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Random dot product graphs

■ Consider a latent space Xd ⊂ Rd such that for all

x,y ∈ Xd ⇒ x⊤y ∈ [0, 1]

⇒ Inner-product distribution F : Xd 7→ [0, 1]

■ Random dot product graphs (RDPGs) are defined as follows:

x1, . . . ,xNv

i.i.d.∼ F,

Aij

∣∣xi,xj ∼ Bernoulli(x⊤
i xj)

for 1 ≤ i, j ≤ Nv, where Aij = Aji and Aii ≡ 0

■ A particularly tractable latent position random graph model

⇒ Vertex positions X = [x1, . . . ,xNv
]⊤ ∈ RNv×d

S. J. Young and E. R. Scheinerman, “Random dot product graph models for social networks,” WAW,

2007
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Estimation of latent positions

■ Q: Given G = (V,E) from an RDPG, find the ‘best’ X = [x1, . . . ,xNv
]⊤?

■ MLE is well motivated but it is intractable for large Nv

X̂ML = argmax
X

∏
i<j

(x⊤
i xj)

Aij (1− x⊤
i xj)

1−Aij

■ Instead, let Pij = P((i, j) ∈ E) and define P = [Pij ] ∈ [0, 1]Nv×Nv

⇒ RDPG model specifies that P = XX⊤

⇒ Key: Observed A is a noisy realization of P (E{A} = P)

■ Suggests a LS regression approach to find X s.t. XX⊤ ≈ A

X̂LS = argmin
X

∥XX⊤ −A∥2F

A. Athreya et al, “Statistical inference on random dot product graphs: A survey,” JMLR, 2018
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Adjacency spectral embedding

■ Since A is real and symmetric, can decompose it as A = UΛU⊤

● U = [u1, . . . ,uNv ] is the orthogonal matrix of eigenvectors
● Λ = diag(λ1, . . . , λNv ), with eigvenvalues λ1 ≥ . . . ≥ λNv

■ Define Λ̂ = diag(λ+
1 , . . . , λ

+
d ) and Û = [u1, . . . ,ud] (λ

+ := max(0, λ))

■ Best rank-d, positive semi-definite (PSD) approximation of A is ÛΛ̂Û⊤

⇒ Ajacency spectral embedding (ASE) is X̂LS = ÛΛ̂
1/2

since

A ≈ ÛΛ̂Û⊤ = ÛΛ̂
1/2

Λ̂
1/2

Û⊤ = X̂LSX̂
⊤
LS
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Interpretability of the embeddings
■ Ex: Zachary’s karate club graph with Nv = 34, Ne = 78 (left)
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■ Node embeddings (rows of X̂LS) for d = 2 (right)

● Club’s administrator (i = 0) and instructor (j = 33) are orthogonal

■ Interpretability of embeddings a valuable asset for RDPGs

⇒ Vector magnitudes indicate how well connected nodes are

⇒ Vector angles indicate nodes’ affinity
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Weighted graphs
■ Q: Can we extend the RDPG model to the weighted case?

■ Idea latent positions related to the moment generating function (MGF) of weights ωij

⇒ Weighted RDPG: Each node now has a sequence of vectors (xi[k] ∈ Rdk)k∈N where

E[ωk
ij ] = xi[k]

⊤xj [k]

⇒ Weights are independently drawn from distributions with MGF

E{etωij} =

∞∑
k=0

tkE{ωk
ij}

k!
=

∞∑
k=0

tkxi[k]
⊤xj [k]

k!

■ We now have a sequence of matrices X[k] = [x1[k], . . . ,xNv [k]]
⊤ such that

E
{
A ◦A ◦ · · · ◦A︸ ︷︷ ︸

k times

}
= E

{
A(k)

}
:= M[k] = X[k]X[k]⊤

Federico Larroca et al. • WDRDPG 6/21



Weighted graphs
■ Q: Can we extend the RDPG model to the weighted case?

■ Idea latent positions related to the moment generating function (MGF) of weights ωij

⇒ Weighted RDPG: Each node now has a sequence of vectors (xi[k] ∈ Rdk)k∈N where

E[ωk
ij ] = xi[k]

⊤xj [k]

⇒ Weights are independently drawn from distributions with MGF

E{etωij} =

∞∑
k=0

tkE{ωk
ij}

k!
=

∞∑
k=0

tkxi[k]
⊤xj [k]

k!

■ We now have a sequence of matrices X[k] = [x1[k], . . . ,xNv [k]]
⊤ such that

E
{
A ◦A ◦ · · · ◦A︸ ︷︷ ︸

k times

}
= E

{
A(k)

}
:= M[k] = X[k]X[k]⊤

Federico Larroca et al. • WDRDPG 6/21



Weighted RDPG

Advantages

✓ Backwards compatibility: vanilla RDPG is recovered by setting xi[k] = xi for all k > 0

✓ Flexible way of specifying a distribution per edge

● Acommodates discrete and/or continuous distribution
● Prior art relied on fixed, known, parametric distribution F

(
Aij ;θ = {x⊤

i [k]xj [k]}Kk=1

)

✓ Sparsity pattern of A(k) is maintained for all k

✓ Observation A(k) is a noisy realization of M[k]

⇒ Inference of the embedding sequence (X̂[k]) via the ASE of A(k)

R. Tang et al, “Robust estimation from multiple graphs under gross error contamination”,

arXiv:1707.03487, 2017

D. DeFord et al, “A Random Dot Product Model for Weighted Networks”, arXiv:1611.02530, 2016
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Weighted RDPG: Discriminative power

■ Ex: Q = 2 block weighted SBM graph G with Nv = 2000, edges present w.p. p = 0.5

⇒ Weights Aij ∼ N (5, 0.1) except among nodes i > 1000, where Aij ∼ Poisson(5)
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■ ASE estimates x̂i[k] for k = 1 (left), k = 2 (center), k = 3 (right), where d = 2

● Indistinguishable for k = 1, since x̂i[1] are centered around
(
√
µp, 0) = (

√
λp, 0) ≈ (1.58, 0)

● Noise hinders discriminability for k = 2, even though

xi[2] =

{
(
√

p(µ2 + σ2), 0) ≈ (3.55, 0) i ≤ 1000,

(
√

p(µ2 + σ2),
√

p(λ2 + λ− (µ2 + σ2)) ≈ (3.55, 1.58) i > 1000

● Skewness kicks in for k = 3 and group separation is apparent
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Weighted and Directed Graphs

■ So far, matrix M[k] is restricted to be

✗ Positive semi-definitive: what about heterophilous behaviour?
✗ Symmetric: what about directed graphs?

■ Extension to digraphs

● Each node has an associated sequence xi[k] – now in R2d

● Or two vectors: xl
i[k] and xr

i [k] (first and last d entries of xi)

■ Model:
E
{
A(k)

}
:= M[k] = Xl[k]Xr[k]⊤ (1)
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Weighted and Directed RDPG

■ Inference:

● M[k] = E
{
A(k)

}
still holds

⇒ Seek {X̂l[k], X̂r[k]} s.t. X̂l[k]X̂r[k]⊤ is the best rank-d approximation of A(k)

● SVD: A(k) = U[k]D[k]V[k]⊤

⇒ X̂l[k] = Û[k]D̂[k]1/2 and X̂r[k] = V̂[k]D̂[k]1/2

● What about backwards compatibility? Enforced by the choice of D̂[k]1/2

● M[k] is symmetric ⇔ Xl[k] = Xr[k]
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Embedding a Weighted SBM Graph
■ A weighted SBM graph G with Nv = 2000, number of classes Q = 2, inter-class

connection probability matrix Π =
(
0.7 0.3
0.1 0.5

)
and weights Aij ∼ N (1, 0.5)

Federico Larroca et al. • WDRDPG 11/21



Embedding a Weighted SBM Graph
■ A weighted SBM graph G with Nv = 2000, number of classes Q = 2, inter-class

connection probability matrix Π =
(
0.7 0.3
0.1 0.5

)
and weights Aij ∼ N (1, 0.5)

● X̂l[k] and X̂r[k] for k = 1, . . . , 6

Federico Larroca et al. • WDRDPG 11/21



Embedding a Weighted SBM Graph
■ A weighted SBM graph G with Nv = 2000, number of classes Q = 2, inter-class

connection probability matrix Π =
(
0.7 0.3
0.1 0.5

)
and weights Aij ∼ N (1, 0.5)

● X̂l[k] and X̂r[k] for k = 1, . . . , 6 can reconstruct accurate values of M̂[k] up to k ≈ 4

Federico Larroca et al. • WDRDPG 11/21



Embedding a Weighted SBM Graph
■ A weighted SBM graph G with Nv = 200, number of classes Q = 2, inter-class

connection probability matrix Π =
(
0.7 0.3
0.1 0.5

)
and weights Aij ∼ N (1, 0.5)

● X̂l[k] and X̂r[k] for k = 1, . . . , 6

Federico Larroca et al. • WDRDPG 11/21



Embedding a Weighted SBM Graph
■ A weighted SBM graph G with Nv = 200, number of classes Q = 2, inter-class

connection probability matrix Π =
(
0.7 0.3
0.1 0.5

)
and weights Aij ∼ N (1, 0.5)

● X̂l[k] and X̂r[k] for k = 1, . . . , 6 reconstructs accurate values of M̂[k] up to k ≈ 2
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Consistency of ASE for WD-RDPG

Theorem (Consistency): Let B ∈ RN×N be a random matrix such that
{Bii} = 0, and {Bij}i̸=j are bounded and independent with E [Bij ] = Eij ,
E = XY⊤ for fixed X,Y ∈ RN×d.
Assume rank(E) = d and that the singular values of E σ1 > σ2 > . . . > σd > 0

are such that mini ̸=j |σi − σj | > δN and σd > δN for some δ > 0. Let X̂, Ŷ ∈
RN×d be the ASE of B. Then, there almost always exist an invertible matrix
W ∈ Rd×d such that, for all i ∈ {1, . . . , N} and all γ < 1,

P
[
||(X̂W −X)i||22 > N−γ

]
= o

(
Nγ−1 logN

)
P
[
||(ŶW−⊤ −Y)i||22 > N−γ

]
= o

(
Nγ−1 logN

)
where Ci is the i-th row of matrix C.

■ For each fixed k, we let B = A(k) to ensure consistency of the ASE to Xl[k],Xr[k]
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Asymptotic Normality of ASE for WD-RDPG

Theorem (Central Limit Theorem): Let F be a weighted, directed, inner-
product distribution. Assume B and E as before, only now E [Bij |X,Y] = Eij ,
and X,Y ∼ F . Then there almost always exist a sequence of invertible matrices
WN ∈ Rd×d such that, for all i ∈ {1, . . . , N} and all x ∈ Rd:

lim
N→∞

P
[
N1/2(X̂WN −X)i ≤ z

]
=

∫
supp F

Φ(z,ΣX(x))dF (x)

lim
N→∞

P
[
N1/2(ŶW−⊤

N −Y)i ≤ z
]
=

∫
supp F

Φ(z,ΣY(y))dF (y)

where Φ(z,Σ) is zero-mean multivariate normal with covariance matrix Σ, and

ΣX(x) = ∆−1
X E

[(
x⊤X1 − (x⊤X1)

2
)
X1X

⊤
1

]
∆−1

X , ∆X = E
[
X1X

⊤
1

]
ΣY(y) = ∆−1

Y E
[(
y⊤Y1 − (y⊤Y1)

2
)
Y1Y

⊤
1

]
∆−1

Y , ∆Y = E
[
Y1Y

⊤
1

]
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Real-life dataset (I): UN roll calls

■ For each roll call in the UN General Assembly, members vote ‘Yes’, ‘No’ or ‘Abstain’.

■ ‘Abstain’ is frequently used as another level of agreement with the roll call

⇒ Consider the bipartite digraph for 2003, where

● Nodes correspond to member countries and roll calls,
● Edge weight is either 1 (affirmative vote), -1 (negative) or 0 (abstain or absent).

● Each country has a probability distribution (p−1, p0, p1) for each roll call

■ Q: What can we learn by visualizing the embeddings? Note that

● Xl[k] = 0 for roll calls (roll calls do not vote)
● Xr[k] = 0 for countries (countries are not voted)
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Real-life dataset (I): UN roll calls - Interpretability
■ k = 1 and d = 2. Countries (●) and roll calls (◆) are colored using a GMM clustering

■ k = 2 and d = 2. Countries (●) and roll calls (◆) are colored using a GMM clustering
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Real-life dataset (II): UN migration data
■ Migration between countries in 1990 (based on UN data)

● Nodes: size indicative of total degree, net balance is positive or negative
● Edge thickness indicative of total flow
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Real-life dataset (II): UN migration data - Graph Generation

■ How can we generate similar graphs?

⇒ WD-RDPG for graph generation

■ Problem statement: Generate A such that, for 1 ≤ i, j ≤ N , Aij follows a distribution
whose first K + 1 moments are x̂l

i[k]
⊤x̂r

j [k] = µk for k = 0, 1, . . . ,K.

■ Today I’ll discuss the discrete case

⇒ Each migration flow will be converted to (Q+ 1)-quantiles
⇒ Aij = 0 indicates relatively low number of migrants, Aij = Q indicates high migration
● We assume Q = K (i.e., as many moments as symbols)
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Real-life dataset (II): UN migration data - Graph Generation

■ Consider a single link (i, j) ⇒ How can we estimate pl = P [Aij = l]?

■ We have the following system of equations:

p0 + p1 + · · ·+ pK = µ0

0p0 + 1p1 + · · ·+KpK = µ1

02p0 + 12p1 + · · ·+K2pK = µ2

...
...

0Kp0 + 1Kp1 + · · ·+KKpK = µK

⇔ Vp = µ (2)

■ V is a Vandermonde matrix of the possible symbols (in this case 0, 1, . . . , Q = K)
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Real-life dataset (II): UN migration data - Graph Generation
■ Simulations: For each pair of nodes estimate p, generate 100 graphs and compute:

● Degree distribution
● Nodes’ betweenness centrality

■ Great fit for Q = 2
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■ Simulations: For each pair of nodes estimate p, generate 100 graphs and compute:

● Degree distribution
● Nodes’ betweenness centrality

■ Great fit for Q = 2, 3. Not so good for Q = 4. And as we add more symbols...
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Limitations and Future Work

■ Estimating several moments is challenging (unless we have a large graph)

⇒ How can we estimate a distribution from just a few moments?

■ Estimating a distribution per-link does not scale

⇒ Grouping nodes should help. What’s the impact on the estimation?
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Thanks!

Questions?

Federico “Larroca” La Rocca

flarroca@fing.edu.uy
@fedelarrocca

https://github.com/git-artes/
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Embedding an SBM graph
■ Ex: SBM with Nv = 1500, Q = 3 and mixing parameters

α =

 1/3
1/3
1/3

 , Π =

 0.5 0.1 0.05
0.1 0.3 0.05
0.05 0.05 0.9



■ Sample adjacency A (left), X̂LSX̂
⊤
LS (center), rows of X̂LS (right)

■ Use embeddings to bring to bear geometric methods of analysis
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Ambiguity

■ Q: Is the solution to ASE unique? Nope, inner-products are rotation invariant

P = XW(XW)⊤ = XX⊤, WW⊤ = Id

⇒ RDPG embedding problem is identifiable modulo rotations

■ Ambiguity in DRDPG got worse:

● a transformation with any invertible matrix W ∈ Rd×d will result in the same M[k].
undirected (W)RDPG: W orthonormal matrix

● X̂l = XlW and X̂r = XrW−⊤(omitting k for clarity)

⇒ X̂l(X̂l)⊤ = XlW(XrW−⊤)⊤ = XlWW−1(Xr)⊤ = Xl(Xr)⊤ = M
● W is necessarily orthonormal by enforcing Xl[k] and Xr[k] with orthogonal columns
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Weighted RDPG

■ Vanilla RDPG require 0 ≤ xix
⊤
i ≤ 1. Is any sequence M[k] valid in WRDPG?

● Certainly not! E.g. Mij [k] = −1 for all k cannot be correct

■ A sequence {m[k]}k≥0 is an admisible moment sequence if m[0] = 1 and the matrix

B =


m[0] m[1] m[2] . . . m[p]
m[1] m[2] m[3] . . . m[p+ 1]
m[2] m[3] m[4] . . . m[p+ 3]
...

...
...

. . .
...

m[p] m[p+ 1] m[p+ 2] . . . m[2p]


is positive-semidefinite for all p ≥ 0

⇒ Mij [k] has to be an admisible moment sequence for all i, j
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