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Abstract—Vertex-domain and temporal-domain smoothness of
time-varying graph signals are cardinal properties that can be ex-
ploited for effective graph signal reconstruction from limited sam-
ples. However, existing approaches are not directly applicable when
the signal’s frequency occupancy changes with time. Moreover,
while e.g., sensor network applications can benefit from directed
graph models, the non-orthogonality of the graph eigenvectors
can challenge spectral-based signal reconstruction algorithms. In
this context, here we consider K -sparse time-varying signals with
unknown frequency supports. By exploiting the smoothness of the
varying graph frequency supports and employing shift operations
over directed graphs, we study joint sampling of multiple varying
signals based on Schur decomposition to reconstruct each sig-
nal by orthogonal frequency components. Firstly, joint frequency
support of the multiple signals is identified by proposing a two-
stage Individual-Joint sampling scheme. Based on the estimated
frequency support, the GFT coefficients of each signal can be
recovered using data collected in individual sampling stage. Greedy
algorithms are proposed for vertex set selection and graph shift
order selection, which enable a robust signal reconstruction against
additive noise. Considering the signals in applications may be
approximately K -sparse, we further exploit the samples in both
individual and joint sampling stages and investigate the optimal
signal reconstruction as a convex optimization problem with adap-
tive frequency support selection. The proposed optimal sampling
and reconstruction algorithms outperform several existing schemes
in random network and sensor network data gathering.

Index Terms—Directed graph, frequency domain, graph signal
sampling, signal reconstruction, time-varying signals.
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I. INTRODUCTION
A. Motivation

IFFERENT graph signal processing techniques have been

developed in recent years to process data characterized
by irregular structures. A wide range of new applications such
as sensor networks [1], [2], [3], brain networks [4], [5], social
networks [6], [7], [8], and machine learning [9] can benefit
from these emerging techniques. Due to the fundamental role
of sampling in signal processing, sampling of graph signals
has attracted considerable interest and shows its applications
in sensor data gathering [10], economic networks [11], point
cloud processing [12], and Big Data analytics [13], [14], [15],
etc.

In sensor network data gathering, the energy of signals
may mainly locate at low-frequency components. However,
the middle- and high-frequency components may also provide
useful information, and they may not all be ignored in signal
reconstruction stage. It would be better to recover signals based
on the frequency support that has the largest graph Fourier trans-
form (GFT) coefficient magnitudes so that the reconstructed
signals will omit the least information for further processing.
If we sample and recover each time-varying signal separately, it
would be very difficult to estimate the frequency support having
the largest GFT coefficient magnitudes by using only a few
samples, which may thus limit the reconstruction performance.
Observing from sensor network data that the frequency sup-
ports with the largest GFT coefficient magnitudes of adjacent
signals would vary smoothly, in this article, a joint sampling
method is proposed for multiple time-varying graph signals to
identify their joint frequency support, and thereafter, optimal
reconstruction is studied to recover each signal. Directed graphs
are under the consideration to characterize the data transmission
over network.

B. Related Works

Graph Fourier transform provides a powerful tool for sam-
pling and recovery of signals over graphs [16], [17]. A signal
that is band-limited or K-sparse in graph spectrum domain
can be fully reconstructed from its samples. In [18], an opti-
mal sampling technique was proposed for signals with known
frequency support. Connection between the spread of a signal
over graphs and the spread of its spectrum was studied in [19],
based on which the recovery robust against noise was developed,
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and the blue-noise sampling method was designed to maximize
the distance between sampling nodes [20]. A joint design of
sampling and quantization [21] and a non-Bayesian estimator
based on Cramer-Rao bound [22] were proposed for signal re-
covery. An efficient sampling scheme were proposed by dividing
the signal space into several one-dimensional subspaces and
selecting the effective node in the remaining subspace [23].
In these results, signals can be recovered by the estimated
GFT coefficients. To inherit the frequency-domain properties of
sampled signals, sampling and recovery were studied in spectral
domain [24]. However, these results mainly focus on undirected
graphs, where the orthogonality of eigenvectors greatly eases
signal reconstruction.

The smoothness of graph signals in vertex domain has been
exploited for signal recovery. Local-set-based methods [25] and
probabilistic sampling algorithms [26] were developed to re-
cover signals with distributed behaviours. In [27], graph spectral
proxies were designed to estimate the bandwidth of signal for
reconstruction. Based on Neumann series, a low-complexity
recovery algorithm was studied in [28]. Kernel-based operators
were designed for efficient sampling [29], and a joint vertex-
spectral-domain sampling was proposed in [30]. In these meth-
ods, graph filters are employed to recover signals. Hence, most
of them focus on band-limited signals such that the smoothness
property of the signal can be employed.

Since band-limitedness is restrictive for graph signals in real-
world scenarios, many efforts have been devoted to relaxing
such requirements. The approximately band-limited signal was
studied in [31]. Assuming that the graph is bipartite and signal
is identically distributed, sampling via maximum spanning trees
was studied in [32]. The estimation of power spectra was de-
veloped for second-order stationary signals [33], and sampling
of K-sparse signals was studied in [34], where the signals and
noise are assumed to be zero-mean circular distributions. A
Bayesian estimator was studied to recover signals from nonlinear
observations [35], however, the probability density function of
graph signal is needed.

To further exploit the properties of graph shift operations on
signals, aggregation sampling was studied. For local aggregation
in sensor networks, shift operations with an undirected graph
may be restricted because the bidirectional transmission on a
network may be unnecessary and may not always be available.
Shift operations over directed graphs may be more practical in
these scenarios. Based on successive local aggregations, signals
can be sampled on a single vertex [36], where signal can be K-
sparse with unknown frequency support. Orthogonal partition
selection was proposed [37] to overcome the ill-condition of the
Vandermonde matrix in signal reconstruction [36]. However,
its frequency support should be known. A randomized local
aggregation sampling was proposed in [38], where the frequency
support can be unknown but signals and sampling matrix should
satisfy the restricted isometry property.

The aforementioned results mainly focus on sampling and
reconstruction of a single graph signal and do not account
for its relationship to adjacent signals. In real applications,
signals could be time-varying and evolve slowly. The rela-
tionships between adjacent graph signals can be studied by
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autoregressive models [10], [39], [40], kernel methods [41],
time-vertex analysis [42], [43], and product graph frame-
work [44]. Such relationships can contribute to the sampling
and reconstruction of varying signals. Local properties of
temporal difference were developed for signal reconstruction
in [45]. Sampling via a joint optimization of sample selection
and a sketch of target linear transform was developed [46]
based on the stationary nature of the graph signal sequence.
A Tikhonov regularization-based recovery was designed based
on the smoothness of graph topology and temporal correla-
tions [47]. In [48], [49], [50], varying signals were characterized
by Sobolev smoothness. In these results, signals should be band-
limited, approximated band-limited, or the frequency support is
known.

C. Contributions:

In this article, we consider joint sampling on multiple time-
varying signals based on the observations that the frequency
supports of adjacent signals vary smoothly in sensor networks,
i.e., the consecutive signals share the most frequency compo-
nents associated with the largest GFT coefficient magnitudes.
By performing shift operations on varying signals, we pro-
pose a two-stage Individual-Joint sampling scheme for signal
reconstruction. In the individual sampling stage, each signal is
sampled separately, and the samples will be applied to estimate
their GFT coefficients in next steps. Since only a few samples
are collected, they are not sufficient for identifying the joint
frequency support. Hence, the multiple signals are combined
together, and a joint sampling is further performed on the
combined signal. The algorithms are firstly developed based on
the assumption that the varying signals are strictly K-sparse
with unknown frequency support, which are further extended
for full-band signals with Gaussian noise that is approximately
K -sparse. The contributions are summarized as:

1) Atwo-stage Individual-Joint sampling scheme is proposed
for time-varying graph signals based on shift operations
over directed graphs for sensor network data gathering.
The joint frequency support of the multiple signals can
be identified with the aid of data collected in the joint
sampling stage, and each noiseless K -sparse signals can
be further recovered using the samples collected in the
individual sampling stage.

2) Greedy algorithms are proposed for vertex set selection
and graph shift order selection, which provide a near-
smallest vertex set for the sampling of varying signals.
Moreover, for noisy signals, the proposed greedy selection
algorithms will guarantee a robust signal reconstruction
against additive noise.

3) For noisy signals, an unbiased reconstruction algorithm
is studied, and an adaptive selection of joint frequency
support is proposed since a larger number of frequency
components in the joint support will bring more noise in
the reconstruction while a smaller size of support will omit
more information on the true signal. To further improve the
performance, an optimal reconstruction algorithm is pro-
posed by considering the signal reconstruction as a convex
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optimization problem, where the data collected in both
individual and joint sampling stages are fully exploited
and the result of joint frequency support identification is
explicitly involved.

The remaining part of this article is organized as follows.
Section II presents the problem formulation, and Section III
investigates the aggregation sampling of a single signal over
directed graph. In Section IV, the two-stage Individual-Joint
sampling scheme is studied. Greedy sampling of noiseless
signals is shown in Section V, and optimal reconstruction of
time-varying noisy signals is studied in Section VI. Numerical
studies and discussions are presented in Sections VII and VIII
concludes this article.

II. NOTATIONS AND PROBLEM FORMULATION
A. Notations and Preliminaries

Notation: Scalars are denoted using lowercase letters, and
vectors are defined using bold lowercase letters. We denote
matrices using bold uppercase letters, and ()T indicates the
transpose of (). Sets are represented by calligraphic letters, and
| - | stands for the cardinality of set (+).

Define a directed graph by G = (V,A), where V=
{v1,va,...,un} is the vertex set, IV is the number of vertices,
and A is the weighted adjacency matrix. Denote by

- U] ey

the M signals, where u,, =
[U1 s U2,y - - o UN,m|T € RY is the m-th signal, and R
is the set of real numbers. We denote shift operation over graphs
by graph shift matrix § € RV*¥, which can be defined by
weighted adjacency matrix or Laplacian matrix. Graph shift
matrix can be considered as an extension of the time shift
operator in conventional discrete signal processing to graph
signals [10], [51]. Denote by ufn the /-th order shift of u,,,, we
have

U=u,u,,..

time-varying  graph

L 4 £ 4 T 4
U, = [ul,m7u27m7' : -7’U/N7m] =S Up,, (2)

where u! ,, is the (-th order shifted signal of u,, on v,,.

We focus on directed graphs, where the graph shift matrix
may be asymmetric. Given a graph shift matrix S, there exists a

unitary matrix Q = [q;,¢s, - - -,q ] such that
§ =010, 3)
where
Ti1 T2 Tim
0 T2¢2 T2,m
T= ) “)
0 0 Thm

is an upper quasi-triangular matrix of size N x N. Eq. (3)
is a real Schur decomposition of S [52]. Each T';; is either
a 1-by-1 scalar with real eigenvalue T';; = A; or a 2-by-
2 matrix having complex conjugate eigenvalues, i.e., T';; =

“Im(N) Re(\)| Schur vectors ¢q,, are referred to as graph
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frequency components [53]. Graph Fourier transform [17] of the
m-th signal u,,, is defined by

. . . T T
Uy = [ul,?na U2 my -+ oy U'N,m} = Q Um, (5)

where 1, ,, are GFT coefficients. Inverse GFT is defined by
U, = Qu,, to reconstruct signal u,,, from its GFT coefficients.

Denote by T}, ,, the (k,n)-th entry of T' and by Ayax the
eigenvalue of S with the largest magnitude. The total variation
of Schur vector ¢,, can be defined by

1
TV(q,) = ||q, — qun
max 1
Tn . 1 n+1
=1|qn — —q, — Th.nq
(| Amax]| [ Amax]| ; §
(k#n) 1

(6)

In the case that T}, = 0, for k # n, Schur vector ¢,, is an
eigenvector corresponding to \,,, where its total variation is the
same as the result in [17]. Otherwise, vectors q,,qs,...,¢,_1,
and g,+1 may contribute to the total variation of ¢,. If
[Amax|| > T}, holds, the total variation can be approximated
Re(\,)

by TV (g,) ~ |1 — 5
tor g,, and its corresponding eigenvalue \,, may also provide

an insightful frequency interpretation by the total variation
definition. The eigenvalues may appear in any order in the
diagonal entries T} ;, which will thereby result in different Schur
decompositions together with different Schur vectors for a given
graph shift matrix S. In this article, we focus on exploiting the
orthogonal basis over directed graphs for signal sampling and
reconstruction. An optimal Schur decomposition of a directed
graph shift matrix may be developed under different application-
oriented criteria, which is beyond the scope of this already
fully-packed article and will be discussed in a future study.

l1]1¢,,||1- In such cases, Schur vec-

B. Problem Formulation

In this article, we assume that the graph is static and directed.
The signals given in (1) are time-varying with frequency sup-
ports vary smoothly. We will study joint sampling of multiple
varying signals and optimal reconstruction of each signal based
on a subset of samples.

Suppose that all the signals u,,, are K-sparse, i.e., there are at
most K nonzero GFT coefficients in vector #,,,, where K < N
holds. Each signal u,, can be recovered from a subset of its
samples, and perfect reconstruction of a K -sparse signal requires
at least K samples for reconstruction. Denote by

. )

the frequency support of #,,, by |S,,,| the number of frequency
components in the support, and |S,,,| < K holds. S,,, can be any
subset of |S,,| frequency components and these need not be the
first |S,,| components. Assume that the frequency supports of
M signals in (1) vary smoothly, i.e., the supports of two adjacent
signals (e.g., Sy, and S,,+1) share most frequency components
and only very few components are different between them.

Sm = {qklaquau-
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= NwWwrO

Graph shift order ¢

Vertex n

Fig. 1. Sampling in vertex domain and graph shift order domain. Red: the ¢-th
order shifted signal on vertex n will be collected in individual sampling stage,
Blue: the ¢-th order shifted signal on vertex n will be collected in joint sampling
stage, Gray: signals will not be selected. The sampling vertex set Vs and graph
shift order set £ are defined in (10) and (11) respectively. There are 9 vertices
in the figure, thus we need at least 9 entries (n, £) of signals to estimate the joint
frequency support. Each signal is sparse and can thereafter be reconstructed
based on much fewer samples collected in individual sampling stage.

Denote the joint frequency support of M signals by S, i.e.,
S=5USU...USu (8)

and by |S| the size of the joint support. We suppose that the
combination of multiple signals is also sparse, i.e., |S| < N.

From Sections III to V, the time-varying signals are assumed
to be strictly K -sparse and noiseless, and in Section VI, noisy
signals with additive Gaussian noise are considered, where
signals are relaxed to be approximately K -sparse, i.e.,

Y Mawml® < el ©)

k: qr ¢'Sm

holds with 0 <& < 1 a small parameter. That is, the energy

associated with the given frequency support S,,, will dominate

the energy of signal u,,. If ¢ = 0, u,,, is strictly K-sparse.
Denote the sampling vertex set by

VS = {vnmvnw"'?vna}v (10)
where o is the number of sampling vertices, and by
L={l,ly,.. 0} (11)

the graph shift order set with 0 < ¢, 45, ..., ¢, < L, where L is
the given maximum shift order, and 7 is the size of L.

We will study sampling based on local aggregation. As show
in Fig. 1, the sampling will be performed in both the vertex
domain and the graph shift order domain. If the vertex set Vs
and graph shift order set £ are designed, they will be the same
for sampling all the M varying signals. Firstly, each signal will
be sampled separately to collect only a few observations, which
is referred to as individual sampling stage. Afterward, the M
signals are combined and sampling is further performed on the
combined signal to help identify the joint frequency support of
the multiple signals, which is referred to as the joint sampling
stage. Since the joint frequency support that has the largest GFT
coefficient magnitudes is identified, the reconstruction of each
signal can be conducted based on only a few samples collected
during the individual sampling stage. The performance may be
better than those existing aggregation based-sampling methods,
where the frequency support having the largest GFT coefficient
magnitudes is difficult to identify because signals are sampled
separately and the joint information of multiple signals is not
taken into account for recovering each signal.
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Specifically, the problems under consideration will be: 1) How
to perform the two-stage Individual-Joint sampling on the M
signals? 2) Under what conditions can the multiple signals be
perfectly reconstructed? 3) What are the optimal sampling set
Vs and graph shift order set £ for reconstructing each signal?
Moreover, 4) how to recover noisy signals in an unbiased fashion
and provide optimal reconstruction performance against noise?
These problems will be addressed in the following sections.

III. AGGREGATION SAMPLING FOR INDIVIDUAL SIGNAL OVER
DIRECTED GRAPHS

In this section, we will focus on sampling and reconstruction
of an individual signal u,,. Since identification of the joint fre-
quency support of multiple signals will be discussed in Section
IV-B, we assume that the frequency support S, is known for
signal u,,, i.e., the indices k; of all the non-zero coefficients
Uy, ,m areknown fori = 1,2, ..., K. Frequency support S, can
be any subset of K frequency components and are unnecessarily
to be the first K components.

Aggregation sampling over a single node on directed graphs
was discussed in [36], where the graph shift matrix is assumed to
be diagonalizable, thus orthogonality of frequency components
can not be guaranteed. Orthogonal basis was discussed for
signal reconstruction by singular value decomposition of an
orthogonal projector [37] or by arbitrarily selecting orthogonal
components [38]. For aggregation-based sampling, the samples
and reconstruction algorithm would highly associate with the
graph shift matrix. Reconstructing signals based on direct or-
thogonal decomposition of the graph shift matrix would help to
characterize the inherent properties of signals associated with the
graphs and may thus improve the reconstruction performance.
Hence, in the following, we aim to develop sampling algorithms
over multiple nodes by employing Schur decomposition, such
that the graph frequency components are orthogonal to each
other and are directly corresponding to the eigenvalues of the
graph shift matrix.

The ¢-th order shifted signal of u,,, over vertex n is defined
in (2), which can be rewritten by

4 _
un,m - (Pnumv

(12)
where

Pn =T (13)

Vector q,, is the n-th row of unitary matrix Q. Perform sampling
on the signals shifted up to L-th order (i.e., u,,ul ... .uk)
over vertex n, and denote by
L T
Upm = [un,ma un,mv D) un,m]

(14)

the samples of u,,, over vertex n. The reconstruction matrix for
vertex n is defined by

@, =[(e0)", (en)", - ()"

of size L-by-N. Samples on vertex n can be formulated by

(15)

=®,i,,. (16)

Un,m

GFT coefficients i, can be estimated by samples u,, , .

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on June 22,2023 at 20:06:04 UTC from IEEE Xplore. Restrictions apply.



2208

For signal u,,,, by performing the L-th order shift over graphs
and sampling the shifted signals over set Vs, we can build the
reconstruction matrix

®=[® @ .8 ] (17)

which is of size ¢ L x N, and ®,,, is the reconstruction matrix
defined over vertex v,,, fori =1,2,..., 0.

Define a frequency selection matrix ¥ of size K x N to
extract all the nonzero GFT coefficients in vector #«,,, where
the (i, k;) entry W, . = 1 holds fori = 1,2, ..., K, and all the
other entries are 0. Hence, we have

ak = wi,,, (18)

where a5 consists of all the nonzero GFT coefficients of #,y,.
By sampling shifted signals of u,,, on set V5, we have

= [ul ul NS 7 L (19)

ni,m? n2,Mm?’ P NG, M

which is of size oL x 1. Denote by C of size K X ¢ a joint
selection matrix over ® for selecting vertex and graph shift order,
where the entries C(i,5) € 0,1, >, C(i,5) < 1 hold for all
columns, and Z;’il C(i,7) = 1 hold for all rows. u,, can be
reconstructed as follows.

Lemma 1: For aggregation sampling over directed graphs on
multiple vertices, we define a square matrix % of size K-by-K
as

% = cowT. (20)

If the number of samples (the row size of ®) oL > K holds,
and matrix ® X is invertible, the nonzero GFT coefficient vector

i can be estimated by
al = (@) cus,. Q1)

Signal u,,, can be reconstructed by orthogonal Schur vectors

U = QU iy, (22)
Proof: The proof is given in Appendix A. O

If the support is known for each signal, sampling and re-
construction of multiple signals can be implemented separately
for each signal by Lemma 1, where perfect reconstruction of
the K -sparse signal uses only a subset of samples. However,
frequency support may be varying and be difficult to predict for
a new signal in applications. For unknown support problem, to
ensure a correct and perfect recovery, we need to estimate all
the GFT coefficients, i.e., ftﬁ should be replaced by ﬁﬁ , and
N samples are needed. Hence, Lemma 1 is not applicable for
unknown frequency support problems.

Remark 1: We applied Schur decomposition in Lemma 1
for signal sampling and recovery, where frequency compo-
nents in (3) are orthogonal to each other. To be specific,
(s, m4x, ) qr, = 0 holds if ki # ko. However, this identity
does not hold for non-orthogonal frequency components based
on eigen-decomposition or Jordan decomposition of directed
graph shift matrix. For varying frequency supports, the support
may notalways be correctly identified. If g, is notselected in the
support, its signal components will adversely affect the estima-
tion of GFT coefficients of all the other frequency components
in the support. For noisy signals, the GFT coefficient estimation
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of one frequency component may be perturbed by the noise
on all the other frequency components. Hence, orthogonal basis
based on Schur vectors may provide better performance in signal
recovery, especially when the frequency support is unknown or
cannot be perfectly identified.

IV. JOINT SAMPLING OF MULTIPLE SIGNALS AND
RECONSTRUCTION WITH UNKNOWN FREQUENCY SUPPORT

In this section, we will study the sampling and reconstruc-
tion of multiple time-varying signals with unknown support.
The sampling of multiple signals is designed as a two-stage
scheme. Firstly, in Section IV-A, an individual sampling stage
is presented to collect samples separately for each signal, and in
Section IV-B, joint sampling of multiple signals is proposed to
collect more samples for identifying the joint frequency support
of the multiple signals.

A. Individual Sampling for Graph Signal Reconstruction

Define S; to indicate the samples collected in individual
sampling stage. If S;(n,¢) = 1, the ¢-th order shifted signal
over vertex n, i.e., Uﬁ,m’ will be collected separately for signal
Up,. L is the graph shift order set for individual sampling.
If S;(n,¢) =1, then we define £ € L. If the joint frequency
support S is identified, we only need |S| samples to perfectly
reconstruct each signal. The sampling set V; and graph shift
order set L for individual signal should be specifically designed
such that o|L;| > |S| holds. The minimum size of individual

sampling set | L] is given by
|L1| = TIS/e],

where [-] is the ceiling function. The construction of S; and
estimation of joint frequency support S will be discussed in
Sections V-B and I'V-B, respectively.

For individual signal reconstruction, the reconstruction matrix
is defined by

L L L L
P~ = [((I)ni)Tﬂ ((I)né)Tv ) ((I)nf,)T]Tv

(23)

(24
where
B = (@) (@) (o )T,

l; € Lryandn = nq,na,..
are collected as

(25)

., ng. The signals over sampling set

s, L1 _ (L T (,Lr T c T
um T = [(uni,m) ) (uné,m) P (un(l,,m) ] (26)
with
c ¢ ¢ bt

Uyl = (U s U s - -+ Ui 27)

According to Lemma 1, we have u;, = <I>\IlTﬁ,Kn and

S Lr _ &LigT 4lS

uyt = o Wil (28)
form =1,2,..., M, where ¥ is a frequency selection matrix

of size |S| x N to select all the |S| non-zero coefficients a!S!

from u,,. Hence, ﬁ‘n‘i‘ can be estimated based on the collected

samples u3;“7, and each graph signal u,, can afterward be
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perfectly reconstructed by

U = QU gl (29)
B. Joint Sampling of Multiple Signals for Joint Frequency
Support Identification

In this section, we will study support identification by joint
sampling on multiple signals to enable perfect reconstruction of
K sparse signals using only a few samples.

For each signal u,,,, the samples in individual sampling stage
are not sufficient for identifying the joint frequency support
since N samples are needed for correctly identifying the joint
support S. We combine the M samples together over vertex v,,
for S;(n,f) =1,1ie.,

M
uh = b, (30)
m=1
Then, the combined signals are defined by
Wl = [ul, .. u T 31)

Joint sampling is further performed on combined signal u’ .
Define S; to indicate the joint samples, i.e., joint sampling is
performed if S ;(n, ¢) = 1, and the corresponding shift order set
is denoted by £ ;. The combined samples over v,, are defined by
b utr (32)

n

ul’ = [u

and the reconstruction matrix is given by

B = [Pl (@t)T, . ()T (33)
for S j(n,¢;) = 1. Samples on v,, are denoted by
uyy = ("), ()", (34)
and samples over the whole vertex set V, are given by
uS)L = [(uﬁl )Tv (uﬁz)Tv R (uﬁn)T])Ta (35)
having the reconstruction matrix over vertex n defined by
o) = [(@r)" (@) (36)
Combine the samples u;, given in (19) by
M
w'i=>u, (37)
m=1
and define the combined GFT coefficients by
M
u= Z i‘m- (38)
m=1

Denote by C the joint selection matrix of size N-by-oL to
select the samples u®t from u®, ie.,

u** = Cyu®, (39)

where C has similar definition as C, and they are only of
different sizes. Then, we have

utt = oNa, (40)
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where

eV = Cn® = K@ﬁl)Ta ((I)ﬁg)Tv R (q)rﬁLU )T}T' 41)

Then, the joint frequency support of the multiple signals can be
identified as follows.

Proposition 1: Perform joint sampling on the combined
shifted signals over vertex set Vs, if matrix &N is invertible,
the combined GFT coefficients & can be estimated by

a= (V) ut, (42)
Locating all the |S| non-zero GFT coefficients in # and select-
ing their corresponding graph frequency components, the joint
frequency support can be identified. To uniquely estimate the
joint frequency support, the graph shift order satisfies

L= [N/a], (43)

where [-] is the ceiling function.

Proof: The proof is shown in Appendix B. |

The two-stage Individual-Joint sampling and reconstruction
of M varying signals are summarized in Algorithm 1. If the
samples in u** are obtained, the joint frequency support of the
multiple signals can be identified by Proposition 1. The number
of frequency components for recovering each signal is reduced
to be |S|. Hence, each signal can be perfectly reconstructed by
(28)—(29) using only |S| samples.

Remark 2: In the proposed joint sampling and reconstruction
scheme, to ensure that each signal can be perfectly reconstructed,
the amount of collected samples is (M — 1)|S| + N, where
M|S] is the number of samples in individual sampling stage,
and N — |S]| is the number of samples in joint sampling stage
over the combined signal. The compression performance of the
proposed joint sampling scheme is given as

MN

ENGES 44

p =
If N and the size of joint support |S| are given, the compression
performance of the proposed scheme approaches % when the
number of signals M is big enough.

In this section, we show the joint sampling for frequency
support identification and individual sampling to recover each
signal. We assume that the reconstruction matrices (®" and
®~£1) and selection matrices (Cy, C, Sy, and S ) are known,
and matrices @V and ®£7 are invertible. In next section, we will
focus on the optimal vertex set selection for V, and graph shift
order selection for £ to build reconstruction matrices (®V and
®L1) and selection matrices (Cy, C, St, and S ).

V. GREEDY SAMPLING OF NOISELESS SIGNALS OVER
DIRECTED GRAPHS

In this section, we will determine the optimal sampling vertex
set Vs and graph shift order set (£; and L) for graph signal
sampling and reconstruction. Since both the vertex set and
graph shift order set are considered, the sampling problem is
a two-dimensional combinational problem as shown in Fig. 1.
To simplify the optimal sampling, we will cast the problem to
be a two-stage one-dimensional selection problem and design
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Algorithm 1: Individual-Joint Sampling and Reconstruction
for Multiple Time-Varying Graph Signals.

Input: Selection matrices S and S ; (constructed by (57)
and (61)), graph signals u,,, form =1,2,..., M.
Individual Sampling:

For each graph signal u, if S;(n,¢) = 1, collect
samples over vertex 7 on the shifted signals u!, for
m=12,...,M.

Collect samples and construct vector u;, defined in
(19).

Joint Sampling:

Combine the shifted signals u?, in the Individual
Sampling stage if S1(n,¢) = 1 using (30).

If S ;(n,£) = 1, collect samples on the combined
signals u*, and construct the vector #** given in (35).

Identification of Joint Frequency Support:

Identify the joint frequency support of the combined

signal by Proposition 1.
Reconstruction of Each Graph Signal:

Reconstruct each signal u,,, using the data collected in

Individual Sampling stage by (28)—(29).

corresponding greedy algorithms. Specifically, we will focus on
vertex set selection in Section V-A to build an invertible matrix
& for identifying the joint frequency support, and thereafter,
we will study graph shift order set selection in Section V-B
to construct matrix ®*! for perfect recovery of each signal.
Big sizes of sampling set Vs and £ may provide ideal perfor-
mance for signal reconstruction. However, the corresponding
compression performance (44) would deteriorate. Hence, the
greedy algorithms will aim at providing approximate smallest
sampling sets for V, and L;.

A. Greedy Vertex Set Selection

In this section, we aim at designing the approximate smallest
sampling vertex set Vs with a given maximum graph shift order
L such that reconstruction matrix &% is invertible, i.e.,

min [Vs| s.t. ®Y is invertible. (45)

Assume that a temporary sampling vertex setis given as Viem, =

{¥nysVnys -+, n,,,,, } With the reconstruction matrix defined
by
T T T T
Dy = (@ @F ... @T T, (46)

which is of size ny-by- N, and ®,, is defined in (15). New vertices
are to be selected for constructing matrix ®*V. To reduce the
number of sampling vertices, a new vertex v,, to be selected in
the sampling set should provide the most independent vectors to
the matrix ®,.,,,,. A greedy algorithm is developed for sampling
set selection as follows.
Greedy Sampling Vertex Set Selection: For any vertex v,, €
V — Viemp, perform singular value decomposition on
‘I’temp’ = [‘I’T

temp> QIL]T (47)
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Denote by 7yin the minimum singular value of ®.,,/, by g
a pre-determined threshold, and by n, the number of singular
values of @,y that are bigger than 7.

We choose the vertex v,, if its value ny is the biggest among
the vertex set V — Ve, and

Vtemp’ = Vtemp U {Un}

For the new reconstruction matrix, since not all of the singular
values are bigger than r(, we further define submatrices ®/, by
selecting ny — n; rows from @,,, and updating matrix by

(@),

(48)

@temp’ - [‘PT

temp>

(49)

which is of size ny-by-N. We choose the submatrix ®/ that
results in the minimum condition number of ®,,,y among
all the C7* ™" matrices ®,. The new reconstruction matrix
is obtained by (49), and vertex selection matrix is given by

Cn(ng+i,I%) =1 (50)

for i =1,2,...,ny — ny, where I’ is the row index of the
selected vector ¢, in matrix ®.

Proposition 2: By selecting a new vertex n according to (47)—
(50), the greedy sampling set selection ends when there are [V
rows in matrix ®.,,, . Hence, we have dN = Doy and Vs =
Viemy - If vector ¢!, is selected in ®1V, order ¢ will be included in
the graph shift order set £. Since the minimum singular value of
& is bigger than a pre-determined threshold, ®" is guaranteed
to be invertible after sampling vertex set selection.

Proof: For the selected vertex v, there are at least ny in-
dependent components because in (47) we have ny singular
values bigger than the pre-designed threshold ry. Hence, there
exists at least one submatrix ®/, such that the matrix ® ;e
in (49) is full-rank, and we choose the matrix ®;c,,,y that has
the minimum condition number. Since new matrix ®;¢p,, is
full-rank, it is invertible if ®;.,,,, is a square matrix. The vertex
selection matrix Cn can be built step-by-step after selecting a
new vertex. This completes the proof. U

Remark 3: Since sampling set selection is a combinational
problem, it is difficult to guarantee that the size of Vs is the
smallest for matrix ®V. For the proposed greedy sampling
set selection algorithm, in each step, we select the vertex v,
that can provide the most independent frequency components
to the matrix ®;.,,,,, which can be considered as selecting
a new vertex v,, to maximize the rank of new reconstruction
matrix ®;c,,;y in (49). Note that rank function is a submodular
set function. Such a greedy vertex selection algorithm satisfies
the submodular property and may make the size of V, close to
the true minimum value. The second aspect of “greedy” in the
proposed algorithm is that we always select the submatrix ®/,
that makes the temporary reconstruction matrix ®;¢,,y having
the smallest condition number among all possible matrices.

Once the vertex set for building the reconstruction matrix &
has been selected, the selection matrix C y can also be obtained.
Then, the joint frequency support of the multiple signals can
be identified by (42). Since the graph signals are sparse, we can
reconstruct each signal using much fewer samples based on ®*7
which will be studied in the following.
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B. Graph Shift Order Set Selection

If the joint frequency support has been identified, the fre-
quency selection matrix W5 can be designed to extract all the
|S| nonzero GFT coefficients such that we only need |S| samples
to perfectly reconstruct each signal. The matrix ®“7 can be
constructed by specifically designing a selection matrix C\s) to
guarantee that matrix ®* has full rank. The graph shift order
selection problem can be modelled by

min|L;| s.t. rank(@“ ) = S]. (51

With the reconstruction vector ¢ given in (13), we define the
(-th order shift matrix as

(I’é = [(‘Pﬁl)—rﬂ (‘Pflg)T7 L) ((Pfu,)T]T

to extract all the ¢-th order shift vectors in ®%, which is of size
ny X N. Denote by

(52)

[((i)& )T’ (@@)'ﬂ o ((igtewLp)T]T (53)

Qtemp =

the temporary reconstruction matrix of size n,-by-|S| with
_ &'
3 = 2'v,

and »Cl_temp = {gl,ﬁg, ey
graph shift order set £;, we aim at selecting a new matrix 3"
that can provide the most independent rows to matrix @temp.
For ¢ € L — L temp, perform SVD decomposition on matrix

(54)

liemp}. To minimize the size of

= =T =0
Qtemp’ = [Qtempa (Q )T}T'

(55)

Denote by 7,i, the minimum singular value of @temp/, and by
ng the number of singular values that are bigger than 7y, where

o 1s a pre-determined threshold. Then, the matrix @' that leads
to the maximum nz/ will be selected.

Define matrix <I>Sub to choose ngy — ny rows from ‘I> and
update the temporary matrix ®;c,,,s by

T
temp> (

By = [Bpemps (B1) T (56)

ozl . - .
Select the matrix ®_,,;, that results in the minimum condition
number among all the C’”" """ different matrices ® ey, where

ny is the row size of @sub. Then, for i =1,2,..., (ng — ng),
we update the selection matrix by
SI(m,Z) =1, 57

C\s/(ng +i,I} ) = 1 with I}, is the row index of vector ¢, in
matrix &, and L1 temp = L1 temp U {L}. B
This process ends when reconstruction matrix @y, i a

Ly

square matrix of size |S| x |S|. Wehave L = L7 _yemp, 7' =

D,crnypy and
C =C;5Cy, (58)
where C is the joint selection matrix given in (20). We have
®L1 = C5 @V (59)
and

& = L1 (60)
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In each step, we guarantee that the minimum singular value of
matrix @, is bigger than a predetermmed threshold. Hence,
@1y is full rank, and matrix ®*7 ‘I’ES’\ is invertible.

After determlnlng reconstruction matrix ®*7, the nonzero
GFT coefficients u‘ | can be estimated by (28), and each graph
signal u,, can be perfectly recovered according to (29). If row
vector ¢ is included in @ but is not selected in ®*7, it will
be involved in ®£7, then,

SJ(TL,K) =

holds, and £L; = L; U {¢}.

Remark 4: In the proposed algorithms, the Schur decompo-
sition of graph shift matrix is needed, and its time complexity
is O(N?3). For vertex set selection, to simplify the analysis, we
assume that there are % vertices in Vi and the size of @y
is kL. The time complexity of SVD decomposition of ®;cyy,y
is O((kL)?N). By selecting o vertices, the total computation
is >7_(N —k)(kL)?N resulting in the time complexity of
O(N?L?03). The complexity of graph shift order set selection
is O(|S|3L?). The vertex set and graph shift order set can also
be designed by random selection, and the complexity would be
O(N?) since only Schur decomposition is needed. If the graph
shift matrix S is given and fixed over time, the sampling vertex
set and graph shift order set can be determined only once and
then be applied to the sampling and reconstruction of different
time-varying signals over the time-invariant graph.

(61)

VI. OPTIMAL RECONSTRUCTION OF NOISY SIGNALS OVER
DIRECTED GRAPH

In this section, an approximately K -sparse signal is consid-
ered since a noisy signal may not be strictly K -sparse. Firstly, an
unbiased reconstruction algorithm is studied to eliminate the bias
caused by noise in graph shift operations. Then, we will show
that the proposed greedy sampling in Section V can provide a
robust estimation of GFT coefficients against noise. An adaptive
frequency support selection method is proposed to provide an
appropriate joint frequency support for signal recovery. Finally,
signal reconstruction is considered as a convex optimization
problem to fully exploit the data collected in both individual
sampling and joint sampling stages as well as the result of joint
frequency support identification.

A. Unbiased Reconstruction of Noisy Signals
Assume that signal u,,, is corrupted by additive noise, i.e.,

ilm =Upm + Ny, (62)

where n,,, ~ N(0,52I) is the zero-mean additive noise with
a covariance matrix R = 62I. Denote n = Z% 1 My, Which
follows n ~ N(0, M>I).
Performing greedy sampling on noisy signals, we have sam-
ples a** for identifying the joint frequency support with
at =@V, (63)
where the noisy GFT coefficients are given by =i+ On.
The frequency support can be estimated by selecting the |S|
frequency components that correspond to the largest magnitudes
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ina. Noisy samples @, L1 can be used to reconstruct each graph
signal by
= L wald, (64)
where the noisy GFT coefficients are given as
WSl =il + ¥ 50n,,. (65)

Although the noise n is assumed to be white noise, the noise
observed in collecting samples i** is colored due to the graph
shift operations. The observed noise is given by 7 = ®NQ'n
with the covariance matrix

R; = M52 (@M)T (66)
The unbiased estimation [54] of & is given by
e — (((}N)TRijl@N)fl (@N)TRglas,l:. (67)

The joint frequency support can be identified by selecting |S]|
frequency components corresponding to the largest magnitudes
in &°. Denote by 7i,,, the noise in the samples for reconstructing
each graph signal, i.e.,

= @ W50 0, (68)
and by Ry the covariance matrix as
R;, =5 @YW W g (7). (69)
The unbiased estimation [54] of #s| ,,, is given by
\S\ ((fbﬁf ‘I"S‘)TR @ﬁI\P‘S‘)_l
x (®CT W TR adtr (70)

Hence, each noisy signal @,,, can be reconstructed unbiasedly.

B. Robust Estimation of Noisy Signals by Greedy Sampling

In constructing matrices @~ and <i>£’, we guarantee that
the matrices have minimum condition numbers in each step.
For noisy signals, we will show that such a greedy sampling
will ensure robust frequency support identification and signal
reconstruction against noise. We define relative errors by

©—all/fal 1)

ey = ||a
and

Sl.e ~|S ~|S
eum = [l = a |/ gy |

(72)

and denote by x(-) the condition number of matrix (-).
Proposition 3: The greedy sampling of noisy signals will
result in robust signal reconstruction against additive noise by
providing small error bounds for ¢, and e, ,, in estimating the
GFT coefficients of & and &g/ ,,,.
Proof: For identifying the joint frequency support via (63),
the following inequalities hold [52],

e = |0 —al//|all < w(@")|la>" ~

For estimating GFT coefficients of signal u,,,, we have

Nac||/||la>c]. (73)

||u‘$" _ﬁISIH s,L1

m Ly
=1"m ml < (P
[ — @)

a5t — @ alshe|

. (74)

u,m =

~s,L
ozl
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Smaller condition numbers #(®") and Iﬁ(‘i)ﬁl ) will result in
smaller relative error bounds for estimating the GFT coefficients
in identifying the joint frequency support as well as in recon-
structing each signal. Hence, robust signal reconstruction can be
obtained against noise. This completes the proof. O

C. Adaptive Graph Frequency Support Selection

Although we have already selected |S| frequency components
corresponding to the largest magnitudes in &° as joint frequency
support. For noisy signals, due to the existence of noise n in
the collected samples, the estimated frequency support may not
always include all of the true frequency components, which will
deteriorate the performance in reconstructing each signal. In the
following, optimal signal recovery will be studied by adaptively
selecting joint frequency support.

Denote by €,,,mse the normalized root mean square error

V) — C.QUTan|
([, (Vs) |

to evaluate signal reconstruction performance over sampling
vertex set Vs, where u,, (V) is the signal u,,, over Vs, and C
is the vertex selection matrix to select the reconstructed signals
over set V. Define the frequency selection matrix by

[t (

enrmse = 20 1Oglo (75)

U =1- TP (76)
to extract all the frequency components that are not selected
in the joint frequency support, and the corresponding GFT
coefficients ;. can be calculated by
al = wac. (77)

After reconstructing each signal, we will evaluate the perfor-
mance over sampling vertex set V, by (75). If the performance
is worse than a desired value, the targeted true frequency com-
ponents may not be involved in the joint frequency support,
and the new frequency component corresponding to the largest
magnitude in @, will be selected. Once the true components
are correctly included in the joint frequency support, the recon-
struction performance over sampling vertices will be improved,
indicating the optimal reconstruction of signal in terms of small
normalized mean square error. Algorithm 2 is summarized to
adaptively select joint frequency support.

For noisy signals that may be approximately K -sparse, opti-
mal signal reconstruction will be discussed in next section.

D. Optimal Reconstruction of Each Graph Signal

In this section, we aim at improving the signal reconstruction
performance assisted by the frequency components that are not
involved in the joint frequency support. The data collected in
joint sampling stage as well as the results of joint frequency sup-
port estimation can provide additional information to estimate
GFT coefficients u,,, which may thus contribute to improve the
recovery performance.

Using the samples in individual sampling stage, we can
estimate the GFT coefficients #,, by dropping the frequency
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Algorithm 2: Optimal Reconstruction via Adaptive Fre-
quency Support Selection.

Input: Noisy samples #°** and itf,’ff, desired performance
€4, maximum loop number Ny, .x, and n = 0.

Perform unbiased estimation for joint frequency
support identification by (67);

Reconstruct each signal unbiasedly by (70), and
evaluate its reconstruction performance €,y se by (75);

while (e,,,mse > €4)&&(n < Nimax)

Select the frequency component corresponding to the
largest magnitude in vector u¢. defined in (77) to join in
the frequency support, and update the frequency
selection matrices W5 and W correspondingly;

Update the reconstruction matrix ®% by (60) and
noise covariance matrix R; by (69);

Estimate the unbiased GFT coefficients by (70) and
evaluate the reconstruction performance €., s by (75);

n=n+1;

end while

selection matrix \II‘S‘ in (70) as

(®°1)'R, ayt = (B°)'R,} @5 uy,  (78)
where
R, =5>®% (5" (79)
Rewrite reconstruction matrix on shift order set £ ; by
L =[(@;)" (@) - (@) (©80)
and collect the noisy samples in joint sampling stage as
@t = ()" @) @) @D
The noisy GFT coefficients satisfy the following equation,
ut = L0 = i+ i’ (82)

where 27 = ®£7Q"n with R;,, the corresponding covariance
matrix as

R;s = M&>®*“7 (®57)T, (83)
The GFT coefficients can be unbiasedly estimated by
(®5)R- 1™ 7 = (@) "R @~/ 4. (84)

The unbiased signal reconstruction can afterward be modeled
as a convex optimization problem by estimating the GFT coef-

ficients &y, lto, ..., Uy as
omin_ Apfy + Aafo + Asfs + Aafa, (85)
Ui uz,...,upns
where
M
fr=">" I(®)R,} @yt — (®“)R,} @iy, (86)
m=1
M
fo = I(@“)Ra*" — (B)R @57 it , (87)
m=1
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M
fa=la® = i, (88)
m=1
M
fr=") Wi, (89)
m=1

and \; > 0 for ¢ = 1,2, 3,4, are the weights of the objectives
fi- In this convex estimation problem, the samples of individual
sampling stage contribute to objective fi, the data of joint
sampling stage is considered in f5, the result of joint frequency
support identification is included in fs3, and objective f4 aims at
minimizing GFT coefficients of the components that are not
included in the joint frequency support. The weights should
be specifically designed for applications. \; can be designed
according to the error f; feedback from the collected samples.
For example, if error f; is much greater than the other errors,
we may increase the corresponding weight \; to increase the
proportion of \;f; in the weighted total error of (85), which
may help to reduce the error f;.

Remark 5: We assume that the distributions of noise n,, on
each vertex are the same. Since the focus of our algorithms is
on sensor data gathering, we can independently measure the
data multiple times on very few vertices and estimate the noise
variance via sample averaging. If we have certain assumptions
on the sensor data, the noise variance can be adaptively estimated
in an online fashion using a Kalman filter [55] over each sampled
vertex.

Remark 6: For noiseless signals that are approximately K-
sparse, model (85)—(89) can also be applied to the joint sampling
and reconstruction of varying signals, by denoting R;} = I and
R} =1

Remark 7: The model (85)—(89) can be considered as an
unconstrained linear optimization problem. Hence, the solu-
tion with the smallest norm can be solved by weighted least
squares [56]. The problem may also be solved by optimiza-
tion solvers such as CVX [57], [58], where the norm of the
GFT coefficients may be considered in (85) by adding A5 f5 =
As oM |l || to the objective function.

VII. NUMERICAL STUDIES AND DISCUSSIONS

In this section, two examples (directed random graph and
sensor network data gathering) are presented to illustrate the
proposed optimal algorithms for joint sampling and recovery of
multiple varying signals. In all examples, we assume that the
frequency supports of the signals are varying and unknown. The
signal reconstruction performance is evaluated by normalized
root mean square error defined by
[ — 77" [l

T Iz ©0)

Parmse = 20log1o

When signals are reconstructed from noisy samples, we use
Pxrvise to measure the closeness between the recovered signal
and the true noiseless signal, hence, u,, therein should be the
ground truth noiseless signal.
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Fig. 2. Noiseless signal reconstruction over random graph with unknown
frequency support.

A. Joint Sampling on Directed Random Graph

In this example, directed random graphs with N = 100 nodes
are studied by including each edge in the graph with probability
p = 0.1, where the probability of both directions for a given pair
of nodes are the same. We perform joint sampling on 3 graph
signals, where the joint frequency support of the 3 graph signals
is designed by randomly selecting 20 frequency components.
The frequency supports of every 3 signals are varying slowly, and
each support is a subset of the joint support having 19 frequency
components. The GFT coefficients of the signals are randomly
generated and from a Gaussian distribution A/(0, 50). The ex-
periments are repeated 100 times with 300 varying signals. The
weights are given as (A1, A2, A3, A\g) = (1,1,0.1,0.1).

The average performances for noiseless signals are shown in
Fig.2.! We can observe that the proposed algorithm with optimal
sampling perfectly recovers the signals if the number of samples
in the individual sampling stage is more than 20. If the samples
are randomly collected, the performance would be worse when
the number of individual samples is not big enough, e.g., less
than 30 samples. The aggregation sampling [36] is performed
on only one vertex, where the shift matrix is considered by
Ssym = 0.5(S + S") to guarantee that the matrix is diagonal-
izable. The aggregation sampling only recovers the coefficient
of the first frequency component because the ratio of the first two
eigenvalues is big in this example, resulting in the case that all
the other GFT coefficients are close to 0. The performance can
be improved by randomized local aggregation sampling [38]
as the ill-conditioned property of the Vandermonde matrix in
signal recovery is overcome. The sampling method in [18] is
performed based on the low-frequency components since it
is unavailable for frequency support unknown problems. It is
difficult to provide a good performance because of the incor-
rect frequency support considered in the reconstruction. The
reconstruction based on Sobolev smoothness [48] and temporal

I'The codes are available at https://github.com/zIxiao- github/
JointSamplingOverDirectedGraphs.
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Fig. 4. Noisy signal reconstruction over random graph with unknown fre-
quency support.

difference smoothness [45] do not provide good performances
because the varying signals may not be smooth enough.

In Fig. 3, we show the adaptive frequency support selection in
the optimal signal reconstruction using 40 individual samples.
As the size of joint frequency support increases, the number of
GFT coefficients constrained by (89) decreases, and more GFT
coefficients can be freely designed in (86)—(88). That is, the
complexity of the reconstruction model is higher, and there may
exist the so-called over-fitting phenomenon. Firstly, the recon-
struction errors of collected samples and the whole signal both
decrease. As the size of frequency support increases, we may
have too many GFT coefficients to be determined, which could
be even bigger than the number of samples. The performance
of recovering collected samples improves but that of the whole
signal deteriorates. Hence, the size of joint frequency support
should be specifically designed using the proposed adaptive
selection algorithm.

Additive noise is considered in Fig. 4, where the average
signal-to-noise ratio (SNR) is 26 dB. We can observe that as the
number of samples increases, the reconstruction performance of
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Fig. 5. Directed graph of the US sensor network, where each sensor receives
data from 4 nearest neighbour sensors.

Combined
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Fig. 6. Graph frequency supports of 4 adjacent signals associated with the
10 largest GFT coefficient magnitudes and the corresponding joint frequency
support of the combined signals associated with the 14 largest GFT coefficient
magnitudes. Red: frequency components involved in the support. Gray: fre-
quency components that are not selected in the support.

the proposed optimal algorithm improves and would approach to
the signal-to-noise ratio of the original signal. When the number
of samples is not big enough, e.g., smaller than 40 samples in
individual sampling, the proposed greedy vertex set selection
together with graph shift order set selection result in smaller
errors than randomly sampling. When the number of samples
is big, the proposed unbiased reconstruction outperforms the
corresponding biased estimation. Similar to the noiseless case,
the performances of algorithms in [18], [36], [38], [45], [48] for
noisy signals still can be improved.

B. Joint Sampling for Data Gathering in Sensor Networks:
Directed Graph With N = 45

In this example, the dataset consisting of temperature mea-
surements is borrowed from [59], where the average daily tem-
peratures are collected from N =45 cities in US. We consider the
data over 360 days in this example and perform joint sampling
on every 4 graph signals. The graph shift matrix is defined based
on the locations of sensors by

S(n,m) = edi)m/\/ZkEN e_&iwk Zle/\/ e_d?nwl, 91)

where Jnm = dp,m/M> dn,m is the distance between the n-th
and m-th sensors, and i = 200. The neighbor set ;, will only
include 4 nearest neighbour cities of city n, and the other cities
will not be involved. The directed graph is shown in Fig. 5, and
the weights are given as (A1, A2, A3, A4) = (100, 100, 20,0.1).

In Fig. 6, we highlight the frequency components corre-
sponding to the 10 largest GFT coefficient magnitudes of each
signal by red, which are selected as the corresponding frequency
support of each signal. We can see that the adjacent signals share
many components in their frequency supports. The variation
of frequency supports of adjacent signals can be considered
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Fig.7. Noiseless signal reconstruction over US sensor network with unknown
frequency support.

as smooth. Since the first 10 frequency components do not
always have the largest GFT coefficient magnitudes, signal
recovery based on the estimated joint frequency support is able
to provide better performance than that based on low frequency
components [18].

In Fig. 7, to provide a fair comparison, the number of samples
in [18] is the same as that of the proposed joint sampling, i.e., the
number of individual samples plus the average number of joint
samples for each signal. As the number of samples increases, the
reconstruction performance of the proposed optimal algorithm
improves. The proposed joint sampling with random selection
method is repeated 20 times. Each time selection matrices Sy
and S are randomly generated, and we should guarantee that
®7" is invertible in random sampling. Based on aggregation
sampling method [36], only very few GFT coefficients can
be estimated. The performance of Sobolev smoothness-based
method [48] is close to the temporal difference smoothness-
based method [45]. Eigenvectors of the directed graph shift
matrix are applied to the proposed optimal sampling method.
The eigen-basis is non-orthogonal, and its performance is worse
than that by orthogonal basis when the same weights \; are
considered.

To demonstrate the performance of unbiased signal recon-
struction, Gaussian white noise is added to the temperature
measurements in vertex domain with an average SNR of 30 dB.
We can observe from Fig. 8 that the more samples collected, the
better performance of the proposed unbiased reconstruction can
be obtained, which will be close to the SNR of the noisy sig-
nal. The optimal reconstruction performance is also better than
the biased recovery. The experiments of aggregation sampling,
randomized local aggregation, temporal difference smoothness-
based method, and Sobolev smoothness-based algorithms are
repeated 20 times. Their performances are not better than the
proposed optimal reconstruction method. The reason may be
that only 4 graph signals are considered in each group and
the smoothness property of time-varying signals cannot be well
guaranteed for these methods. More signals can be considered
to improve the smoothness, however, it may also increase the
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Fig. 8. Noisy signal reconstruction over US sensor network with unknown
frequency support.
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Fig. 9. Reconstruction performances with different noise levels.

time latency to collect and reconstruct the sensor data. For
the proposed algorithms, the performance with eigen-vectors
is close to that by random sampling scheme.

We further evaluate our proposed optimal sampling and re-
construction algorithms on different levels of noisy signals. The
SNR ranges from 15 dB to 30 dB. We can observe from Fig.
9 that the proposed algorithms can well reconstruct the signals,
which are robust to the noise. For noisy signals, the noise may be
reduced by adding all the 4 graph signals together, and the joint
frequency support is thereafter identified based on the combined
signal. A bigger A3 will make f3 defined in (88) plays an larger
role in the signal reconstruction model, i.e., make the sum of
estimated GFT coefficients of each signal close to the GFT
coefficients of the combined signal, which may thereby help
to improve the signal reconstruction performance. In Fig. 10,
we show the reconstruction performances of noisy signals with
SNR = 25 dB based on different weights, where A3 ranges from
0.01 to 20. We can observe that, in this example, to guarantee
a good performance, A3 may not be too small, e.g., A3 = 20.
However, the performance may not be significantly improved if
the weight A3 is bigger than 20.
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Fig. 10. Reconstruction performances of the noisy signal (SNR=25 dB) with
different weights.

Fig.11.  Directed graph of sensor network with 100 vertices, where each sensor
receives data from 4 nearest neighbour sensors.

C. Joint Sampling for Data Gathering in Sensor Networks:
Directed Graph With N = 100

We further illustrate the proposed joint sampling and recon-
struction algorithms on a larger dataset that measures the daily
temperatures of N = 100 cities in South China [9]. The graph
shift matrix S is also constructed based on (91), and each sensor
receives shifted signals from 4 nearest neighbour sensors. The
directed graph is shown in Fig. 11. We consider 4 graph signals
together for the joint sampling, and demonstrate the proposed
optimal recovery algorithm over 360 days of measurements.
The weights are given as (A1, A2, Az, Ag) = (1,1,0.1,0.1). For
noiseless signal, we can observe from Fig. 12 that the proposed
optimal sampling and reconstruction outperform the sampling
with random selection. Its reconstruction performance is also
better than the aggregation sampling [36]. In this example,
if the number of samples is larger than 30, randomized lo-
cal aggregation [38] is better than aggregation sampling. The
performances of Sobolev smoothness [48] and temporal differ-
ence smoothness [45] based methods are close to randomized
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Fig. 12.  Noiseless signal reconstruction over sensor network with unknown
frequency support.

local aggregation method, which are repeated 20 times in the
numerical studies. Since the proposed optimal algorithms can
identify the frequency components associated with the largest
GFT coefficient magnitudes, its performance is better than that
in [18] using low-frequency components. The performance of
the proposed algorithm using eigenvectors of the directed graph
is close to the low-frequency components based method and can
be improved by exploiting the orthogonality of Schur vectors in
signal reconstruction.

D. Discussions of Computational Complexity

If we adopt the random sampling scheme, the computational
complexity of the proposed algorithm would still be O(N?3) ac-
cording to Remark 4. Hence, the computational complexity may
be the important limitation of the proposed method for signals
over large directed graphs. Based on the authors’ experience,
the size of graph available for our proposed algorithms may be
N < 500.

VIII. CONCLUSION

In this article, we investigate the sampling and reconstruction
of multiple time-varying signals over directed graphs and show
their applications in sensor network data gathering. Different
from existing methods that employ smoothness property of
signals in vertex domain, we consider signal reconstruction in
two steps based on the assumption that the graph frequency
supports of adjacent signals vary smoothly. Firstly, we design a
two-stage Individual-Joint sampling scheme to identify the joint
frequency support of the multiple varying signals by selecting
the frequency components having the largest GFT coefficient
magnitudes. Since the joint support is identified, each signal can
be reconstructed using only a few data collected in individual
sampling stage. Greedy algorithms are proposed for vertex set
selection and graph shift order selection, which enable a robust
signal reconstruction against additive noise because the mini-
mum conditional number property is held in each step of the
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greedy selection algorithms. For signals that are not strictly K-
sparse in real applications, an optimal unbiased reconstruction
method is proposed by fully exploiting the data collected in both
individual and joint sampling stages, where the joint frequency
support is selected adaptively and the signal reconstruction is
considered as a convex optimization problem with the aid of
the frequency components that are not included in the joint
frequency support. We show that the proposed sampling and
reconstruction methods can provide better performance than
several existing algorithms in sensor network data gathering.
Further study may be focused on the sampling of signals on
dynamic graphs to adapt to the possible graph topology change
in sensor network data gathering. For data analytics over large
graphs, efforts may be dedicated to sampling and reconstruction-
oriented graph partitioning.

APPENDIX

A. Proof of Lemma 1

Proof: Considering (2) together with (3), we have ufﬂn =
S‘u,, = QT",,. Hence, (12) holds by sampling the /-th order
shifted signals on v, and (14)—(16) hold if we collect all the
shifted signals for = 0,1, ..., L on v,,. Further collect shifted
signals over the whole set )y, and notice that u,, is K-sparse,
then

s ~ T~K
u, =®u, =2v u,,

(92)
holds. To uniquely estimate all the nonzero GFT coefficients
in &% | the rank of matrix ¥ should be equal to K. Hence,
oL > K is required for (92). By multiplying vertex selection
matrix C on both sides of (92), and considering matrix K
defined in (20), (21) holds if @ is invertible. Constructing an
invertible % will be discussed in Section V.

B. Proof of Proposition 1
Proof: Combine signals u;, by (37) and according to (92),

u® = ou (93)
holds. The size of matrix ® is o L-by-N. If the rank of ® equals
N, the combined GFT coefficients & can be uniquely estimated.
Hence, the number of sampled vertices o and the maximum
graph shifted order L should be designed to guarantee that o L >
N and rank(®) = N hold. The vertex selection matrix C y is
then performed on both sides of (93). If matrix ®Y in (41)
is invertible (which will be discussed in Section V-A), (42) is
straightforward.

Since the combined signal u is sparse, there are only |S|
non-zero GFT coefficients in &. The frequency components
corresponding to the non-zero GFT coefficients can hence be
identified as the joint frequency support of the combined signal.
This completes the proof. ]
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