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ABSTRACT ARTICLE HISTORY

In this paper, we present a linear marching scheme to recover Received 23 December 2016
frequency-dependent complex shear moduli in viscoelastic models ~ Accepted 18 September
utilizing two sets of single component displacement data. The i

proposed method is designed to provide stable and accurate
estimation of the tissue viscoelastic stiffness parameters by solving
a first-order complex partial differential equation. To control the
exponential growth of the numerical error resulting from one of
the complex coefficients in the inverse equation, a modified upwind
discretization is utilized on the first-order derivative terms of the target
parameter. The algorithm is fully stablized when: (1) carefully chosen
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multiple data-sets are combined to eliminate the remaining complex
coefficient that contributes to exponential error growth; and (2) a
modified Tikhonov regularization is applied to the inversion method.
We obtain the stability result in the /2 norm so that the numerical
scheme is convergent at fractional 1/2 order. Its performance is
compared with the performance of the Algebraic Inversion Model
previously investigated. We present shear modulus reconstructions
from synthetic data, from laboratory phantom data and match
frequency-dependent complex moduli from phantom data to several
viscoelastic models. Since we have previously presented phase wave
speed images from interference patterns, we exhibit those images
here for comparison.

1. Introduction

Tissue viscoelastic stiffness parameters, e.g. shear moduli and viscosities, can have a wide
range of values in various pathological states. Thus the quantitative imaging of tissue
biomechanical properties may be a good indicator of cancerous or other abnormal tissues.
There is extensive work carried out to image tissue stiffness parameters from movies of
the interior tissue displacement created from sequences of ultrasound RF/IQ data-sets or
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Figure 1. Diagrams of viscoelastic models: (a) Kelvin-Voigt fractional derivative model; (b) Spring-pot
model; (c) Standard linear solid model.

sequences of MR data-sets during a variety of experiments: (1) static compression, where
the tissue is slowly compressed [1-7]; (2) harmonic oscillation, where up to two harmonic
sources are used to create propagating shear waves [8-17]; and (3) transient pulses, where
a travelling wave is created by a time-dependent point source or line source [18-26]. See
Ref. [27] for a review of the recent progress in this field.

In most of those elastography techniques, the medium is assumed to be purely elastic
and the shear modulus is considered to be a real quantity, neglecting the effect of viscosity
in shear wave propagation and shear modulus estimation. On the other hand, initial
biomechanical imaging at more than one frequency excitation show that there is strong
dependence of the value of the shear modulus in tissue on the vibration frequency. For
example, such initial studies have been carried out for prostate [28], breast [29], liver
[30] and brain elasticity [31]. The estimation of shear viscoelasticity, i.e. the complex
shear modulus, can not only offer additional information about tissue stiffness changes in
different pathological states but can also provide a potential indicator for malignancy and
disease detection.

In this paper, we aim to develop a stable complex partial differential equation, p.d.e.,
solver to reconstruct the complex shear modulus from individual frequency content of the
Fourier Transform of a single component of displacement data. We will test our algorithm
on synthetically generated data for three viscoelastic models. Furthermore, we will utilize
laboratory measured data from a gelatin phantom and fit the resulting frequency depen-
dence to three different viscoelastic models: (1) the Kelvin-Voigt fractional derivative
(KVFD) model [28,32-34]; (2) the Spring-pot (SP) model [31,32]; and (3) the Standard
Linear Solid (SLS) model, also called the Zener model [35]. The diagrams of these three
viscoelastic models are given in Figure 1.

The KVFD model and the SP model were established by the introduction of fractional
calculus into the field of viscoelasticity, where a time dependence ¢t~ is added in the stress
relaxation function. These models do not have finite propagation speed. However, in the
frequencies represented in elastography experiments, it is possible to select parameters so
that a good fit to the data can be obtained. Our third model, the Standard Linear Solid
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(SLS) model is causal; that is, it has finite propagation speed. It features an exponential time
dependence in the stress relaxation pattern. Compared with the simple Voigt model and
Maxwell model, the three viscoelastic models that we select in this paper have been shown
to provide a better match over a wide range of frequencies when comparison is made
with the viscoelastic response of tissue in prostate [28], brain [31] and liver [34]. Note
that we will only include the viscoelastic effect for the deviatoric part of the stress—strain
relationship because this is enough to provide a good data match.

Our equation systems for the three viscoelastic models in a plane strain model in 2D or
in 3D are then:

KVED : pii = VO - ) + V- | pre + —2 LI
PP = T TA—a) Jo G—97 s

SP:  puy=VQAV-)+V.

[ 2uets 1@
—eds
| (1 —a) Jo (t—5)%3s

t B
SLS: puyg=VOAV-)+V.|2ue+ 2/ e’(t_s)/rg—(p,ze)ds],
B (i s

where 7% is the displacement vector, € = 1 (Vi + (Vi)T) is the strain matrix, py is the
shear modulus in the Kelvin-Voigt fractional derivative model, u; is the shear modulus
in the Spring-pot model and y; and y; are the shear moduli in the Standard Linear Solid
Model; ©; = ns/ps is the relaxation time for the Spring-pot model and T = n/u3 is the
relaxation time for the Maxwell element in the Standard Linear Solid model; 7y and n
are viscosities. The experiments under consideration are designed to have most of the
information concentrated in one component [31,36] and we obtain data in only one image
plane and for only one component, designated as u; furthermore, we assume we are in 2D
and make a simplification. We use the corresponding viscoelastic wave equation models
for the measured component:

Ui f1 8
F(d—af) Jo (t—5)Y 3s

puy =V- [usu + (Vu)ds] +f, (1)

st [t 1 @
I'd—a;) Jo (#—5)%0s

puy =V [ (Vu)ds] +f 2)

t 0
pug =V - [mVu+/ e"“‘””a(ﬂzVu)dS] +f, 3)
0

in € x (0, T), where all the shear moduli zf, is, i1, (42, the viscosities 75, 7, the relaxation
times s, T and the density p are continuously differentiable. Note that this model can also
be achieved by assuming that: (1) the tissue is nearly incompressible so that the volumetric
change V - u is small enough to be neglected; and (2) the compression wave is small enough
and slowly varying enough that its contribution can be treated as noise; this would enable
the term V(AV - u) to be treated as noise in the data. Here, we have also included the force,
f, which represents the push used in the Acoustic Radiation force Crawling wave (ARC)
experiment (see Section 4 for details). In the numerical experiments, this force is derived
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from the acoustic fields simulated using Field II ([37], [38]). This push is described in more
detail in Section 4. For the forward problem, the medium is initially at rest:

u(x,y,0) = u(x,,0) =0 on €. (4)

For the inverse problem model, since the data is movies of the displacement u through-
out the 2D imaging region, we assume u(x, , t) is given throughout €2 and for an interval,
0 < t < T, in time. Then, we: (1) change some of the targeted parameters in the inverse
problem to be the ratio between the shear moduli and density or the ratios between the
viscosities and density, by making the commonly accepted assumption that p(x,y) is a
constant; and (2) extract individual frequency content of the measured data by Fourier
Transforming the forward Equations (1)-(3) to the frequency domain:

ny 19 ]
V. —_— — =
[“f Vet T e /0 (t—95)% 35 (V”)ds] P =0

v WsTs g 1 9
I'ld—as) Jo (¢t —95)%0s

(Vu)ds] —pug =0

—
t ]
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a(x, y,w) = 1 /+oo e "t y(x, y, H)dt
,}’, - ,\/2? o0 ’}’:
Vﬁ(x,}’) . Va(x’}'» wc) + ﬁ(xa)’)Aﬁ(x,}’, we) + wzﬁ(x:}’a we) =0, (5)

where
KVFD : i = (uy + np(iw)¥) /p

SP: B = ps(iot)™/p

. H2iwT
SLS : = )
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It is then, a complex shear modulus that needs to be recovered as a solution to (5) in the
inverse problem. In the inverse problem, notice that the force term, f, has been eliminated
as the source term will be located outside the imaging region.

Asan often employed practice in the inverse problem of elastography, a simple Algebraic
Inversion model can be achieved by making the locally constant assumption on fi and
neglecting the first derivative terms of ji from (5):

(%, ) Alt(x, y, @) + @2i(x, y, @) = 0, (6)

where we denote the approximated fi by i. Under some hypotheses, fi is a good approxi-
mation to fi; see [39] for a rigorously established bound on the relative difference. However,
when there are a number of high contrast inclusions in the viscoelastic background, solving
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the first-order partial differential Equation (5) can yield a more reliable estimation of shear
viscoelasticity.

This paper then considers the reconstruction of a complex shear modulus f by solving
the first-order p.d.e.: that is, find complex valued ji by solving the complex differential
equation

Vii(x,y) - Vi(x, y, wc) + i(x, y) Adi(x, y, o) + wfﬁ(x,y, w:) =0, @)

Compared with the previous development of p.d.e. solvers for recovering the real shear
modulus [40], the task here of recovering a complex shear modulus jt from the complex
first-order p.d.e. (7) presents additional difficulty. The equation itself is non-hyperbolic
and the exact solution of a non-hyperbolic system will exponentially grow with part of its
growth rate determined by the imaginary part of the complex coefficients of the first-order
derivative terms of /i [41,42]. In addition, even if we assume the complex shear modulus
possesses no variation in one spatial dimension and reduce the first-order p.d.e. to an
ordinary differential equation, the numerical error of the equation can still be exponentially
growing with its growth rate determined by the real part of the complex coefficient of the
zero-order derivative term of fi, [42]. It has been shown that simple upwind discretization
will fail and even a more advanced version of an upwind scheme is not stable for a non-
hyperbolic system [41].

In this work, even though our equation is not hyperbolic, we propose a linear finite
difference-based marching scheme to reconstruct ji by solving the inverse problem model
as an evolution type of p.d.e. To control error growth, we use a combination of carefully
selected multiple displacement data-sets. The numerical instability resulting from the
complex coeficients of the first-order derivative terms of fi is controlled by a complex
implicit upwind discretization and a modified Tikhonov regularization. The remaining
error growth due to the coefficient of the zero-order derivative term of f can be eliminated
by combining multiple data-sets in a novel way. The proposed scheme, where only one
first-order p.d.e. is solved but the coefficients are obtained using two data-sets, captures
the spatial variation of the real and imaginary parts of the exact solution successfully.
Note that this is not an iterative method as e.g. [43]. It has the potential of being faster
than an iterative method (see [44] for a review of methods). We present the numerical
method, the reconstruction of the complex shear modulus from simulated viscoelastic
wave propagation data obtained from three viscoelastic models for the cases where we
have two data-sets. Note that in all cases the numerical method exhibits stability but the
performance can differ as we will show. We also compare the images, obtained with our
algorithm, with Algebraic Inversion and show significant improvement. In addition, we
add noise to the data and show the effect on the images.

Furthermore, we apply this algorithm to data-sets obtained at the Center for Biomedical
Ultrasound at the University of Rochester. The experimental data is created with the new
Acoustic Radiation Crawling (ARC) wave experiment performed on a gel phantom with an
inclusion. For the laboratory data, we utilize the frequency content from eight frequencies
and provide parameter choices determined by an L? optimization best fit for each of the
viscoelastic models. Finally, for the laboratory data, we compare the complex modulus
recoveries with the interference pattern phase wave speed recoveries.
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The structure of this paper is as follows; In Section 2, we present finite difference dis-
cretization of the numerical scheme and the modified Tikhonov regularization. We exhibit
better results when we use multiple data-sets. In Section 3, we describe the viscoelastic wave
equation simulation and give the numerical reconstruction of the complex shear modulus
from synthetic data including results when we add noise to the synthetic data. In Section 4,
the experiment is described. Section 5 is devoted to the complex shear modulus recovery
from phantom data and the matching of frequency dependence to our three viscoelastic
models. In Section 6, we give a comparison of the complex modulus recovery with the
phase wave speed recovery. We do this since we have previously presented phase wave
speed recoveries from interference patterns. Finally, we conclude this document and give
ideas on future work.

2. Linear explicit-implicit upwind scheme

The first-order complex equation we use for the recovery of the complex shear modulus
i for individual frequency content can be changed to an evolution type of p.d.e. in the
following way assuming the x direction is a pseudo-time direction and i, # 0

[ty + Byl + AR = —0*t = fix+afiy +bil =, (8)
wherea = i, (i)™, b= Adl(ily) "', ¢ = —w?fi(1e) ! are all complex functions. We can

discretize the equation above with the following finite difference scheme where we assume
uniform discretization in y and denote the solution of the discretized problem on the grid
as;l,-,j, 1<i<M,1<j=<N:

Rit1j+1 — it1y Re(ai) < 0
o Relay

= = dy
Hitlj — Hij =
I—é-;—,] + aij + bi,jpl,,',j = ¢ij.
" sty = Basagen
dy

where dx; is the variable pseudo time step size. This explicit-implicit scheme can be
rewritten as: 5 -
Aifti+1 = Gdxi + Bifli» )

where A; = (A1), 1 < k < n, 1 <1 < nisa tridiagonal matrix with its nonzero entries
defined by the following formulas:

) dx;
Ajg =1+ szgn(Re(af,k))ai,qyi,
—sign(Re(a;x)) + 1 ‘ dx;

Apkk+1 = 5 a;,k—d}-, (10)
—sign(Re(a;x)) —1  dx;
Apgk—1 = 4 2 ' ai,ka-;',

and B; is a diagonal matrix whose entries are defined by (Bi)xx = 1 — b;xdx;. Notice that
|Azxk| = 1 and for every pair of Akt and Ajgk-1, there is only one of them that is
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nonzero. The stability and accuracy of the matrix inversion is determined by the norm
of the inverse of A;, i.e. the eigenvalues of A,TA;. Now let (Ej‘, ﬁj’) be the eigenvalue and

eigenvector pairs of ATA; andlet 0 < & < &) < ... <§&LIf £i > 1, then we solve (9) by
direct matrix inversion. Now suppose 0 < £] < 1, we solve the following equation instead:

Ail-:;i+1 = \/g (Eidxi + Bilii) = min (1, \/é'_f) (zidxi + Bil-:;vi) . (11)

This is equivalent to Tikhonov regularization on the matrix inversion, i.e. finding the
optimal diagonal matrix D; s.t.

I(D+AFap~'AT|, < 1.

To stabilize the matrix inversion, we consider Tikhonov regularization in /; norm.

Lemma 2.1: There exists a diagonal matrix D; for each A;, s.t.
Ifiirall < 1Zill2 for (D+ATA)fkir1 = ATg:
Proof: Consider the matrix inversion as a L?> minimization problem. That is, to find il

such that - - -
min (|Agtis1 — Gdx; — Biji;|l5 = min I(i;).

fueCr fiieCn
Assume [:L,' as known and let §; = Gdx; + B,fl,'. Then the minimization problem
minz I (/i,-) becomes

eCn o
. = -2

min [|A;&i+1 — &ill2-

f1;€C?

To minimize, we need to solve for

(ATA) i = AT ;. (12)

Now let (Sji, ﬁ]':) be the eigenvalue and eigenvector pair of ATA; and let 0 < &} < & <
.-+ < &L If &l > 1, then we can solve for

fiv1 =A7'g and  |@itillz < G2

Now suppose 0 < £ < 1, we can change the minimization problem by representing

Riv1 = D iy (i1 ﬁ})ﬁ,’: and get

_min [IDRis113 + Mifisrs — &3]
fip1€Cn
2

n o -
S G T+ MAidiiss — 33
2

i=1

= _min
fiy1€C"

= _min I;(ftit1), wherea >0,
fiy1€C?
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where D is a diagonal matrix with diagonal element d; > 0. In this case, we have
(D + Al A) gy = Al g, (13)

which is equivalent to

2 d & .
[LH-I = Z (4,-:—5') (A—lgi’ 77;)77; =
]

2

i 2
2 n & -
lisal3 =) ( p — g,.> [ X
j=1 j

g \7
< |max | —2= )| 147g13
J dj‘i‘fj

Since [[A™1[]; = —J, if we choose dj = gjf [(;;-'1")"1/2 - 1], we will have

NCE

i

— 1 5 e < 13l
<d,-+s;>\/§

The structure of the matrix A* ensures row diagonal dominance:

; dxi\ 2 dx;\?
i —_— : ___’ . __,
Akl = \/ (1 + IRe(@i)] dy) + (lrm(a,,k)l dy)

; dx;\? dx; )2 dx;
> D |Ayl= \[(IRe(a,;k)l——) + (l-’m(ai, )I—) = |aik|l 4
g,; “ dy “dy Yy

3. Numerical analysis
3.1. Stability

We first present the stability analysis of the linear explicit-implicit hyperbolic scheme
and then the fractional-order convergence result will follow with the regularization term.
Consider the homogeneous part of (8). We assume ji € C2(R) satisfies:

fx +a(x, y)ity + b(x, y)iL = 0, (14)

where the domain R = {(x,»)|0 < x < L,0 < y < L*}and a, b € C(R). Let ﬁ,- be the
numerical solution at the ith step x;. We first seek stability results where we show there
exists C, C > 0 with [ ﬁi+1”2 < C| [:Lillz so that independent of step size, at the final
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nth step l];:l,,, 2 < C ||f/',o ll2. Nevertheless, the constant C can be large. We improve on the
constant later in the paper by utilizing optimal data-sets.

Lemma 3.1: There exists a independent of step sizes such that
Misillz < € aill2s

where a = max;; |b;;|. Furthermore ”ﬁnHZ < e"‘LIIfLoIIz.

Proof: 1f Equation (14) is solved by regularized numerical scheme (11), we obtain:
izl < VST e - max 1 = byl - Nl < 1.

The second inequality follows directly. O

This proves the stability of the linear numerical scheme in the /> norm (see (2.4.2) from
[45]).

3.2, Error control with combination of multiple data-sets

To completely control the growth of the numerical solution, we invoke the concept of
combining multiple displacement data-sets to eliminate the zero-order derivative term of
it from the first-order p.d.e. that governs the inverse problem solution.

Suppose we have two individual sets of displacement data, u;, j = 1,2, obtained from
two separate experiments for the same medium, then both data-sets satisfy the same first-
order equation in the inverse problem:

flj,xﬁx + ﬁj,y[l,y + ﬁAﬁj + a)zﬁj =0,j=12.
By the following simple algebra step, we obtain:

Afp (B xitx + Tyl + A + @) =0
=
"Aal(aZ,xﬁx + ﬁZ,yIly + ﬁAﬁ2 + a)zftz) =0

(Al — Aty lin )y + (Aﬁzﬁl,y - Aﬁlﬁz,},)ﬂy = —wZ(Aﬁzfq — Aty iip) =

llx + aﬁy =0 (15)

where
Auzul,}, — Auluz,y —wz(Aazﬁl — Aalftz)

= ~ Ty y €= ~ A ~ A .
(Al x — Al ) (Atipty 5 — A1tz y)

Equation (15) is a simple transport equation with no zero-order derivative term of it and
if we use the same complex upwind discretization on the equation above, we will get:
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In this case, the contribution of solution growth from the b;;j term is gone as the zero-order
derivative term of ji is eliminated from the equation governing the solution of the inverse
problem. Provided that (Afipily x — Afl1ilyx) is bounded away from zero, the numerical
scheme is stable and the constant e*! in Lemma 3.1 is significantly reduced. Examples will
be given in the next section to exhibit the superior stability control of this data combination.

4. Performance test on simulated data

In this section, we test the linear explicit-implicit hyperbolic scheme and compare its
performance with the result obtained using the Algebraic Inversion Method.

The forward simulation has many similar features as that given in [36]: here, we solve
the viscoelastic wave equations for all three viscoelastic models

B t
1
KVED : puy =V - | sV o+ —2

]
FTd-ap) Jo t—9Y E(V”)ds] 7

[ s 138
SP: =V. —(Vu)ds s
Pue =V | Fi—ay Jo s as " ¥ ]+f

t a
SLS: pup=V-|mVu+ f e"(“‘)/’é—(quu)dS} +f.
B 0 s

In this study for our forward simulations, we allow all stiffness parameters (with the
exception of af, &5, and 7) in the viscoelastic model to be spatially varying, which effectively
provides spatial dependence for both the real and imaginary parts of the complex shear
modulus fi. The forcing function f for all three models is generated by Field II, a program
for simulating ultrasound transducer fields and ultrasound imaging using linear acoustics.
To simulate the acoustic radiation force used in the ARC experiment, we used the physical
parameters of a specially built transrectal transducer as inputs to the Field II simulation. The
pitch of the transducer array was 203 microns and the centre frequency was approximately
5 MHz. Using these parameters, a two-dimensional intensity function was calculated using
Field II. The simulated intensity map is assumed to be proportional to the applied force,
using the following equation ([46]):
_2al

f==
where & is the absorption coefficient, I is the temporal average intensity, and ¢ is the speed
of sound in water. Using this relationship, the simulated intensities can be used to derive
the force for a 250 ps pushing pulse as used in the experiment (see Section 5 for more
details about the experiment). We note that with this forcing function we do not compute
the scattered field as in [36] and then add the scattered field and a closed form incident
field. Here, we compute the total displacement directly.

We use a second-order finite difference scheme in time and space to discretize the
displacement in the forward equation. We assume the Sommerfeld radiation condition
for the wave and implement a second-order split-field perfectly matched layer absorbing
boundary condition around the computational domain to prevent numerical reflections
of outgoing waves (see [36,47]). To avoid numerical problems in the inverse problem,
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Figure 2. Exact value of complex modulus at frequency 25 Hz(KVFD), 20 Hz(SP) and 12.5 Hz(SLS): (a) real
part, KVFD model; (b) real part, SP model; (c) real part, SLS model; (d) imaginary part, KVFD model; (e)
imaginary part, SP model; (f) imaginary part, SLS model. Notice that in all cases, the imaginary part is
smaller than the real part. The units for the images are KPa.

the so-called ‘inverse crime’, we use the synthetic data from the forward simulation on
the forward problem computational grid to generate a new set of displacement data on
a different grid. To do this for each time frame, we first make a two-dimensional cubic
spline interpolation and then sample the interpolated displacement on a new mesh. The
grid size of the new mesh is two-thirds of the grid size of the old mesh used in the forward
simulation.

We Fourier Transform the data-set in time and extract content at each of several
frequencies. In each case, to compute the numerical derivatives of the complex data, we
first separate the phase and the amplitude as # = Me'. The derivatives of i are then
calculated in terms of derivatives of M and ¢ by an averaging method (see [48]) with a 3 by
3 window to eliminate numerical noise. To resolve the jump discontinuities in the wrapped
phase ¢, we utilize an L! minimization procedure (see [49]) to perform multidimensional
phase unwrapping. :

For the linear hyperbolic forward problem p.d.e. solver, we generate two sets of data
from two different simulations: one with the Field II push on top of the domain and the
other with the Field II generated push at the bottom of the domain. The time step size
used during the simulation is 0.5 ms. These two individual data-sets and their numerical
derivatives are used separately or together, as described in Section 3, and then fed to
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the linear p.d.e. solver. For the Algebraic Inversion method, we only use one of those
two data-sets to compute numerical derivatives and the application of it is much more
straightforward. The results given in this section are obtained from frequency contents at
20.80 Hz for the KVFD model, 16.65 Hz for the SP model and 19.13 Hz for the SLS model.

For all three viscoelastic models, the real and imaginary parts of the exact shear modulus
have two elliptical inclusions in a constant background. The input parameters to the
simulation are defined using the following procedure:

(x cos (27/5) + (y + 0.0025) sin (27/5))>
0.0025

g(x,y) = Amax (0.00152 -

_ (xsin (27/5) — (y + 0.0025) cos (27 /5))? .
0.02 : )

(x cos (— 27/5) 4 (¥ + 0.0025) sin ( — 27r/5))?
0.002

+B max (0.0032 <

_ (xsin (= 27/5) — (y +0.0025) cos (— 21 /5))?
0.015

,0) + o

KVED : uf = g(x,9), o = 1,nf = 0.5uf, 0r = 0.25;A = 0.25¢-}-6,B = 0.6e + 5
SPR s = g(x,y), o = 2,7, = 0.002, s = 0.25,A = 1.2e + 6,B=0.3e + 5

SIS =1 = elx, V) o =20 =0.01;4 = 12e £ 6B = 0.3 1 6

We present numerical reconstruction results from three synthetic data-sets, two data-
sets for each of the three viscoelastic models. In Figure 2, we show the true values of the
real and imaginary parts of the modulus ft in the KVFD, SP and SLS models.

In Figure 3, we present reconstruction results that are computed from two data-sets for
each model using Equation (15). Note that the recoveries of the real and imaginary parts
of the complex modulus captures the size and the location of the inclusion perfectly while
undershoots the amplitude of the exact value. This is due to the regularization effect on
the growth of the numerical solution. Lastly, the Algebraic Inversion results are presented
in Figure 4. It is very clear that the Algebraic Inversion is much less reliable in recovering
the complex shear modulus in this practical simulation set up.

Finally, we present results from noisy synthetic data. We added 1% Gaussian noise
to the synthetic data and reconstructed the complex modulus using our regularized
complex elastographic hyperbolic solver. In Figure 5, the recovery from two data-sets
is demonstrated. Our numerical solver captures the location and the size of the inclusions
but the amplitude is underestimated. Note that the imaginary part of the shear modulus
degrades, with the addition of noise, more than the real part of the shear modulus.
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Figure 3. Recovery from two data-sets: (a) real part, KYFD model; (b) real part, SP model; (c) real part,
SLS model; (d) imaginary part, KVFD model; (e) imaginary part, SP model; (f) imaginary part, SLS model.
The units for the images are KPa.
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5. Phantom experiments

The Acoustic Radiation force Crawling wave (ARC) experimental investigation was con-
ducted at the University of Rochester. A GE Logiq 9 ultrasound system was modified to
collect the data required to generate the synthetic ARC wave displacement time histories.
A special research scan sequence format was developed to allow a sequence of pushing
and tracking vectors to be fired with the desired timing. The duty cycle of the overall scan
sequence was 0.35% to avoid thermal limits of the components. The sequence is designed
to provide displacement data for a region of interest (ROI) that is typically about 18 mm,
though this can be adjusted. The ROI is made up of 31 vectors or locations for which the
data was collected. Figure 6 shows the layout of the ROI. The 31 vectors are spaced equally
across the ROI, with a spacing of roughly 0.6 mm. For each vector location there is a series
of push and track firings. Figure 7 shows the scan sequence that occurs for each location.
These sequences consist of a set of reference firings, a push vector on the left side of the
ROI, followed by a series of tracking vectors. This is followed by a pause to maintain the
duty cycle below thermal limits. Then a push pulse is fired on the right side of the ROI,
and this push is also followed by a series of tracking vectors. These tracking vectors are
followed by another pause to maintain the duty cycle. This sequence is repeated for each
location in the ROI. The left and right push locations are the same for all the vectors in
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Figure 4. Recovery from algebraic inversion: (a) real part, KVFD model; (b) imaginary part, KVFD model;
(c) absolute value of the error of real part, KVFD Model; (d) absolute value of the error of imaginary part,
KVFD Model; (e) real part, SP Model; (f) imaginary part, SP model; (g) absolute value of the error of real
part, SP model; (h) absolute value of the error of imaginary part, SP Model; (i) real part, SLS Model; (j)
imaginary part, SLS model; (k) absolute value of the error of real part, SLS model; () absolute value of
the error of imaginary part, SLS Model. The units for the images are KPa.

the ROI, but the tracking locations are moved across the ROI The tracking vectors are
fired at a pulse repetition rate of 2.5kHz. The entire sequence for all 31 locations takes
about 4.5 s to collect. Complex baseband demodulated data (IQ) for each of the reference
and tracking vectors was stored for offline processing. The sampling rate of the IQ data
is 10 MHz. The IQ data was processed to calculate the axial (toward or away from the
transducer) component of the displacement for each location as a function of time.

A gelatin phantom with homogeneous background (approximately 5% gelatin) and a
circular finger inclusion of higher stiffness (approximately 10% gelatin) was constructed.
The gelatin phantom with the finger inclusion was scanned using the specially designed
scan sequences on the modified GE Logiq 9 using a specially built transrectal probe. Two
sets of displacement data were collected in rapid succession using the sequence described
above. One generated a pushing force which was peaked on the left side of the region of
interest (ROI) and the other generated a pushing force which peaked on the right side of
the region of interest. The entire sequence was repeated multiple times and averaged to
improve the signal to noise ratio. The end result is two axial displacement vs. time profiles
for the 2D ROL u(x, y, t) and v(x, y, t).
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Figure 5. Recovery from two data-sets: (a) real part, KVFD model; (b) real part, SP model; (c) real-part SLS
model; (d) imaginary part, KVFD model; (e) imaginary part, SP model; (f) imaginary part, SLS model. The
units for the images are KPa.

6. Performance test on phantom data

The time trace from each displacement data-set contains 48 time steps with 0.3 ms spacing
between samples. We synthetically extend the time trace to 400 time steps setting the
displacement equal to zero where we have no data measurements. Then we Fourier
Transform the data in time. We use the extended and transformed data from both
displacements at 9 frequencies ranging from 175 to 275Hz with 12.5Hz spacing to
reconstruct the complex modulus with our complex marching p.d.e. solver for Equation
(8). Unlike the case of synthetic data, we applied scheme (12) instead of (13). We removed
the regularization here since the additional regularization on the numerical solution
often gives unacceptably over-regularized results from the exceptionally noisy measured
phantom data. The acceptance criteria of numerical results comes from the comparison
between our numerical recoveries and the targeted viscoelastic parameters used in [50].
After we obtained the real and the imaginary parts of the complex modulus, we use a total
variation minimization procedure (see [51]) to improve the contrast between the high
speed and background regions. :

In Figure 8, we present the recovery of the real and imaginary parts of complex shear
modulus for this finger inclusion phantom from the complex marching p.d.e. solver and
the Algebraic Inversion method together with the B-mode image. For each image, the
vertical axis extends from 0.0192 to 0.0338 m with a discretization of 0.000077m while the
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Figure 6. Region of Interest (ROI) in the experimental set-up. The depth is 40 mm and width is 18 mm.
The focal depth is 25 mm. The ROl is made up of 31 vectors or locations where data are collected.
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Figure 7. Graphic display of scan sequence at each location. Horizontal axis is time.

horizontal axis extends from 0.003 to 0.015 m with a discretization of 0.0006 m. The lower
bound of the colourbar is 15m/s and the upper bound of the colourbar is 40 m/s. The
frequency content utilized in this recovery is obtained at 243.75 and 268.75 Hz. Compared
with the Algebraic Inversion result, the linear hyperbolic solver with two data-sets has a
recovery that is more consistent with the size and location of the inclusion. The location of
the recovery is however somewhat shifted. Notice that the real part of reconstruction results
obtained with the complex marching p.d.e. solver and two data-sets in these two different
frequencies exhibit a better correlation with the B-mode image than the imaginary part of
the recoveries. This is consistent with the results from synthetic data as the imaginary part
of the complex modulus is generally more difficult to reproduce than the real part.
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Figure 8. Recovery from phantom data: (a) B-mode image; (b) real part, p.d.e. solver at 243.75 Hz; (c) real
part, p.d.e. solver at 268.75 Hz; (d) real part, Algebraic Inversion at 268.75 Hz; (e) imaginary part, p.d.e.
solver at 243.75 Hz; (f) imaginary part, p.d.e. solver at 268.75 Hz; (g) imaginary part, Algebraic Inversion
at 268.75 Hz. The units for the shear modulus images are KPa.

With the recovery of complex shear modulus /i at nine different frequencies, we
calculate the average value of the real and imaginary parts of the shear modulus inside
the inclusion where the location of the inclusion is determined by edge detection in the
B-mode image. Then we determine the viscoelastic parameters in all three viscoelastic
models by minimizing the error with a least-square fit:

N
1
x =5 2 VIRe(u(@i) — i (@) + [m(i (i) — i @),

i=1
where fipr(w;) is the exact model-based complex shear modulus that is determined by:
KVFD : (i) = py + ny (i)™

Spring-pot : iy (wi) = ps(iwiTs)™

H2iw;T
iot + 1

" Zener : am(wi) = u1 +
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Table 1. Fitted viscoleastic parameters.

KVFD model f ng af
Value 10.03 KPa 0.0.03KPas 0.84
FD model s Ts o
Value . 5.18 KPa 0.01s 0.50
SLS model 1 175 T
Value 11.07 KPa 77.13KPa 0.0001s

with wg, 05, af, fs, Ts, Uss 11> U2 and 7 being the undetermined parameters. In Figure 9,
the average value of the real and imaginary parts of the complex shear modulus recovery
inside the inclusion is plotted against frequency together with the fitted curves for all three
viscoelastic models. The plots of the averaged values exhibit an increasing trend with the
increase of frequency. We give our fitting results of the viscoelastic parameters in Table 1.
We note that the best-fit curves capture the increasing trend of the shear modulus values.
In Figure 10, for completeness, we show the wave speed plot calculated from the average
complex modulus values using a local plane wave assumption [35], along with the wave
speed plots calculated from the best-fit complex modulus curves using a local plane wave
assumption:

i
=
Rey/ @
In Figure 9, the average value of the real and imaginary parts of the complex shear modulus
recovery inside the inclusion is plotted against frequency together with the fitted curves for
all three viscoelastic models. The plots of the averaged values exhibit an increasing trend
with the increase of frequency. We give our fitting results of the viscoelastic parameters in

Table 1. We note that the best-fit curves capture the increasing trend of the shear modulus
values.

ela).=

7. Comparison with phase wave speed

In the previous sections, we used the two data-sets to recover the complex shear modulus.
In this section, we compare those results to the results obtained when we combine the two
data-sets in a different way and recover the phase wave speed.

The two data-sets can be combined to create a synthetic interference pattern. The idea
here is to obtain something similar to a crawling wave using two independently collected
data-sets. We apply the delay/add procedure described above to synthetically extend each
data-set in time, using a time shift of NAt, obtaining

un(x,y,t) = Zu(x,y,t — nNAt), (@ t) = Zv(x,y,t — nNAt).

n n

After filtering around the repetition frequency wy = 27 /(N At), we have

un(x,y,t) = an(x,y) cos[on (t + én(x, )],
N (x, ¥, 1) & by (x, ) cos[wn (t — @n (X, ¥))].



Downloaded by [The British Library] at 06:54 19 December 2017

INVERSE PROBLEMS IN SCIENCE AND ENGINEERING @ 19

fitting of real part of complex modulus recovery
T T

(a) b T T T T T T .I
15 -
145 - -
14~ =
g
>4 135 - -
18 =
125 - -
12
18 I I L I 1 o L It 1
175Hz 187.5Hz 200Hz 212.5Hz 225Hz 237.5Hz 250Hz 262.5Hz 275Hz
5 fitting of imaginary part of complex modulus recovery
o T T T T T T T T T
(b) °r ]
we -1
16 - -
15 = -
©
Qo 14 P
X
13 —
12 —
1 b L) s E
10 = Seem-” = d
9 1 1 1 1 1 1 1 1 1

175Hz 187.5Hz 200Hz 212.5Hz 225Hz 237.5Hz 250Hz 262.5Hz 275Hz

Figure 9. Average value inside the inclusion and corresponding fitted curves from all three viscoelastic
models: (a) real part; (b) imaginary part; red curve is KVFD model, black curve is SP Model, green curve is
Zener Model, dotted red line with green blocks is the averaged value inside the inclusion.
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Figure 10. Wave speed calculated from average complex modulus values in the inclusion, along with
wave speed calculated from best-fit complex modulus curves.

The synthetic interference pattern is computed as the variance over one period of the sum
of the left time trace and a time-delayed version of the right time trace:

1 to+NAt "
wN(x,yt) = —— un(x,y,5) + ¥n(x, .t + 5)]“ds.
N (%, y5 ) NAt/t-o [in (x, 5 8) + VN (X, y )]
After filtering to remove the zero-frequency terms, we have

WN(x,y,t) & an(x, y)bn (%, y) cos[on (—t + dn (x, y) + on(x, ¥))].
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Figure 11. B-mode image (left) and recovered shear wave speed images using repetition frequencies
277.7 Hz (left) and 416.6 Hz (right), corresponding to time shifts of N = 12 time steps and N = 8
time steps, respectively. The units on the horizontal and vertical axes are meters and the units on the
colourbar are m/s.

Thus the phase wave speed of the interference pattern is

1 __ &xy; oN)
[Vén(x.p) + Von(x.y)| 2 |cos B(x,)/2)|

en(x,y) =

where c; is the shear wave speed and 6 is the angle between V¢y and Vgy. This relation
is similar to the relation between the crawling wave speed and shear wave speed in [49].
We recover the interference pattern phase wave speed using either an L!-minimization
phase-unwrapping method or a local cross-correlation method. Both of these methods are
described in [49]. We approximate the angle 6 by 0, and then we obtain an approximation
of the shear wave speed using
Ce P 20N

In this case, @ A 0 is a reasonable assumption because the two waves are nearly plane
waves propagating in opposite directions in the imaging region. If this were not the case,
we would recover the shear wave speed from the interference pattern using the method
described in [36].

In Figure 11, we show the phase wave speed images that we obtain from the interference
pattern using time shifts NAt = 12At and NAt = 8At. These time shifts correspond
to repetition frequencies of wy = 27 * 277.7 and wy = 27 * 416.6, respectively. Since
the images obtained from the L!-minimization phase unwrapping method and the local
cross-correlation method are nearly identical, we only show one set of images. These
images illustrate that we are able to identify the stiff region using the phase wave speed
method, and that we are able to capture the frequency dependence of the phase wave speed.
We note that the inclusion can appear elongated in the vertical direction. This happens
occasionally for the complex modulus recovery method presented in the previous sections
of this paper. However, this elongation happens much more frequently in the phase wave
speed recoveries. The source of this elongation is still under investigation.

8. Conclusion and future work

We developed a linear explicit-implicit hyperbolic solver for recovering the complex shear
modulus from a first-order complex p.d.e. model. We show the numerical scheme is stable
with a combination of multiple displacement data-sets and a modified Tikhonov regular-
ization term. Compared with the Algebraic Inversion method previously investigated (see
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[39]), the linear hyperbolic p.d.e. solver is more stable when the shear modulus is rapidly
changing. To preserve the sharp contrast of the shear modulus between the phantom
inclusion and the gel background, we applied the complex p.d.e. solver to the phantom
data-sets without regularization. The growth of the numerical solution is under control and
better reconstructions of the shape and size of the inhomogeneity have been yielded than
the Algebraic Inversion method. Compared with the phase wave speed recovered from
the synthetic interference pattern, the complex modulus recoveries show less elongation
of the inclusion in the vertical direction. The average value of the real and imaginary parts
of the complex shear modulus recoveries exhibits frequency dependence consistent with
viscoelastic models. We have also provided viscoelastic parameter choices for three specific
viscoelastic models by a least-square fitting of the complex shear modulus recovery. For
the gel phantom experiments, all three models show a similar qualitative trend for the
frequency-dependent complex shear modulus.
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