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Random dot product graphs

B Consider a latent space Xy C R? such that for all
x,yeX; = x'yelo,1]

= Inner-product distribution F : Xy +— [0, 1]

B Random dot product graphs (RDPGs) are defined as follows:

iid.
Xi,...,Xn, ~ F,

Aij |Xi,Xj ~ Bernoulli(x:xj)

for 1 <i,j < N, where A;; = Aj; and A;; =0

B A particularly tractable latent position random graph model

= Vertex positions X = [x1,...,xy,] € RNoxd
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Estimation of latent positions
B Q: Given G = (V, E) from an RDPG, find the ‘best’ X = [x1, ...
B MLE is well motivated but it is intractable for large N,

X1, = argmax H(Xiij)Aij (1 — x; x;)L A
i<j

) XNU

T2
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Estimation of latent positions

B Q: Given G = (V, E) from an RDPG, find the ‘best’ X = [x1,...,xx,]"?
B MLE is well motivated but it is intractable for large N,

X1, = argmax H(X;'FX]‘)AU (1 — x; x;)L A
i<j

B Instead, let P;; = P ((i,5) € €) and define P = [P;;] € [0, 1]VoxNv
= RDPG model specifies that P = XX T
= Key: Observed A is a noisy realization of P

W Suggests a LS regression approach to find X s.t. XX ~ A

XLS = argmin ||XXT — AH%
X
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Adjacency spectral embedding

W Since A is real and symmetric, can decompose it as A = UAU T

® U =[uy,...,un,] is the orthogonal matrix of eigenvectors
® A =diag(A1,...,An,), with eigvenvalues \1 > ... > An,
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Adjacency spectral embedding

W Since A is real and symmetric, can decompose it as A = UAU T

® U =[uy,...,un,] is the orthogonal matrix of eigenvectors
® A =diag(A1,...,An,), with eigvenvalues \1 > ... > An,

B Define A = diag(\f, . .. ,)\j) and U = [ug,...,u4
B Best rank-d, positive semi-definite (PSD) approximation of A is UAUT

= Ajacency spectral embedding (ASE) is Xpg = ﬂAl/z since

U =X;1sX/g
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Interpretability of the embeddings
B Ex: Zachary’s karate club graph with N, = 34, N, = 78 (left)

B Node embeddings (rows of X 1g) for d = 2 (right)
® Club’s administrator (: = 0) and instructor (7 = 33) are orthogonal
B Interpretability of embeddings a valuable asset for RDPGs
= Vector magnitudes indicate how well connected nodes are

= Vector angles indicate nodes’ affinity
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Weighted graphs
B Q: Can we extend the RDPG model to the weighted case?
M Idea latent positions related to the moment generating function (MGF') of weights w;
= Weighted RDPG: Each node now has a sequence of vectors (x;[k] € R%);cy where

= xi[k] " x;[k]

= Weights are independently drawn from distributions with MGF

vy e PE{Wl) S R[] T [k
E{e ”}:ZT:Z$

k=0 k=0
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Weighted graphs
B Q: Can we extend the RDPG model to the weighted case?

M Idea latent positions related to the moment generating function (MGF') of weights w;
= Weighted RDPG: Each node now has a sequence of vectors (x;[k] € R%);cy where

Elw] = xi[k] " x; (k]

= Weights are independently drawn from distributions with MGF

S PE{wE} & thxg[k] T x;[k]
twijl — Y 2 el A
E{e“i} =) —r— =2 — &
k=0 k=0

B We now have a sequence of matrices X[k] = [x1[k],...,xn,[k]] " such that

E{AocAoc---0A)} :IE{A(’“)} = MIk] = X[k]X[k]T

k times
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Weighted RDPG

Advantages
v Backwards compatibility: vanilla RDPG is recovered by setting x;[k] = x; for allk > 0
v Flexible way of specifying a distribution per edge

® Acommodates discrete and/or continuous distribution
® Prior art relied on fixed, known, parametric distribution F' (Ay;;0 = {x; [k]x;[k]}i2,)
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Weighted RDPG

Advantages
v Backwards compatibility: vanilla RDPG is recovered by setting x;[k] = x; for allk > 0
v Flexible way of specifying a distribution per edge

® Acommodates discrete and/or continuous distribution
® Prior art relied on fixed, known, parametric distribution F' (Ay;;0 = {x; [k]x;[k]}i2,)

v Sparsity pattern of A®) is maintained for all k
v Observation A is a noisy realization of M[k]
= Inference of the embedding sequence (X[k]) via the ASE of A®*)
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Weighted RDPG: Discriminative power

B Ex: @ = 2 block weighted SBM graph G with N, = 2000, edges present w.p. p = 0.5
= Weights A;; ~ N (5,0.1) except among nodes ¢ > 1000, where A;; ~ Poisson(5)

o a*
1 L e
[ TSI
- 2
oY S e
o K4 o
o xR
-1 L LLARA
14 15 16 17 i

B ASE estimates x;[k] for k =1 (left), k = 2 (center), k = 3 (right), where d = 2
@ Indistinguishable for k = 1, since %X;[1] are centered around

(Vi,0) = (vAp,0) =~ (1.58,0)

® Noise hinders discriminability for k = 2, even though

xi[2] = { (Vp(u? +02),0) ~ (3.55,0) i < 1000,
' (VP2 +02), /PO F A — (12 + 02)) ~ (3.55, 1.58)

i > 1000
® Skewness kicks in for £ = 3 and group separation is apparent
_{
=)
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Weighted and Directed Graphs

B So far, matrix M[k] is restricted to be

X Positive semi-definitive: what about heterophilous behaviour?
X Symmetric: what about directed graphs?
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Weighted and Directed Graphs

B So far, matrix M[k] is restricted to be

X Positive semi-definitive: what about heterophilous behaviour?

X Symmetric: what about directed graphs?
B Extension to digraphs

@ FEach node has an associated sequence x;[k] — now in R*?

® Or two vectors: x}[k] and x7[k] (first and last d entries of x;)
B Model:

E {A(k)} = MIk] = X [k]X"[k] T
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Weighted and Directed RDPG

B Inference:
e M[k] =E {AW} still holds
= Seek {X'[k], X"[k]} s.t. X'[k]X"[k]T is the best rank-d approximation of A*)
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Weighted and Directed RDPG

B Inference:
e M[k] =E {AW} still holds
= Seek {X'[k], X"[k]} s.t. X'[k]X"[k]T is the best rank-d approximation of A*)

e SVD: AW = UkD[k]V[E]"
= X'[k] = U[k]D[k]"/? and X"[k] = V[k]D[k]'/2

® What about backwards compatibility? Enforced by the choice of ]f)[k]l/ 2
o MJk] is symmetric < X'[k] = X" [k]
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Embedding a Weighted SBM Graph

B A weighted SBM graph G with N, = 2000, number of classes @) = 2, inter-class
connection probability matrix IL = (7 §-23) and weights A4;; ~ N (1,0.5)

,:ﬂ ey
l'\'c":‘ﬁ.:._:.‘l
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Embedding a Weighted SBM Graph

B A weighted SBM graph G with N, = 2000, number of classes ) = 2, inter-class
connection probability matrix II = (7 8-2) and weights A;; ~ N(1,0.5)
® X'[k] and X"[k] for k=1,...,6

XI[1] X2 Xi[3] X4 X1[3] X[6]
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- Lo
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Embedding a Weighted SBM Graph

B A weighted SBM graph G with N, = 2000, number of classes ) = 2, inter-class

connection probability matrix IT = (-7 §2) and weights A4;; ~ N(1,0.5)

® X'[k] and X"[k] for k =1,...,6 can reconstruct accurate values of M[k] up to k ~ 4

M[1] M

i : : - i
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B A weighted SBM graph G with N, = 200, number of classes (Q = 2, inter-class

Embedding a Weighted SBM Graph

0.7 0.3

connection probability matrix IT = (-7 82
® X'[k] and X"[k] for k=1,...,6

00

—06

) and weights A;; ~ N(1,0.5)
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Embedding a Weighted SBM Graph
B A weighted SBM graph G with N, = 200, number of classes (Q = 2, inter-class
connection probability matrix IT = (-7 §2) and weights A4;; ~ N(1,0.5)
® X'[k] and X"[k] for k =1,...,6 reconstructs accurate values of M[k] up to k ~ 2
(somewhat)

3 1 5 = 0
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Consistency of ASE for WD-RDPG

Theorem (Consistency): Let B € RV*Y be a random matrix such that
{Bii} = 0, and {B;;}i%; are bounded and independent with E [B;;] =
E=XY' for fixed X, Y € RVx¢,

Assume rank(E) = d and that the singular values of E 01 > 03 > ... > 04 >0
are such that min;; |o; — 0| > 6N and o4 > 0N for some ¢ > 0. Let X,Y €
RN*4 be the ASE of B. Then, there almost always exist an invertible matrix
W € R4 guch that, for all i € {1,...,N} and all v < 1,

179

P [||(XW —X)i|12 > N‘”} =0 (N""'log N)
P {||(YW*T —Y)il12 > N*W} =0 (N""log N)

where C; is the i-th row of matrix C.
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Consistency of ASE for WD-RDPG

Theorem (Consistency): Let B € RV*Y be a random matrix such that
{Bii} = 0, and {B;;},%; are bounded and independent with E [B;;] = E;j,
E=XY' for fixed X, Y € RVx¢,

Assume rank(E) = d and that the singular values of E 01 > 03 > ... > 04 >0
are such that min;; |o; — 0| > 6N and o4 > 0N for some ¢ > 0. Let X,Y €
RN*4 be the ASE of B. Then, there almost always exist an invertible matrix
W € R4 guch that, for all i € {1,...,N} and all v < 1,

P [||(Xw —X)i|12 > N‘”} =0 (N""'log N)
P {||(YW*T —Y)il12 > N*W} =0 (N""log N)

where C; is the i-th row of matrix C.

B For each fixed k, we let B = A(®) to ensure consistency of the ASE to X'[k], X" [k]

_\: Federico Larroca et al. ¢ WDRDPG 12/21
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Asymptotic Normality of ASE for WD-RDPG

Theorem (Central Limit Theorem): Let F be a weighted, directed, inner-
product distribution. Assume B and E as before, only now E [B;;|X,Y] = E;;,
and X,Y ~ F. Then there almost always exist a sequence of invertible matrices
Wy € R¥4 guch that, for all i € {1,..., N} and all x € R%:

N—o00

lim P {Nl/Q(XWN ~X), < z} :/ ®(z, Sx (x))dF(x)
supp F

lim P [NW(?W;VT ~Y); < z] :/ ®(z, Xy (y))dF (y)
N—o0 supp F
where ®(z, X)) is zero-mean multivariate normal with covariance matrix ¥, and

Ix(x) = AY'E [(xTX; — (x'X1)?) X1 X[ | Ax', Ax =E [X;X{]
Sv(y) =AVE[(y Y1 -y Y1)) Y1 Y] AY , Ay =E[Y Y]]
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Real-life dataset (I): UN roll calls

B For each roll call in the UN General Assembly, members vote ‘Yes’, ‘No’ or ‘Abstain’.
B ‘Abstain’ is frequently used as another level of agreement with the roll call
= Consider the bipartite digraph for 2003, where

® Nodes correspond to member countries and roll calls,
® Edge weight is either 1 (affirmative vote), -1 (negative) or 0 (abstain ).

Federico Larroca et al. e« WDRDPG

14/21



Real-life dataset (I): UN roll calls

B For each roll call in the UN General Assembly, members vote ‘Yes’, ‘No’ or ‘Abstain’.
B ‘Abstain’ is frequently used as another level of agreement with the roll call
= Consider the bipartite digraph for 2003, where
® Nodes correspond to member countries and roll calls,
® Edge weight is either 1 (affirmative vote), -1 (negative) or 0 (abstain ).
® Each country has a probability distribution (p—1,po,p1) for each roll call
B Q: What can we learn by visualizing the embeddings? Note that

® X;[k] =0 for roll calls (roll calls do not vote)
® X, [k] =0 for countries (countries are not voted)

_\> Federico Larroca et al. ¢ WDRDPG 14/21



Real-life dataset (I): UN roll calls - Interpretability
B k=1 and d = 2. Countries (@) and roll calls (#®) are colored using a GMM clustering

_\\
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Real-life dataset (I): UN roll calls - Interpretability
B k=1 and d = 2. Countries (@) and roll calls (#®) are colored using a GMM clustering
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Real-life dataset (I): UN roll calls - Interpretability
B k=1 and d = 2. Countries (@) and roll calls (#®) are colored using a GMM clustering

Oppose almost all roll calls
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Real-life dataset (I): UN roll calls - Interpretability
B k =1 and d = 2. Countries (@) and roll calls (®) are colored using a GMM clustering

Oppose almost all roll calls
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Real-life dataset (I): UN roll calls - Interpretability
B k =1 and d = 2. Countries (@) and roll calls (®) are colored using a GMM clustering

Oppose almost all roll calls
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Real-life dataset (I): UN roll calls - Interpretability

B k =2 and d = 2. Countries (@) and roll calls (®) are colored using a GMM clustering

2700
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Real-life dataset (I): UN roll calls - Interpretability

B k =2 and d = 2. Countries (@) and roll calls (®) are colored using a GMM clustering
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Real-life dataset (I): UN roll calls - Interpretability

B k =2 and d = 2. Countries (@) and roll calls (®) are colored using a GMM clustering

2700
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Real-life dataset (II): UN migration data

B Migration between countries in 1990 (based on UN data)
® Nodes: size indicative of total degree, net balance is positive or negative
@ Edge thickness indicative of total flow

WORL

AND CAPITALS

ARCTIC OCEAN &

NORTH [PACIFIC
OCEAN

ciFic
N

SOUTHERN OCEAN
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Real-life dataset (II): UN migration data - Graph Generation

B How can we generate similar graphs?

= WD-RDPG for graph generation

B Problem statement: Generate A such that, for 1 <1i,5 < N, A;; follows a distribution
whose first K + 1 moments are %![k] "X}[k] = ux for k=0,1,..., K.

0
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Real-life dataset (II): UN migration data - Graph Generation

B How can we generate similar graphs?
= WD-RDPG for graph generation

B Problem statement: Generate A such that, for 1 <1i,5 < N, A;; follows a distribution
whose first K + 1 moments are %![k] "X}[k] = ux for k=0,1,..., K.

) 9

B Today T’ll discuss the discrete case
= Each migration flow will be converted to (@ + 1)-quantiles
= A,; = 0 indicates relatively low number of migrants, A;; = @ indicates high migration
® We assume Q = K (i.e., as many moments as symbols)

—\> Federico Larroca ot al. ¢ WDRDPG

17/21



Real-life dataset (II): UN migration data - Graph Generation

B Consider a single link (¢, j) = How can we estimate p; = P [4;; = []?

B We have the following system of equations:

Po+ p1+--+ Pk = Mo

Opo + 1p1 + - -+ + Kpgk = M1
02p0+12p1+"'+K2PK = M2 <:>Vp:u, (2)
05po+ 15p1 +-- -+ K¥pr = puk

B V is a Vandermonde matrix of the possible symbols
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Real-life dataset (II): UN migration data - Graph Generation

B Simulations: For each pair of nodes estimate p, generate 100 graphs and compute:
® Degree distribution
® Nodes’ betweenness centrality

B Great fit for Q = 2

0.12 08
" ., 0.10 -
[ [ [
g0 3 3
c < 0.08 c 0.6
50. bS] G
c c c
S © 0.06 S
£o. £ £04
g g g
3 0 o 0.04 o

0.02 0.02

(O r GR
000" 00 200 000 0-8.00 0.05
In Degree Out Degree Betweenness centrality
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Real-life dataset (II): UN migration data - Graph Generation

B Simulations: For each pair of nodes estimate p, generate 100 graphs and compute:

® Degree distribution

® Nodes’ betweenness centrality

B Great fit for Q = 2, 3.
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Real-life dataset (II): UN migration data - Graph Generation

B Simulations: For each pair of nodes estimate p, generate 100 graphs and compute:
® Degree distribution
® Nodes’ betweenness centrality

B Great fit for Q = 2, 3. Not so good for QQ = 4.
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Real-life dataset (II): UN migration data - Graph Generation

B Simulations: For each pair of nodes estimate p, generate 100 graphs and compute:

® Degree

distribution

® Nodes’ betweenness centrality

B Great fit for Q = 2, 3. Not so good for Q = 4. And as we add more symbols...
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Limitations and Future Work

B Estimating several moments is challenging (unless we have a large graph)

= How can we estimate a distribution from just a few moments?
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Limitations and Future Work

B Estimating several moments is challenging (unless we have a large graph)
= How can we estimate a distribution from just a few moments?
B Estimating a distribution per-link does not scale

= Grouping nodes should help. What’s the impact on the estimation?

—\> Federico Larroca ot al. ¢ WDRDPG
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Thanks!

Questions?

Federico “Larroca” La Rocca

& flarroca@fing.edu.uy
¥ @fedelarrocca
O https://github.com/git-artes/
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Embedding an SBM graph
B Ex: SBM with N, = 1500, @ = 3 and mixing parameters

1/3 05 0.1 0.05
1/3 |, mM=| 01 03 005

1/3

0.05 0.05 0.9

<>
-0z oa =
” P
-00

|

B Sample adjacency A (left), XLSXIS (center), rows of X g (right)

B Use embeddings to bring to bear geometric methods of analysis
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Ambiguity

B Q: Is the solution to ASE unique? Nope, inner-products are rotation invariant
P=XWXW) =XX", WW' =1,

= RDPG embedding problem is identifiable modulo rotations
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Ambiguity

B Q: Is the solution to ASE unique? Nope, inner-products are rotation invariant
P=XWXW) =XX", WW' =1,

= RDPG embedding problem is identifiable modulo rotations
B Ambiguity in DRDPG got worse:

® a transformation with any invertible matrix W € R**? will result in the same M][k].

® X! = X'W and Xr = X"W~ T
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Ambiguity

B Q: Is the solution to ASE unique? Nope, inner-products are rotation invariant
P=XWXW) =XX", WW' =1,

= RDPG embedding problem is identifiable modulo rotations
B Ambiguity in DRDPG got worse:

® a transformation with any invertible matrix W € R**? will result in the same M][k].

o X! =X'Wand Xr =X"W~ '
= XUXHT =X'WXW T =X'WW(X")T =X/(X")T =M
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Ambiguity

B Q: Is the solution to ASE unique? Nope, inner-products are rotation invariant
P=XWXW) =XX", WW' =1,

= RDPG embedding problem is identifiable modulo rotations
B Ambiguity in DRDPG got worse:

® a transformation with any invertible matrix W € R**? will result in the same M][k].

® X! =X'W and Xr = X"W~ '
= XUXHT =X'WXW T =X'WW (X")T =X/(X")T =M
® W is necessarily orthonormal by enforcing X'[k] and X" [k] with orthogonal columns
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Weighted RDPG

B Vanilla RDPG require 0 < x;x; < 1. Is any sequence M[k] valid in WRDPG?
® Certainly not! E.g. M;;[k] = —1 for all k cannot be correct
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Weighted RDPG

B Vanilla RDPG require 0 < x;x; < 1. Is any sequence M[k] valid in WRDPG?
® Certainly not! E.g. M;;[k] = —1 for all k cannot be correct

B A sequence {m[k]};>0 is an admisible moment sequence if m[0] = 1 and the matrix

m[0]  mll] m[2] . m[p]

m[l]  m[2] m[3] ... mlp+1]
B=| m2 m[3 m[4] ... m[p+3]

mipl mip+1] mip+2) ... mpp)

is positive-semidefinite for all p > 0

= M;;[k] has to be an admisible moment sequence for all ¢, j

: Federico Larroca et al. e« WDRDPG
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