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Abstract—For nearly 100 y in the study of cyclical motion in materials, a particular phenomenon called “linear
hysteresis” or “ideal hysteretic damping” has been widely observed. More recently in the field of shear wave elas-
tography, the basic mechanisms underlying shear wave losses in soft tissues are in question. Could linear hysteresis
play a role? An underlying theoretical question must be answered: Is there a real and causal physical model that is
capable of producing linear hysteresis over a band of shear wave frequencies used in diagnostic imaging schemes?
One model that can approximately produce classic linear hysteresis behavior, by examining a generalized Maxwell
model with a specific power law relaxation spectrum, is described here. This provides a theoretical plausibility for

the phenomenon as a candidate for models of tissue behavior. (E-mail: kevin.parker @rochester.edu)
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INTRODUCTION

New imaging approaches have made it possible to infer
tissue properties from shear wave measurements at low
frequencies (40-1000 Hz). This has led to renewed interest
in the low-frequency visco-elastic properties of normal and
diseased tissues (Asbach et al. 2008; Barry et al. 2012,
2014a; Carstensen and Parker 2014; Catheline et al.
2004; Chen et al. 2013a, 2013b; Deffieux et al. 2009;
Kruse et al. 2000; Salameh et al. 2007). We are in the
early stages of understanding shear wave propagation in
soft tissues such as the liver, and a recent review paper
asked if a linear hysteresis mechanism could contribute
to the observed lossy behavior (Carstensen and Parker
2014). For nearly a century, in a variety of situations
from the movement of soil to waves in metals, it has
been recognized that the energy dissipation during cyclical
motion can increase as the first power of frequency, over an
extended frequency range (Kimball and Lovell 1927;
Mason and McSkimin 1947; Wegel and Walther 1935).
That implies that the losses per cycle are constant over
many octaves, and this behavior has been called linear
hysteresis, or “ideal hysteretic damping” (De Silva
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2007), a hypothetical loss element or process that creates
a constant phase lag between stress and strain over all fre-
quencies (Crandall 1997; Mason 1950; Theodorsen and
Garrick 1940). In the early 20th century, linear hysteresis
effects were thought to be prominent across a diverse
range of materials and conditions. Kimball and Lovell
(1927) at GE Laboratories reported that hysteresis was
found “over a considerable frequency range” and “for a
number of solids of very different physical properties.”
Later, Mason stated that “the component proportional to
frequency is the same as observed for most metals and
solid materials at low frequencies, and indicates the pres-
ence of an elastic hysteresis” (Mason and McSkimin
1947). Fung (1981:chs 7, 8) considered relaxation models
that approximate linear hysteresis for viscous biomaterials.
The issue of linear hysteresis is of continuing importance
in a diverse set of areas, including earthquake motion
and damping of structures (Makris and Zhang 2000;
Nakamura 2007) and, possibly, in shear wave
propagation in biomedical tissues (Carstensen and Parker
2014). We emphasize that in this Technical Note we are
not referring to the generic loading/unloading hysteresis
that is exhibited by all lossy materials, but are specifically
considering the special frequency-independent behavior
called “linear hysteresis” and other closely related names
(Caughey 1962; Crandall 1997; De Silva 2007; Inaudi and
Kelly 1995; Mason 1950; Muravskii 2004).
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Despite the simplicity of the classic, idealized fre-
quency domain description of linear hysteresis, it has
been difficult to find a practical, real, causal time domain
impulse response that produces hysteresis, and this prob-
lem has been the subject of numerous articles over the
past decade (Nakamura 2007).

The Kramers—Kronig relationship links and con-
strains the relationship between the real and imaginary
parts of a transfer function in the frequency domain,
based on the constraint that the impulse response of a
material is a real and causal function (Nachman et al.
1990; Nasholm and Holm 2011; Szabo 1995; Szabo
and Wu 2000). Nevertheless, the most straightforward
description of a constant phase shift in the frequency
domain is simply a transfer function with constant real
and imaginary parts, as given by Mason (1950). However,
if formulated to be consistent with a real impulse
response, the corresponding impulse response is an
acausal 1/t function (valid for both positive and negative
time 7), and this well-known transform pair resembles the
Hilbert transform (Bracewell 1965; Crandall 1963,
1970). Because physical objects respond in a causal
manner, the simple Mason formulation with constant
real and imaginary modulus is not realistic.

In Parker (2014b), we re-examined the fundamental
requirements for linear hysteresis and causality and
indicated that there is a diverse set of continuous, real,
causal analytic functions that provide linear hysteresis
behavior over a range of observable frequencies, but within
a set of constraints that permit only an approximation to the
classic formulation of constants. What remains to be seen
is how a physical model can approach the requirements of
hysteresis and, then, if these physical mechanisms actually
exist in soft tissues such as the liver. The first of these
requirements is established in this Technical Note.

THEORY

Necessary requirements for linear hysteresis

Under wave propagation, the requirements for linear
hysteresis are stringent because we require the attenua-
tion (the imaginary part of the wavenumber) to increase
linearly with frequency. This constrains the material
properties. For example, in a sinusoidal steady-state plane
shear wave propagation in an isotropic elastic material,
the general relationship is

T(w) = uS(w) (D

where T(w) and S(w) are the shear stress and strain at fre-
quency w, respectively; u is the shear modulus; and the
shear wave speed is ¢; = \/%, where p is the density

(Carstensen and Parker 2014). For many biomaterials

where Poisson’s ratio v approaches the incompressible
limit v — 0.5, the shear modulus can be approximated
by u = E/3, where E is the Young’s modulus, commonly
referred to as the “stiffness” (Parker et al. 2011). In a
lossy material, u or E can be described as a complex
quantity, for example, let u(w) = K(w) + jH(w); then
the complex wave number is

w w
k=—=0f—-jo=———— 2
o P K () +iH(w) @
p

Here, k is the wavenumber with real () and imaginary (o)
parts (Blackstock 2000). The attenuation coefficient « of
a propagating wave will therefore be a function of
frequency depending on K(w) and H(w). Expanding on
the real and imaginary parts of eqn (2), we have
(Carstensen and Parker 2014)

_ or |1 1
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the shear wave speed
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and the absorption coefficient
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Considering eqns (3)-(5), we see that if
Kz(w) + Hz(a)) = constant, and if K(w)/H(w) = constant,
then ¢, will be independent of frequency while o will be
linearly proportional to frequency. This behavior has been
traditionally associated with waves in a linear or ideal
hysteretic material since Mason (Mason 1950; Mason
and McSkimin 1947). However, this behavior can only
be observed in a passive medium if both K(w) and H(w)
are approximately constant over some extended
frequency range. We call this the “strict hysteresis”
criterion (Parker 2014b) and have already noted that
achieving the strict criterion, |H(w)| = H, and
|K(w)| = Ko, over all frequencies is not possible with
real, causal functions. Furthermore, none of the simple
models such as the Kelvin, Maxwell or Zener model
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have a constant imaginary component K(w), so a different
model must be established.

A physical model for linear hysteresis

In the simple Maxwell model of a series spring E and
dashpot 7, the stress relaxation curve ggg (¢) is a simple
exponential decay (Fung 1981:ch 2). If the applied strain
e(t) = goUnitStep(?), then

osr(f) = goEe™"  for =0 (6)

where the time constant 7 = n/E. It should be noted that
the single-time-constant exponential decay is not capable
of matching soft tissue stress relaxation responses, nor the
frequency responses (Carstensen and Parker 2014).

Now assume there are multiple relaxation compo-
nents within the tissue. In this case, if each component
contributes to the stress relaxation at its respective time
constant 7,, then the simplest model for this looks like
a parallel set of Maxwell elements (Fig. 1). This configu-
ration of multiple parallel elements and an optional single
spring element is the generalized Maxwell-Weichert
model (Fung 1981:ch 2; Parker 2014a). Generally, we
can write the stress relaxation solution for N Maxwell el-
ements as

ose(t) = D Aye™ (7)
N

where Ay are the relative strengths of the components
with characteristic relaxation time constant 7. In the
limit, as we allow a continuous distribution of time con-
stants 7, the summation becomes an integral, and A(7)
is the relaxation spectrum, which can be either discrete
or continuous, depending on the particular medium under
study (Fung 1981:ch 2; Lakes 1999). Given a material’s
A(T), we can write

©

osr(t) = J A(r)e7dr 8)

0

Now consider a specific power law distribution:

A(T) =Apr 1% 0<e < 1 )

Fig. 1. Parallel elements forming the generalized Maxwell—
Weichert model.
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One rationale for introducing this function is that the
power law distribution is frequently found to describe
fractal systems in nature and biology (West et al. 1999).
Specifically, power law distributions have been observed
in metrics related to branching vasculature, including
normal and pathologic circulatory systems (Gazit et al.
1997; Risser et al. 2007). However, here we restrict the
power law to be slightly greater than unity.

Now, substituting eqn (9) into eqn (8) and solving
yield

= A\
J <—°)e?dT:A0zfr(e) for >0  (10)
0

7(l+e)

where I'() is the gamma function. Taking the derivative to
find the impulse ;(f) response yields

01i4(t) _ t—eé(t)r(g)_gt(_l_g>F(S)a(l‘) (11)

where 6(7) is the Dirac delta and 6(¢) is the Heaviside theta
function. Taking the Fourier transform yields

—e(2m) abs(w) T'(—e)I (g) {cos (%r)-l-iSign(w)sin (%T)}

(12)

This describes the frequency response of the com-
plex shear modulus of the material that is characterized
by a relaxation spectrum A(7) of a power law just greater
than unity, as given in eqn (9).

RESULTS AND DISCUSSION

Under this model, the magnitude of the shear
modulus increases as »°, where it is assumed that € <
1. Because of the square root relation in eqns (2)—(4),
dispersion of shear wave speed will be even smaller,
proportional to ®*?, which results in a very slight
dispersion over many decades. The loss tangent,
determined by the ratio of imaginary to real parts of the
transfer function, is a constant over all frequencies and
is proportional to e(m/2). The shear wave absorption
coefficient will be nearly linear with frequency,
proportional to '™, As a specific example, let Ay = 1
and € = 0.01. The real and imaginary components are
plotted on log—log scales in Figure 2 from w = 1 to
2,000 rad/s. The increases in magnitudes are within 5%
over this range, which would be experimentally seen as
negligible shear wave velocity dispersion (eqn 4) and
nearly linear frequency dependence of attenuation (eqn
5). These are the characteristic properties of classic linear
hysteresis. It has also been found that the high-frequency
approximation to the fractional Caputo wave equation
(and the Kelvin—Voigt fractional derivative model) can
produce a nearly linear-with-frequency attenuation
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Fig. 2. Real (upper line) and imaginary (lower line) components of complex shear modulus from a generalized Maxwell

model with power law relaxation spectrum of the form 1/7' * . Vertical axis (log—log) magnitude is in kilopascals; hor-

izontal axis w is in radians per second. For the power law parameter € = 0.01, the shear moduli are nearly constant with
frequency over any decade of measurement.

proportional to |w|' * ¢ (Holm and Sinkus 2010:sect
IV.C). This establishes a corollary path using fractional
mathematical operators.

From the medical ultrasound literature, including
shear wave measurements in tissue, some of the lowest
tissue dispersion values have been reported from
ex vivo measurements on livers of leptin-deficient strains
of mice and rats (Barry et al. 2012, 2014a, 2014b). In
these lean, young groups, the dispersion was below
0.1 m/s per 100 Hz in the range 100-300 Hz shear
wave frequency. For example, a measured liver shear
speed of 3.2 m/s at 100 Hz increases to 3.3 m/s at
260 Hz shear wave in the lean group of Barry et al.
(2014Db). If fit to a power law, this corresponds to an &/2
of approximately 0.03 or an € of 0.06. However, indepen-
dent measurements of attenuation and the complex
modulus were not made, so further research is required
to evaluate the suitability of this model of linear
hysteresis.

CONCLUSIONS

The derivations indicate that there is at least one
physical model of tissue capable of exhibiting (approxi-
mately) the features of classic linear hysteresis. A gener-
alized Maxwell model with a simple stress—strain
relaxation spectrum that follows a power law distribution
slightly greater than unity will exhibit nearly constant
wave speed, a constant loss tangent and linearly
increasing attenuation across many decades of frequency.
This establishes a conventional physical model capable of

illustrating linear hysteresis. Whether or not any tissue
does, in fact, exhibit this behavior and the underlying
mechanisms are left for further research.
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