. Assume **B** and **E** as before, only now $\mathbb{E}[B_{ij}|\mathbf{X}, \mathbf{Y}] = E_{ij}$, and $\mathbf{X}, \mathbf{Y} \sim F$. Then there almost always exist a sequence of invertible matrices $\mathbf{W}_N \in \mathbb{R}^{d \times d}$ such that, for all $i \in \{1, \ldots, N\}$ and all $\mathbf{x} \in \mathbb{R}^d$:

$$\lim_{N \to \infty} \mathbb{P}\left[N^{1/2} (\hat{\mathbf{X}} \mathbf{W}_N - \mathbf{X})_i \leq \mathbf{z} \right] = \int_{\text{supp } F} \Phi(\mathbf{z}, \mathbf{\Sigma}_{\mathbf{X}}(\mathbf{x})) dF(\mathbf{x})$$
$$\lim_{N \to \infty} \mathbb{P}\left[N^{1/2} (\hat{\mathbf{Y}} \mathbf{W}_N^{-\top} - \mathbf{Y})_i \leq \mathbf{z} \right] = \int_{\text{supp } F} \Phi(\mathbf{z}, \mathbf{\Sigma}_{\mathbf{Y}}(\mathbf{y})) dF(\mathbf{y})$$

where $\Phi(\mathbf{z}, \boldsymbol{\Sigma})$ is zero-mean multivariate normal with covariance matrix $\boldsymbol{\Sigma}$, and

$$\begin{split} \boldsymbol{\Sigma}_{\mathbf{X}}(\mathbf{x}) &= \boldsymbol{\Delta}_{\mathbf{X}}^{-1} \mathbb{E}\left[\left(\mathbf{x}^{\top} \mathbf{X}_{1} - (\mathbf{x}^{\top} \mathbf{X}_{1})^{2} \right) \mathbf{X}_{1} \mathbf{X}_{1}^{\top} \right] \boldsymbol{\Delta}_{\mathbf{X}}^{-1} , \ \boldsymbol{\Delta}_{\mathbf{X}} &= \mathbb{E}\left[\mathbf{X}_{1} \mathbf{X}_{1}^{\top} \right] \\ \boldsymbol{\Sigma}_{\mathbf{Y}}(\mathbf{y}) &= \boldsymbol{\Delta}_{\mathbf{Y}}^{-1} \mathbb{E}\left[\left(\mathbf{y}^{\top} \mathbf{Y}_{1} - (\mathbf{y}^{\top} \mathbf{Y}_{1})^{2} \right) \mathbf{Y}_{1} \mathbf{Y}_{1}^{\top} \right] \boldsymbol{\Delta}_{\mathbf{Y}}^{-1} , \ \boldsymbol{\Delta}_{\mathbf{Y}} &= \mathbb{E}\left[\mathbf{Y}_{1} \mathbf{Y}_{1}^{\top} \right] \end{split}$$

Real-life dataset (I): UN roll calls

For each roll call in the UN General Assembly, members vote 'Yes', 'No' or 'Abstain'.

- 'Abstain' is frequently used as another level of agreement with the roll call
- $\Rightarrow\,$ Consider the bipartite digraph for 2003, where
 - Nodes correspond to member countries and roll calls,
 - Edge weight is either 1 (affirmative vote), -1 (negative) or 0 (abstain or absent).

Real-life dataset (I): UN roll calls

For each roll call in the UN General Assembly, members vote 'Yes', 'No' or 'Abstain'.

- 'Abstain' is frequently used as another level of agreement with the roll call
- $\Rightarrow\,$ Consider the bipartite digraph for 2003, where
 - Nodes correspond to member countries and roll calls,
 - Edge weight is either 1 (affirmative vote), -1 (negative) or 0 (abstain or absent).
 - Each country has a probability distribution (p_{-1}, p_0, p_1) for each roll call
- **Q**: What can we learn by visualizing the embeddings? Note that
 - $X_l[k] = 0$ for roll calls (roll calls do not vote)
 - $X_r[k] = 0$ for countries (countries are not voted)

Real-life dataset (I): UN roll calls - Interpretability $\mathbf{k} = \mathbf{1}$ and d = 2. Countries ($\mathbf{\Phi}$) and roll calls ($\mathbf{\Phi}$) are colored using a GMM clustering

Real-life dataset (I): UN roll calls - Interpretability $\mathbf{k} = \mathbf{1}$ and d = 2. Countries ($\mathbf{\Phi}$) and roll calls ($\mathbf{\Phi}$) are colored using a GMM clustering

Real-life dataset (I): UN roll calls - Interpretability $\mathbf{k} = \mathbf{1}$ and d = 2. Countries ($\mathbf{\Phi}$) and roll calls ($\mathbf{\Phi}$) are colored using a GMM clustering

Real-life dataset (I): UN roll calls - Interpretability $\mathbf{k} = \mathbf{1}$ and d = 2. Countries ($\mathbf{\Phi}$) and roll calls ($\mathbf{\Phi}$) are colored using a GMM clustering

Real-life dataset (I): UN roll calls - Interpretability $\mathbf{k} = \mathbf{1}$ and d = 2. Countries ($\mathbf{\Phi}$) and roll calls ($\mathbf{\Phi}$) are colored using a GMM clustering

Real-life dataset (I): UN roll calls - Interpretability

\mathbf{k} = \mathbf{2} and d = 2. Countries ($\mathbf{\Phi}$) and roll calls ($\mathbf{\Phi}$) are colored using a GMM clustering

Real-life dataset (I): UN roll calls - Interpretability

\mathbf{k} = \mathbf{2} and d = 2. Countries ($\mathbf{\Phi}$) and roll calls ($\mathbf{\Phi}$) are colored using a GMM clustering

Real-life dataset (I): UN roll calls - Interpretability

\mathbf{k} = \mathbf{2} and d = 2. Countries ($\mathbf{\Phi}$) and roll calls ($\mathbf{\Phi}$) are colored using a GMM clustering

Real-life dataset (II): UN migration data

■ Migration between countries in 1990 (based on UN data)

- Nodes: size indicative of total degree, net balance is positive or negative
- Edge thickness indicative of total flow

- How can we generate similar graphs?
- \Rightarrow WD-RDPG for graph generation
- Problem statement: Generate **A** such that, for $1 \le i, j \le N$, A_{ij} follows a distribution whose first K + 1 moments are $\hat{\mathbf{x}}_i^l[k]^\top \hat{\mathbf{x}}_j^r[k] = \mu_k$ for $k = 0, 1, \ldots, K$.

- How can we generate similar graphs?
- \Rightarrow WD-RDPG for graph generation
- Problem statement: Generate **A** such that, for $1 \le i, j \le N$, A_{ij} follows a distribution whose first K + 1 moments are $\hat{\mathbf{x}}_i^l[k]^\top \hat{\mathbf{x}}_j^r[k] = \mu_k$ for $k = 0, 1, \ldots, K$.
- Today I'll discuss the discrete case
 - $\Rightarrow\,$ Each migration flow will be converted to (Q + 1)-quantiles
 - $\Rightarrow A_{ij} = 0$ indicates relatively low number of migrants, $A_{ij} = Q$ indicates high migration
 - We assume Q = K (i.e., as many moments as symbols)

■ Consider a single link (i, j) ⇒ How can we estimate p_l = P [A_{ij} = l]?
■ We have the following system of equations:

$$\begin{cases}
p_0 + p_1 + \dots + p_K = \mu_0 \\
0p_0 + 1p_1 + \dots + Kp_K = \mu_1 \\
0^2 p_0 + 1^2 p_1 + \dots + K^2 p_K = \mu_2 \\
\vdots & \vdots \\
0^K p_0 + 1^K p_1 + \dots + K^K p_K = \mu_K
\end{cases} (2)$$

V is a Vandermonde matrix of the possible symbols (in this case $0, 1, \dots, Q = K$)

Simulations: For each pair of nodes estimate **p**, generate 100 graphs and compute:

- Degree distribution
- Nodes' betweenness centrality

 $\blacksquare \text{ Great fit for } Q = 2$

Simulations: For each pair of nodes estimate **p**, generate 100 graphs and compute:

- Degree distribution
- Nodes' betweenness centrality

 $\blacksquare \text{ Great fit for } Q = 2, 3.$

Simulations: For each pair of nodes estimate **p**, generate 100 graphs and compute:

- Degree distribution
- Nodes' betweenness centrality

• Great fit for Q = 2, 3. Not so good for Q = 4.

Simulations: For each pair of nodes estimate **p**, generate 100 graphs and compute:

- Degree distribution
- Nodes' betweenness centrality

Great fit for Q = 2, 3. Not so good for Q = 4. And as we add more symbols...

Limitations and Future Work

■ Estimating several moments is challenging (unless we have a large graph) ⇒ How can we estimate a distribution from just a few moments?

Limitations and Future Work

- Estimating several moments is challenging (unless we have a large graph)
- \Rightarrow How can we estimate a distribution from just a few moments?
- Estimating a distribution per-link does not scale
- \Rightarrow Grouping nodes should help. What's the impact on the estimation?

Thanks!

Questions?

Federico "Larroca" La Rocca

Embedding an SBM graph

• Ex: SBM with $N_v = 1500$, Q = 3 and mixing parameters

$$\boldsymbol{\alpha} = \begin{bmatrix} 1/3\\1/3\\1/3 \end{bmatrix}, \quad \boldsymbol{\Pi} = \begin{bmatrix} 0.5 & 0.1 & 0.05\\0.1 & 0.3 & 0.05\\0.05 & 0.05 & 0.9 \end{bmatrix}$$

Sample adjacency A (left), $\hat{\mathbf{X}}_{LS}\hat{\mathbf{X}}_{LS}^{\top}$ (center), rows of $\hat{\mathbf{X}}_{LS}$ (right)

Use embeddings to bring to bear geometric methods of analysis

Q: Is the solution to ASE unique? Nope, inner-products are rotation invariant

$$\mathbf{P} = \mathbf{X} \mathbf{W} (\mathbf{X} \mathbf{W})^\top = \mathbf{X} \mathbf{X}^\top, \quad \mathbf{W} \mathbf{W}^\top = \mathbf{I}_d$$

 \Rightarrow RDPG embedding problem is identifiable modulo rotations

Q: Is the solution to ASE unique? Nope, inner-products are rotation invariant

$$\mathbf{P} = \mathbf{X} \mathbf{W} (\mathbf{X} \mathbf{W})^\top = \mathbf{X} \mathbf{X}^\top, \quad \mathbf{W} \mathbf{W}^\top = \mathbf{I}_d$$

 \Rightarrow RDPG embedding problem is identifiable modulo rotations

- Ambiguity in DRDPG got worse:
 - a transformation with any invertible matrix $\mathbf{W} \in \mathbb{R}^{d \times d}$ will result in the same $\mathbf{M}[k]$. undirected (W)RDPG: W orthonormal matrix
 - $\hat{\mathbf{X}}^{l} = \mathbf{X}^{l} \mathbf{W}$ and $\hat{\mathbf{X}}^{r} = \mathbf{X}^{r} \mathbf{W}^{-\top}$ (omitting k for clarity)

Q: Is the solution to ASE unique? Nope, inner-products are rotation invariant

$$\mathbf{P} = \mathbf{X}\mathbf{W}(\mathbf{X}\mathbf{W})^{\top} = \mathbf{X}\mathbf{X}^{\top}, \quad \mathbf{W}\mathbf{W}^{\top} = \mathbf{I}_d$$

 \Rightarrow RDPG embedding problem is identifiable modulo rotations

Ambiguity in DRDPG got worse:

• a transformation with any invertible matrix $\mathbf{W} \in \mathbb{R}^{d \times d}$ will result in the same $\mathbf{M}[k]$. undirected (W)RDPG: W orthonormal matrix

•
$$\hat{\mathbf{X}}^{l} = \mathbf{X}^{l}\mathbf{W}$$
 and $\hat{\mathbf{X}}^{r} = \mathbf{X}^{r}\mathbf{W}^{-\top}$ (omitting k for clarity)
 $\Rightarrow \hat{\mathbf{X}}^{l}(\hat{\mathbf{X}}^{l})^{\top} = \mathbf{X}^{l}\mathbf{W}(\mathbf{X}^{r}\mathbf{W}^{-\top})^{\top} = \mathbf{X}^{l}\mathbf{W}\mathbf{W}^{-1}(\mathbf{X}^{r})^{\top} = \mathbf{X}^{l}(\mathbf{X}^{r})^{\top} = \mathbf{M}$

Q: Is the solution to ASE unique? Nope, inner-products are rotation invariant

$$\mathbf{P} = \mathbf{X} \mathbf{W} (\mathbf{X} \mathbf{W})^\top = \mathbf{X} \mathbf{X}^\top, \quad \mathbf{W} \mathbf{W}^\top = \mathbf{I}_d$$

\Rightarrow RDPG embedding problem is identifiable modulo rotations

- Ambiguity in DRDPG got worse:
 - a transformation with any invertible matrix $\mathbf{W} \in \mathbb{R}^{d \times d}$ will result in the same $\mathbf{M}[k]$. undirected (W)RDPG: W orthonormal matrix
 - $\hat{\mathbf{X}}^{l} = \mathbf{X}^{l} \mathbf{W}$ and $\hat{\mathbf{X}}^{r} = \mathbf{X}^{r} \mathbf{W}^{-\top}$ (omitting k for clarity)
 - $\Rightarrow \hat{\mathbf{X}}^{l}(\hat{\mathbf{X}}^{l})^{\top} = \mathbf{X}^{l}\mathbf{W}(\mathbf{X}^{r}\mathbf{W}^{-\top})^{\top} = \mathbf{X}^{l}\mathbf{W}\mathbf{W}^{-1}(\mathbf{X}^{r})^{\top} = \mathbf{X}^{l}(\mathbf{X}^{r})^{\top} = \mathbf{M}$
 - W is necessarily orthonormal by enforcing $\mathbf{X}^{l}[k]$ and $\mathbf{X}^{r}[k]$ with orthogonal columns

Weighted RDPG

■ Vanilla RDPG require $0 \leq \mathbf{x}_i \mathbf{x}_i^{\top} \leq 1$. Is any sequence $\mathbf{M}[k]$ valid in WRDPG?

• Certainly not! E.g. $M_{ij}[k] = -1$ for all k cannot be correct

Weighted RDPG

■ Vanilla RDPG require $0 \leq \mathbf{x}_i \mathbf{x}_i^{\top} \leq 1$. Is any sequence $\mathbf{M}[k]$ valid in WRDPG?

• Certainly not! E.g. $M_{ij}[k] = -1$ for all k cannot be correct

A sequence $\{m[k]\}_{k\geq 0}$ is an admisible moment sequence if m[0] = 1 and the matrix

$$\mathbf{B} = \begin{pmatrix} m[0] & m[1] & m[2] & \dots & m[p] \\ m[1] & m[2] & m[3] & \dots & m[p+1] \\ m[2] & m[3] & m[4] & \dots & m[p+3] \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ m[p] & m[p+1] & m[p+2] & \dots & m[2p] \end{pmatrix}$$

is positive-semidefinite for all $p \ge 0$

 $\Rightarrow M_{ij}[k]$ has to be an admisible moment sequence for all i, j

