A unified view of imaging the elastic properties of tissue
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A number of different approaches have been developed to estimate and image the elastic properties
of tissue. The biomechanical properties of tissues are vitally linked to function and pathology, but
cannot be directly assessed by conventional ultrasound, MRI, CT, or nuclear imaging. Research
developments have introduced new approaches, using either MRI or ultrasound to image the tissue
response to some stimulus. A wide range of stimuli has been evaluated, including heat, water jets,
vibration shear waves, compression, and quasistatic compression, using single or multiple steps or
low-frequency(<10 Hz cyclic excitation. These may seem to be greatly dissimilar, and appear to
produce distinctly different types of information and images. However, our purpose in this tutorial

is to review the major classes of excitation stimuli, and then to demonstrate that they produce
responses that fall within a common spectrum of elastic behavior. Within this spectrum, the major
classes of excitation include step compression, cyclic quasistatic compression, harmonic shear wave
excitation, and transient shear wave excitation. The information they reveal about the unknown
elastic distribution within an imaging region of interest are shown to be fundamentally related
because the tissue responses are governed by the same equation. Examples use simple geometry to
emphasize the common nature of the approaches20@5 Acoustical Society of America.
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I. INTRODUCTION aged before and after a step compres$ibhto determine
local estimates of strain. Strain imaging of tissue proved to

. The blome(_:hanlcal propertl_es of tlssue_s, par_tlcularl_y th e capable of displaying the relative responses of hard and
stiffness or tactile hardness of tissues, are inextricably linke : : 1415
Soft regions at high resolutiott:

to the function, the composition, and the relative state of the . . .
Compression can be applied as a single step or as a

tissue with respect to inflammation or patholdgyhus, a . . . ) .
number of approaches have been proposed to develop es?’f-a”es7 of step%‘?_Addltlona_I te(_:hmques |_nc|ude_ smglg-step
sheat’ and cyclical, quasistatic harmonic excitatBrwvith

mates ofin vivo tissue elasticity. Significant among these in .
Y. S0 g frequencies on the order of 5-10 Fz.

the late 1980s were Krouskagt al., using an M-mode Dop- . . ; .
Magnetic resonance imaging has also been combined

pler analysis of muscle tissue during externally applied . i )
vibration? and Satoet al, using full B-scan imaging of with shear wave excitation to perform magnetic resonance

20-23 -
muscle during vibration to follow the propagating shear&@stography(MRE). Inverse solutions have been ap-

waves and thus make a regional estimate of Young’s modRlied to the three-dimensional vector displacement field
lus (E).2 The milestone of creating an actual image of a re-available in MRE experiments to solve for unknown local

gion of interest, demonstrating the detection of a region oflastic parameters.

high stiffness, surrounded by softer material, was reached in  Another approach is to use a transient tone burst of shear
1988* This was extended to real-time imaging using slightlyWave excitation, instead of steady-state excitafitft. The
modified color Doppler scanning to image a vibration field, excitation stimuli can also be provided directly by acoustic
and finite element models were employed to demonstrate tH@diation force(ARF) from the ultrasound itseff;*” which
sonoelastic void produced by a relatively hard abnormality ircan be used to create transféif or harmonic tissue

an otherwise soft background material that contains a propalisplacements?** Together, these different approaches pro-
gating shear wave® These general results were later refinedvide a diverse and creative set of stimuli that produce mea-
and applied to a variety of anatomical and clinical tdsks surable changes in tissue. We seek to understand any com-
along with expansions of the theoretical basis for vibrationmonality that may exist among the set of approaches.
sonoelastograpHy® Meanwhile, Levinson, who had collabo- In the next sections, we examine a simple homogeneous
rated with Krouskop and Sato on the key muscle elasticitysotropic linear viscoelastic material under excitation by a
experiments, applied a number of vibrational and quasistatiprogressive set of displacements: compression, shear, quasi-
techniques to create localized estimates of muscle elasticitgtatic cyclic shear, and vibration. The material is considered
even during active contractidft** Independently, Ophir and with and without a small inclusion that has a slightly el-
colleagues developed an approach in which tissue was inevated Young's modulu€E) with respect to the surrounding
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material. It is shown that the elastic response within the ma- (X + x)V(V-u)+ u V2u=pi, (6)

terial under the different stimuli all belong within a common h he body f h i h b d

spectrum of elastic behavior, and some information concern? ere_t € body forces, such as Qfa"'ty’ ave been assume
egligible. This equation, with given boundary and initial

ing the inclusion can be derived from each of the responses€9"9! )
to the stimuli conditions, governs the general dynamic response of a ho-

mogeneous, isotropic, linearly elastic material to a force or
displacement excitation. If loads are applied slovdyasis-
II. OVERVIEW OF GOVERNING EQUATIONS tatically) or if the displacement response to a constant load is
, i . measured after all the motion has stopped, then the right-
Following the methods of continuum mechanics, thep,nq side of this equation is negligible and set equal to zero.
governing equations for a deformable medium can be Obyherefore, this equation governs the static, quasistatic, and
tained by applying, to any part of the medium, conservatlorbyn(,imiC (transient, harmonic, and wave propagalioe-

of linear momentum, given by sponses that can occur in response to applied loads.

d ) The lossy nature of biological tissues is often modeled

af f fPU dV:f f T(n)d5+f f f pbdV. (1)  using a viscoelastic model. Such a model can be imple-

v S v mented in these equations for a time-harmonic excitation by
assuming thak andu are complex. In this case, the wave or

This equation states that the rate of change of lineagnration amplitude will decay with distance from the exci-
momentum is equal to the resultant applied surface and bodyion point, and the loss will generally increase with increas-

forces. In this equatiom is the densityy is the displacement ing frequency. For a more in-depth presentation of the deri-

vector(with the superposed dot indicating a time derivative yation and solution of the elastic and viscoelastic equations,
b is the body force per unit mass vector, afifl’ is the e Kolsk§? and Achenbach?

traction vector on the surfac&(with outward unit normah) At times, it is convenient to represent the response in

of volumeV. , _ terms of waves propagating within the tissue. Two types of
Writing the traction vector in terms of the stress tensor plane wave, shear waves and pressure waves, propagate in-

dependently in the bulk material, interacting only at bound-
TW=g.n, (2)  aries. The shear wave equation can easily be obtained from
Eq. (6) by noting that there is no volume change as layers of
EH’laterial move in shear, transverse to the direction of propa-
gation, so the dilatatioiV-u=0. The shear wave equation is
pu=V-o+pb. (3 then

as

we can use the divergence theorem to obtain the differenti
form of conservation of linear momentum,

In measurements of elastic properties, the body forces 1.
(such as gravityare either negligible or their effects can be Viu= — U (7)
subtracted from the measured response. Therefore, the last Cs
term will not be considered further in this discussion. where the shear wave speed is

To complete the problem statement, the material behav-
ior must be specified. If the deformation is small enough, it . _ \/E ®)
can be expressed in terms of the infinitesimal strain tensor, s P

1{du; au This equation can either be solved in terms of standing
Eijzz(_ —) (4 waves or propagating waves, depending on the particular
conditions.
Then, the constitutive relation relating stress and strain Propagating p|ane pressure waves are irrotationaL that
for a linear-elastic, isotropic medium can be written as is, VXu=0 so u can be written in terms of a potential as
u=Vy. Using the vector identityv2u=VV-u— VXV Xu,
) we can obtain the wave equation f8i/ as

(5 1 -
2 —
where\ and u are called the Lameonstantsyu is also the VAV = g(v‘/’)' ©

shear modulug; is the elastic or Young’s modulus, ands P _
Poisson’s ratio. In this equation, the summation conventio@nd the pressure wave speed is

has been used angj; is the Kronecker delta equal to 1iif \/m
PR

+
0-'X]' X

14
€§it1-2,

0ij=(2ue€j+ N e dij) = €1k 0ij

(1+v)

=j and O otherwise. Cp=
In homogeneous regions, whexeand p are constant,
Egs.(3)—(5) can be combined to obtain an equation in terms  For typical biomaterials, the pressure wave speed is or-
of the displacement vector alone as ders of magnitude faster than the shear wave speed. Consis-
ﬁzuj &u, i tent with this statement, biological tissues are nearly incom-
=pu;, pressible with 0.49v<<0.5. In the limit, asr approaches 0.5,
the shear modulug.=E/2(1+ v)—E/3. Therefore, for a
or nearly incompressible material, a measurement of the shear

(10

N+ +
( M) &Xj aXi K (?Xj &XJ
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wave speectcs~E/3p can be used to obtain information () 4
about the stiffness of the material. Therefore, in elasto- y
graphic imaging experiments, the focus of attention is typi-

cally on the shear wave properties and not on pressure wave T Eo0.v
properties, which have already been investigated extensively
in ultrasonic tissue characterization studies.

Equation(6) can also be a starting point for the consid- Ly
eration of step-compression elastography experiments. For — > X
static displacement or very low-frequency cyclic motion, the
inertial terms are negligibly small. And for nearly incom-
pressible biomaterials, the divergen@e dilatation V-u is
nearly zero, so Eq6) reduces to Laplace’s equation, ©

V2u=0. (11) N

Solutions to Laplace’s equation depend on and reach y
their extrema on the boundary valuesuofFor simple geom-
etry, as will be shown in the next section, the solution for
u,(x) is linear withx, a fact that is assumed to be true in
most step-compression elastographic imaging experiments.

v
)

v
+

-—
-
v
o)

IIl. PROPOSED TECHNIQUES FOR ESTIMATING
ELASTIC PROPERTIES OF TISSUES

A. Step-compression imaging (© 4

For convenience we consider a two-dimensional case of -g
a linear viscoelastic, homogeneous, isotropic material with I S AN
tissue mimicking propertie€ in the kPa rangeyp (density ‘
near 1.0 g/cty and v (Poisson’s ratipin the range 0.4¢» |
<0.5, that is, nearly incompressible. This block of tissue-
mimicking material is of a rectangular cross section and is v
rigidly constrained along one face and further constrained by d
a parallel plate used for compression or other enforced dis- ) ) )
IG. 1. Schematic of static compresson experiment on a rectangular block

placements. We further assume that the tissue mImICklng mgo-f viscoelastic material constrained at position d, containg a small block of

terial is allowed tO_ slip freely along the tV\_’O con§traini_ng material. The larger block has Young's modulEg, density,p, and Pois-
plates so that the displacement and stress fields will be ind&en’s ratio, », while the smaller block has an elevated Young's modulus
pendent of position in thg direction. Body forces due to E’<2E,. (a) Block before(solid lineg and after(dotted lineg compression

gravity are assumed to be negligible The example is ShOW. the positivex direction by a rigid plate(b) General trend of the resulting
' isplacement field ,; vertical axig along a line parallel to the-axis

in Fig. 1. through the small rectangular inclusidie) Strain field(— e,; vertical axig
We assume that compression is applied at ttgyeand along this same line. The dotted lines indicate the perturbation caused by the
that images are obtained using some ideal imaging systerptesence of the inhomogeneity.
before and after the compression step. In the case of vis-
coelastic or poroelastic materials, the state of the materialeous regions undergo constant strain in this example, and
response and its image will be time dependent until sufficienhard inclusions result in locally reduced strain, except for
relaxation has occurred. Assuming that a dense field of disstress concentration effects that are localized near the bound-
placements can be estimated from the two images, in theries. This is demonstrated graphically in Figc)l The
homogeneous case, E@1) predicts that the displacement terms elastography and elastographic imaging generally refer
ux(x) will be linear with x, as shown in Fig. (b) (solid  to strain images produced in this way. As long as the overall
lines). In the case where a small inhomogeneous region otress produced by the compression is approximately con-
E'>E, (assumed here to be of relatively small contraststant over the imaging region, the strain image values will
E'/Ep<2), is present, a plot of displacement taken on a linegorrelate with local relative values &
bisecting the inhomogeneity will produce a local deviation
from the linear slope. The exact details depend on the preci
geometry and the stress concentration effédit the gen-
eral trend is shown in Fig.(lh) (dotted lines. As an alternative to a single compression step, one can
Although the presence of the inhomogeneity can be deapply a single shear step, obtaining images before and after
tected from inspection of the displacement estiméassum-  the deformation with some suitable imaging system. The dis-
ing reasonable elastic contrast and very high imaging signgllacement information is similar to that gained by compres-
to noise, it is convenient to display a strain image,,  sion, as shown in Fig. 2. Barbone and colleagues have
=du,/dx, as this produces a more intuitive result. Homoge-showrt’ that the shear experiment creates a result that is

S§. Shear step imaging
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FIG. 2. Static shear experiment on a same block shown in Fi@) Block

before(solid lineg and after(dotted lineg shear by a rigid plateb) Shear  FIG. 3. Cyclical quasi-static shear experiment on the block shown of Fig. 1:

displacement fieldu,; vertical axig along a line parallel to the x-axis (a) Block before(solid lineg and at peakdotted line shear. The applied

through the small rectangular inclusioft) Shear strain field along this shear is sinusoidal at low frequendyp) Peak shear displacemertisolid

same line. The dotted lines indicate the perturbation caused by the presenfige), along a parallel to the x-axis through the small rectangular inclusion,

of the inhomogeneity. are linear but slowly time-varyingc) Peak shear strain along this line is
also slowly time-varying. The dotted lines indicate the perturbation caused
by the presence of inhomogeneity.

complementary to the compression result when one consid-

ers the uniqueness of inverse solutions from these expere cyclic, quasistatic imaging

ments. However, the details of that subject are beyond the ) ) . ,
scope of this discussion. As in the compression step results If a shear step is repeated sinusoidally at a relatively

Eqg. (1) predicts that for a homogeneous medium displace-SIOW rate(e.g., at less than five cycles per segoritlen for

ment,u,(x) will be linear withx, which can be perturbed b most practical cases of tissues and organs, the inertial terms
Ty ' b y of the governing equations can still be neglected. The behav-

icinity of the inclusi . fh 'iaor can be described in the same functional form as the static
vicinity of the inclusion require treatment of the exact geom-case, but modified by the addition of a sinusoidal time-

etry and elastic contrast of the inclusion. However, Stres%arying term. Thus, if the shear plate of Fig. 2 is moved as
concentration effects are highly localized in the surrounding, (x=0)=U, cosw.t, where w,_ is low frequency, then

medium. As demonstrated in Fig. 2, a s.patllall de”_Va“Veuz(x)zU0(1—x/d)c05th for 0<x<d, and the resulting
can be employed to produce a more intuitive displaystrain is similarly time varying. This is shown schematically
where homogeneous regions exhibit constant shear straifh Fig. 3. The practical advantages of cyclic quasistatic meth-
€xy=(1/2)[ du,/dx+ du,/dy]. However, it must be under- ods over single-step methods are primarily due to the ability
stood that constant strain image values correlate with corto average and automate, thereby reducing noise and

stantE only under certain idealized, low-contrast conditions. artifacts®
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x/d x/d

FIG. 4. Displacement fields at the block surfasee Fig. 1 during application of a sinusoidal shear with frequencies above the quasi-static (@rfgiest
mode.(b) Second mode(c) Third Mode. (d) Result of many modal frequencies applied simultaneously as “chords.”

D. Shear wave vibration \/E
As the left vertical plate of Fig. 3 is displaced at higher Cs= 3p’ the shear wave speed.

frequencies, the time-varying inertial terms of the governing
equation cannot be ignored and the behavior of the medium In this case, we are explicitly treating the resonance as a
obeys the classic wave equation. one-dimensional problem for simplicity. For example, this
For a plane wave propagating in thedirection with  would be equivalent to having the medium extend for a great
particle motion in they direction[u,=uy(x,t) andu,=u, length in they axis compared to the dimensiah
=0], the shear wave equatidiq. (7)], reduces to a one- The first few eigenmodes are sketched in Fig&),4
dimensional equation of the form 4(b), and 4c). Note the presence of nodes and antinodes
within the eigenmode patterns at higher eigenfrequencies.
5 ) These modal patterns are observed in regularly shaped phan-
ﬂ: i ﬁ (12) toms and even in organs such as the liver at low frequencies
X2 c§ at? (lowest eigenmode®® These eigenmode patterns can make it
more difficult to visually identify regions of different elastic-

For regular geometries and simple conditions, with lowity-
loss or attenuation, the response of the medium will peak at However, the eigenmode patterns are unlikely at higher
specific eigenfrequencies, with standing wave or eigenmoddigenfrequencies, where the irregular shape of organs, imper-
patterns produced within the interior. Specifically, these ocfect boundary conditions, and loss all conspire against modal
cur when the frequency is such that odd multiples of quarterPattern. In any event, the orthogonal nature of the successive

wavelengths in the direction are created. These frequencieseigenmodes makes it possible and beneficial to combine dif-
are given by ferent frequencies into a multiharmonic excitation, which

tends to produce a uniform vibration field, free of nulls.
These multifrequency excitations are represented in Fig.
4(d), and have been referred to as “chord€.Regions of
inhomogeneity would then cause variations in the vibration

~2n—1/cq
4 \d

, where
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patterns that can be more easily identified when using mul-
tifrequency excitations.

These vibration patterns can be imaged in real time us-
ing modified color Doppler techniques and are generally re-
ferred to as vibration sonoelastography, or simply, sonoelas-
tography. Specifically, the Doppler spectral variance has
been shown to be proportional to the vibration displacement
amplitude in a sinusoidal steady stafeThis can be dis-
played as a color scale overlay on the B-scan image. It has
been shown by theory, by finite element modeling, and by
experiments that hard inclusions present as a void or local
reduction in the vibration pattethThese are illustrated in
Fig. 5. In this example of sonoelastography, it is not neces-
sary to take a spatial derivative, particularly in the case
where more uniform vibration patterns have been formed in
the background. However, in the case where lower frequen-
cies are employed, a derivative operation can be useful to
enhance the detectability of lesiohs.

E. Transient elastography

Transient elastography utilizes a short tone burst of vi-
bration. This can be related to sinusoidal steady-state excita-
tion by the use of Fourier transform relations. However, in
transient experiments the forward propagating wave can be
resolved and analyzed separately from the reflected waves,
and this can be advantageous in some situations. In either
case, the effect of an inhomogeneity is governed by the
elastic-Born approximatidhfor those cases where the inho-
mogeneity has limited elastic contrast with respect to the
surrounding background medium.

F. Detectability and resolution of issues

Of great concern in the lesion detection problem is the
practical limit on the detectability of a low elastic contrast,
small lesion in tissue, and the resolvability of multiple dis-
crete small lesions. We assume in this discussion a high
signal-to-noise ratio within the displacement field estimates
such that derivative operations are practical and we further
assume that background uniformity is nearly ideal.

Incident Vibration Amplitude u

Scattered Vibration ug

1004
50

o ©

X

Total Vibration u,

100"
50

o

10 Y

FIG. 5. Detectability and point spread function for a subresolvable elastic

For strain imaging, the general concept has already begﬂhomogeneity(top) Incident peak vibration amplitude field in a 2D region
introduced: after a derivative operation on the displacemendontaining a small innomogeneity with Young’s modutEis>E,. (middle)
estimations, hard inclusions will be displayed as a local reThe vibration field resulting from scattering by the inhomogenéitgttorm
gion of lower strain, surrounded by localized stress concenl®t@! observed vibration which is the sum of a and b.
tration effects in many cases. However, it is clear from the
sequence of operations that a hard inclusion must be larger For shear wave excitation in sonoelastography and
than the resolution scale of the imaging system. OtherwiséYIRE, the detectability and resolution issues are recast as
it is not possible to estimate displacements, and theivave phenomena. The incident shear wave must satisfy the
spatial derivatives of displacements, that fall exclusivelyshear wave equation[Eq. (7)]. In the elastic-Born
within the inclusion. If this is satisfied, and ignoring approximatiod a small elastic inhomogeneity at positiah
any stress concentration effects, the strain contragicts as a source of a scattered shear wave, and the strength of
e, (lesion) /e, (background) is directly proportional to this source is proportional to the elastic contrasg’ (
Eo(background)E’ (lesion), the inherent elastic contrast. —Eo)/E’, times the wave number squared, times the
The resolvability of multiple inclusions as discrete small le-strength of the incident shear waxe
sions is similarly tied to the imaging system resolution plus
any localized effects of stress concentration. In practice, ad- V2u+ k2u=Ak2<
ditional practical considerations of noise, decorrelation, and
displacement estimates, all complicate the issue of corfttast.

!

0
E’

Within the elastic-Born approximation, the resulting so-

S(X—x"). (13
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FIG. 6. Summary image showing the continuum from step displacement through dynamic vibration and multiple tones. The displacamésgiiedt in
each case. The solution for displacement in homogenous object is linear for the static case, sinusoidal for modal patterns at eigen-freqappmeshasd
a constant for multiple, simultaneous “chord” excitation.

noelastic vibration image will be comprised of the additionlimit the performance of elasticity imaging and reconstruc-
of a homogeneous solution to H3.3) (right-hand side equal tion schemes, along with the other practical limits from tis-
to zerg plus the scattered wave. This is depicted in Fig. 5. sue motion and loss mechanisms. Specifically, on the static
Conceptually, this means that even a very small poineaind low-frequency side of the continuum, tissue motion out-
inhomogeneity, even one well below the resolution of theof-plane, noise, and speckle decorrelation artifacts from ro-
imaging system, can be detected as a localized disturbance tations all limit the displacement and derivative of displace-
the form of a free space Green'’s function, that israfalloff, ment estimationd® At the other end of the continuum, the
as depicted in Fig. 5. This is similar to a small point sourcehigh losses or attenuation of shear waves above 200—400 Hz
of light detected(and then blurredby an optical imaging creates a practical limitation on whole organ penetration and
system, even though the point source aperture may be belopotential increases in lesion contrast that would otherwise be
the nominal resolution of the imaging lens. However, thepredicted from Eq(12). Lower bounds on correlation-based
strength of the inhomogeneity’s signature increases with indisplacement estimat®sand Doppler estimates of vibration
creasing frequency. Simulations and experiments have denamplitudes’® and MRE detection of vibratidrihave demon-
onstrated that the sonoelastic image contrast of lesions irstrated very fine scalénicron or below possibilities given
creases with increasing frequeficyntil other frequency- an adequate signal-to-noise ratio.
dependent effects, such as lossy behavior, present a practical There is another important topic of exact inverse solu-
upper frequency limitatiof° tions (of unknown elastic properties from the imaging data
This wave behavior limits the resolvability of two small that is beyond the scope of this paper. However, a few gen-
neighboring points since the Green’s function scatterearal remarks can be made. The exact inversion of static and
waves pattern produced by each has an inherent type of bluguasistatic cyclic compression cases requires knowledge of
which will add coherently when the two points are closelyboundary conditions that in most cases lie outside of the
spaced. Thus, no general claim for subresolution resolvabiimaged region of interest. Solving for the unknown stress
ity can be made, even though a general claim for subresoldield (including localized stress concentratipris difficult
tion detectability can be made. but necessary to utilize the local stress—strain behavior to
solve for elastic parameters. In shear wave propagation, how-
ever, local estimates of displacement and wave behavior can
be used to generate localized estimates of elastic properties,

A plethora of techniques for estimating and imaging the€ither through direct inversions or through forward iterative
elastic properties of tissue have been proposed, each o@@proaches. In all cases, the problem of noise in estimating
employing a unique excitation function to create displace-Spatial(or temporal derivative terms can be a major limiting
ments in tissue. We demonstrate, however, that the mosactor.
commonly utilized methods, from step-compression elastog-  In this paper we have emphasized the common ground-
raphy through Vibratior(sonc) e|astography, fall on a con- work, and common information, that is obtainable over a
tinuum of elastic behavior. The information that can be deWide range of experimental approaches to elastography.
rived from an ideal imaging system can be used, in each
case, to identify an inclusion that is defined by some elastiéaCKNOWLEDGMENTS
contrast compared to the background. However, the particu- . .
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