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Abstract—The propagation of shear waves from impulsive forces is an important topic in elastography. Obser-
vations of shear wave propagation can be obtained with numerous clinical imaging systems. Parameter estimations
of the shear wave speed in tissues, and more generally the viscoelastic parameters of tissues, are based on some
underlying models of shear wave propagation. The models typically include specific choices of the spatial and
temporal shape of the impulsive force and the elastic or viscoelastic properties of the medium. In this work, we
extend the analytical treatment of 2-D shear wave propagation in a biomaterial. The approach applies integral
theorems relevant to the solution of the generalized Helmholtz equation, and does not depend on a specific rheo-
logical model of the tissue’s viscoelastic properties. Estimators of attenuation and shear wave speed are derived
from the analytical solutions, and these are applied to an elastic phantom, a viscoelastic phantom and in vivo liver
using a clinical ultrasound scanner. In these samples, estimated shear wave group velocities ranged from 1.7 m/s
in the liver to 2.5 m/s in the viscoelastic phantom, and these are lower-bounded by independent measurements
of phase velocity. (E-mail: kevin.parker@rochester.edu) © 2018 World Federation for Ultrasound in Medicine
& Biology. All rights reserved.
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INTRODUCTION

A number of techniques have been developed to esti-
mate and image the elastic properties of tissues (Doyley
2012; Parker et al. 2011). These provide useful biome-
chanical and clinically relevant information not available
from conventional radiology. A subset of techniques utilize
acoustic radiation force from short-duration pushing pulses
as an initial condition, which then results in a propagat-
ing shear wave. Through tracking of the propagating wave,
the shear wave velocity can be estimated, and this yields
the Young’s modulus—or stiffness—of the material
(Sarvazyan et al. 1998). A variety of approaches employ-
ing radiation force, with important clinical applications,
have been developed (Fatemi and Greenleaf 1998; Hah
et al. 2012; Hazard et al. 2012; Konofagou and Hynynen
2003; McAleavey and Menon 2007; Nightingale et al. 1999;
Parker et al. 2011).

In lossy tissues, however, a propagating shear wave
produced by a focused ultrasound beam’s radiation force
will rapidly diminish within a few millimeters from the

source. Furthermore, the displacement wave has an ex-
tended “tail,” and its original shape becomes distorted.
These effects complicate attempts to track the key fea-
tures of the propagating pulse to estimate shear wave speed.
Analytical and numerical models have been proposed to
model the evolution and decay of pulses in viscoelastic
media (Bercoff et al. 2004a; Fahey et al. 2005; Kazemirad
et al. 2016; Leartprapun et al. 2017; Nenadic et al. 2017;
Nightingale et al. 1999; Parker and Baddour 2014;
Sarvazyan et al. 1998; Schmitt et al. 2010; Vappou et al.
2009; Wijesinghe et al. 2015). However, there is still the
need for a closed-form analytical solution that clearly iden-
tifies the key terms responsible for the distortion and decay
of the pulse. Furthermore, there are different models for
wave propagation in lossy media (Bercoff et al. 2004b;
Chen et al. 2004; Chen and Holm 2003; Giannoula and
Cobbold 2008, 2009; Szabo 1994; Urban et al. 2009).
Because there is no consensus yet as to the most appro-
priate model and mechanism of loss for shear waves in
soft tissues, it is useful to have analytical expressions that
are independent of any particular model, but still valid over
the operating range of shear wave frequencies.

The approach taken in this article follows the earlier
framework of Parker and Baddour (2014). First, the gov-
erning equations and transforms are stated in a progression
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favored by the classic treatment of Graff (1975). Then, a
2-D beam pattern is introduced, and the equations are
reduced to simplified forms. General viscoelastic mate-
rial properties are simplified to first-order (Taylor series
expansion) terms and introduced into the analytic solu-
tions, retaining leading terms. From these, some estimators
of tissue parameters can be specified. Some preliminary
examples are then presented, in which the data are taken
from a clinical imaging scanner.

THEORY

We model the applied radiation force as being long
and relatively constant in the z (depth) direction, so that
spatial derivatives in the z direction are small compared
with other terms. In practice, this is commensurate with
a higher f-number focus in a weakly attenuating medium
and multidepth push sequences. In this case, we assume
that the following holds for displacements u and body
forces f:

u u u u x y t

f f f f x y t
x y z z

x y z z

= = = ( )
= = = ( )

0

0
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In these circumstances, the governing equations for
displacements in the medium reduce to
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where µ is the shear modulus and ρ is the density of
the medium. The particle motions are polarized in a
single direction z, and the resulting waves will be shear

waves propagating at the velocity c = μ ρ (Graff

1975).
By taking the spatial and temporal Fourier trans-

form of the governing equation, and then the inverse
transform, we find the solution is given by
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where F ε η ω, ,( ) is the Fourier transform of c f x y t2 , ,( ) ,
the applied radiation force pulse. Assuming f x y t, ,( ) is
a sufficiently short pulse so as to be modeled as an impulse
in time (Zvietcovich et al. 2017) and Gaussian in x y,( )
with spatial width of σ σx y,( ), respectively,

F
x yε η ω

σ ε σ η
, ,( ) = − +( )

1
1

2
2 2 2 2

e (4)

Substituting the particular form yields
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The direct solution of eqn (5) involves treatment
of the singularity formed by the denominator becoming

zero when ε η ω2 2 2 2 2+ = =c k . Baddour (2011) has

insightfully explained how the denominator serves as a
“sifting” property, meaning the solution is completely gov-
erned by the integrand evaluated at the singularity. For
example, Baddour’s theorem 5 for complex exponentials
and a real wave number is
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Effectively, this transforms the spatial transform φ η( )
related to the distribution of force and converts it to a tem-
poral transform φ k( ) , where the singularity caused by the
denominator selects the value of k. Thus, considering the
integration of eqn (5) over the spatial frequencies, we
examine the quantity
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on the circle defined by ε2 + η2 = k2. Substituting ε = k cos θ,
η = k sin θ, d dn rdrd k drdε θ θ= = , considering first the
integration over r, and comparing with eqn (6) from
Baddour’s theorem 5, we have
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Rewriting the e
− ( )k2

2 term for the case where σy > σx

(as is common in 1-D linear arrays, where y represents the
elevational direction),

=
− +( )e

k
Rx

2 2
2 2 2
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σ θ θcos sin
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where R y x
2 2 2= σ σ , and could be 4 to 100 depending on

the particular array.
No closed-form analytical solution to eqn (8) has been

found. However, for the special case of radial symmetry, where
R = 1, and on the x-axis, where y = 0, eqn (8) reduces to
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Substituting k c=ω and applying causality to the
temporal Fourier transform (see Parker and Baddour 2014,
eqn 23), we find
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which is similar to the result in Parker and Baddour (2014,
eqn 29) for a radial symmetric beam derived in cylindri-
cal coordinates using Hankel transforms.

For large values of R produced by 1-D arrays, the
magnitude of eqn (9) falls off rapidly with θ, and most
of the energy in the integral of eqn (8) is therefore
concentrated near θ = 0. Thus, we can apply the small-
angle approximation: cosθ θ≅ −1 2, cos2 1θ ≅ , and
R R2 2 2 2sin θ θ≅ . Then, eqn (8) evaluated along the
y-centerline x y, =( )0 becomes
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where A1 accumulates all constants. The velocity can be
written as

v x k i u x
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Finally, we obtain u x tz , ,0( ) as the inverse Fourier
transform of eqns (13) and (14), and by the properties of
the Fourier transform we can write the inverse as a con-
volution of functions for cases of small x, assuming we
can ignore the imaginary part of the square roots in eqn

(13) where x k y� σ 2 . Then,
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The third term is a Gaussian function shaped by the
x-axis beamwidth σx and delayed in time by propagation

to the observation point (x,0). But this is convolved with
the first term, essentially a Hilbert transform operation pro-
ducing a Dawson function (Abramowitz and Stegun 1964;
Poularikas 2010), and is also convolved with a gamma func-
tion (second term), which serves as a type of low-pass filter
with long tails. The net result is the observed displace-
ment wave in an elastic, lossless medium.

The approximate magnitude and phase dependence
of u x kz , ,0( ) will become important in the next section,
where parameter estimation is examined. By use of geo-
metric interpretations of the arguments of eqn (13), when
x > σx > 0, ω > 0 and R > 1, and for points x1 > x0, the fol-
lowing approximations can be made:
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These approximate relations can be useful in deriving

simplified estimators for the parameters if the desire is to
simplify the magnitude and phase of eqns (13) and (14).
However, as Figure 1(b) illustrates, the issue of phase unwrap-
ping or modulo 2π operations is present in phase operations.
These are altered by dispersion, which is considered next.

For the general treatment of a lossy material, we in-
troduce first-order dispersion terms as a Taylor series
approximation over a limited bandwidth, so that k is
complex, k c i= ( ) −ω α , and to first order, c c c≡ +0 1 ω ;
α α α ω= +0 1 where c0≫c1ω. However, for low-pass
functions like the Gaussian, the behavior of c and k near
zero frequency is particularly important. Under most con-
ventional loss mechanisms (Blackstock 2000:ch. 9), as
ω→0, c→c0 and α→0. Thus α0 = 0 for low-pass func-
tions in conventional lossy media. Substituting these into
eqn (13) and again assuming weak attenuation, α ω� c( );
then, retaining only the most significant terms, we find
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where a first-order series expansion
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is used in the phase term, and u xz , ,0 ω( ) is given by
eqn (13).
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Now, examining the magnitude and phase of the tem-
poral transform,

u x u xd z
x, , ,ω ω α ω( ) = ( ) ( )−( )0 1e (19)

and �u x c c xd ,ω ω ω( ) = +( )[ ]0 1 . Thus, given two tem-
poral Fourier transformed waveforms u xd 0,ω( ) and
u xd 1,ω( ) , where x1 > x0 and x x x1 0 1− ≡ Δ ,

�u x
c c

x xd y1
0 1

1 1
2 21

2
,ω ω

ω
σ φ( ) =

+
⎛
⎝⎜

⎞
⎠⎟

+ +( ) +⎡
⎣⎢

⎤
⎦⎥

(20)

and

u x

u x

x
c

x
c

d

d

x
y

y

1

0

0
2

1
2

1 1
,

,

ω
ω

π ω σ

π ω σ

α ω( )
( )

= ( )
+ ⎛⎝⎜

⎞
⎠⎟

+ ⎛⎝⎜
⎞
⎠⎟

⎛
−e Δ

⎝⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

(21)

We can use eqn (21) to remove the effects of geo-
metric spreading, which are captured by the rightmost terms
in that equation. Specifically, for each x1, we define the

corrected waveform u xd′ 1,ω( ) by
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The ratio of the magnitudes of the corrected wave-

forms u xd′ 1,ω( ) to the reference waveforms u xd 0,ω( ) is

then given by
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Taking the natural logarithm of eqn (23), we obtain

− ( ) − ( )( ) =ln , ln ,u x u x xd d′ 1 0 1ω ω α ωΔ (24)

We now proceed by adopting matrix-vector nota-
tion. Define the vectors
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where Δx x x j Mj j= −( )∀ = …{ }0 1 and
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representing the transverse coordinates of the pixels in the
field of view (excluding the reference coordinate x0) and
the vector of signal frequencies, respectively. Also, define
the matrix Uα with

U u x u xmn d d≡ − ( ) − ( )( )ln , ln ,′ 1 0ω ω (27)

The problem of estimating α1 can then be written as
an estimation problem of the form

Uα α= 1ΔxwwT (28)

We can derive a least-squares estimator for α1 (see
Appendix A) of the form

α α= ( )( )
Δ

Δ Δ
x

x x
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T T

U ww
ww ww

(29)

Fig. 1. (a) Magnitude of the Fourier transform of the shear wave displacement as a function of frequency measured at 2 mm
from the central beam axis (upper curve) and at 6 mm (lower curve). The dashed curve is the approximate correction factor,
eqn (16), that accounts for geometric spreading as a function of frequency and distance, applied to the 2-mm curve. Once cor-
rected for geometric spreading, the effects of attenuation can be more accurately measured. Other parameters used in this example:
σx = 1 mm, R = 3, c = 1 m/s. (b) Phase of the Fourier transform of the shear wave displacement as a function of frequency mea-
sured 5 mm from the central beam axis. The red curve is the exact phase from eqn (13), whereas the black curve is the approximate

relation given in eqn (17), but calculated modulo 2π. Other parameters used in this example: σx = 1 mm and σy = 3 mm.
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It is important to note that the preceding estimation
problem is a special case of the more general problem of
fitting a bivariate surface of the form

S x a a x a a x a x a,ω ω ω ω( ) = + + + + +0 1 2 3 4
2

5
2 (30)

where a3 = α1. Although our signal model strongly sug-
gests that all aj = 0 for j ≠ 3, it may nevertheless be
advantageous in certain circumstances to estimate α using
a surface of the form of S(x,y); this approach is consid-
ered in Appendix B. Specifically, we note that the least-
squares estimator obtained by solving the unconstrained
least-squares estimation problem and allowing all ak to
freely vary will yield an unbiased estimator for α (i.e., re-
siduals are zero mean), whereas constraining one or more
parameters to equal zero will yield a biased estimator.

Estimating shear wave speed c0

We proceed in a manner similar to that of the deri-
vation above for the attenuation coefficient α1.

Given eqn (20), we can then write the displacement
wave in the form
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Taking the complex argument arg ⋅{ } of both sides
and neglecting second-order dispersion, we obtain
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Next, we can redefine the phase reference point to
eliminate ϕ and additionally define a new transverse co-

ordinate ′ ≡ + +x x x y
2 2σ to obtain the expression
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We may now formulate eqn (33) as a least-squares
estimation problem by defining the vectors

′ ≡ … … ∈x [ ]x x xm M
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and
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and this time defining a new system matrix Uc accord-
ing to the prescription
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so that the estimation problem can be written in the form
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As before, we may also wish to produce an unbi-
ased estimator of c0 by solving an unconstrained problem
of polynomial form of eqn (30), in which case we can
recover the shear wave speed c0 via

a
c

3
0

1= (39)

However, to eliminate all phase unwrapping issues,
we next propose an alternative time domain estimate.

Kinetic energy estimators for group velocity
By definition, the kinetic energy of a wave is pro-

portional to (1/2)ρV2 (where ρ is the density of the medium
and V is the local velocity), and in wave motion the total
energy is proportional to the kinetic plus the stored energy,
and both forms are proportional to V2 (Blackstock 2000:ch.
1). From eqns (12) to (18) we find that the temporal trans-
form of the velocity wave is
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and invoking causality,

v x t v x t dz z, Re , , cos( ) = ( )[ ] ( )
∞

∫ 0
0

ω ω ω (41)

Defining k x t v x tz, ,( ) = ( )[ ]2, the total kinetic energy

K(x), by Parseval’s theorem, is given by

K x v x t dt v x dz z( ) = ( )[ ] = ( )[ ]
∞ ∞

∫ ∫, Re , ,2

0

2

0

0 ω ω (42)

The first moment of k(x,t) can be used to determine
c, because the kinetic energy travels with the wave (Biot
1957; Blackstock 2000:ch. 1; Broer 1951). From Bracewell
(1996), the centroid tx can be found as
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t t k x t dt k x t dtx = ⋅ ( ) ( )
∞ ∞

∫ ∫, ,
0 0

(43)

The linear fit of tx versus x yields the group veloc-
ity. Then numerical integration of eqn (42), where all
parameters are known except for α, can produce a family
of curves which are compared to the measured K(x) to de-
termine the mean squared error estimate of α.

METHODS

A Samsung ultrasound system (Model RS85, Samsung
Medison, Seoul, South Korea) and a curved array ultra-
sound transducer (Model CAI_7A, Samsung Medison)
were used to produce push beams and track the induced
displacements. In this experiment, fewer than 100 central
elements of the transducer were used to transmit focused
push beams (center frequency = 2.5 MHz, 130-µs push du-
ration, multifocal depth operation with four sequential
pushes along an axial line at regular spacings over 30 mm
of increasing focal depth). For a 60-mm focus, the f-number
is approximately 1.3. The sampling frame rate was 7.5 kHz.
After push transmission, the Samsung system immedi-
ately switched to plane wave imaging mode using 135
transducer elements (center frequency = 2.5 MHz). The
sampling frequency was set to 20 MHz. Some averaging
over depth and noise reduction filtering are applied to the
displacement estimates; the precise details are propri-
etary to Samsung.

RESULTS

CIRS breast phantom
Shear waves were produced in the CIRS breast

phantom (Model 059, Computerized Imaging Reference
Systems, Norfolk, VA, USA). The Samsung RS85 system
was used to produce a 2.5-MHz push beam. Measured
pulses are illustrated in Figure 2(a) at 0.65 ms and in
Figure 2(b) as a function of time for four different lateral
observation points. Although the breast phantom is almost
a purely elastic medium with low viscosity and attenua-
tion, the pulse shape displays a reduction in amplitude with
distance, principally because of the geometric spreading.
In Figure 2(c) are the theoretical shapes, taken from nu-
merical integration of the inverse Fourier transform of eqns
(13) and (14) and with parameters c = 2.12 m/s, σx = 1.3
mm, R = 2 and α = 0.067 Np/mm/kHz. The value for c was
taken from the kinetic energy moments estimate, and the
values of σ and R were taken from measurements of the
push-pulse beamplots at the selected depth. The attenuation
parameter α was determined to be in the range 0.69 ± 0.015
Np/mm/kHz by our constrained least-squares method,
and the lower value was used in the model to produce

Figure 2(c). The support in the temporal frequency domain
for this estimator is illustrated in Figure 3(a).

CIRS viscoelastic phantom
Shear waves were produced in a custom-made CIRS

viscoelastic phantom (Serial No. 2095.1-1, Computer-
ized Imaging Reference Systems). Similar to the previous
case, a 2.5-MHz push beam was used. Measured pulses
are illustrated in Figure 4(a) at 0.65 ms and in Figure 4(b)
as a function of time for four different lateral observa-
tion points. In a viscoelastic medium, the pulse shape
exhibits higher loss than the breast phantom because of
the geometric spreading, attenuation and higher viscosi-
ty. In Figure 4(c) are the theoretical shapes taken from
numerical integration of the inverse Fourier transform of
eqns (13) and (14) with parameters c = 2.46 m/s, σx = 1.3
mm, R = 8, and α = 0.667 Np/mm/kHz. The value for c
was taken from the kinetic energy moments estimate,
whereas the values of σ and R were taken from measure-
ments of the focal beamplots at the selected depth. The
attenuation parameter α was determined to be in the range
0.606 ± 0.063 Np/mm/kHz by our constrained least-
squares method, and the lower value was used in the model
to produce Figure 2(c). The support in the temporal fre-
quency domain for this estimator is illustrated in
Figure 3(b).

In vivo human liver
The Samsung system was also used to obtain shear

waves in a normal volunteer, under the requirements of
informed consent and the University of Rochester insti-
tutional review board. A snapshot of the 2-D measured
tissue velocity at 0.65 ms following the initiation of the
push sequence is provided in Figure 5(a). Measured ve-
locity waveforms at four locations are provided in
Figure 5(b), and their spectra in Figure 3(c). Using the
forward propagation model and parameters obtained from
the estimators c = 1.74 m/s, σx = 1.3 mm, R = 8 and α = 1.28
Np/mm/kHz yields the predicted waveforms illustrated in
Figure 5(c). The value for c was taken from the kinetic
energy moments estimate, and the values of σ and R were
taken from measurements of the focal beamplots. The at-
tenuation parameter α was determined to be 1.15 ± 0.14
Np/mm/kHz by our constrained least-squares method.

DISCUSSION

From Figures 2, 4 and 5, we find a close correspon-
dence of the forward model predictions of shear wave
velocity waveforms with the measured waveforms. The
forward model incorporates all the assumptions and ap-
proximations mentioned in the derivations from eqns (10)
to (23) and utilizes the estimated parameters c (kinetic
energy group velocity) and α (constrained least-squares
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Fig. 2. (a) Snapshot of velocity values in two dimensions following a 0.65-ms push-pulse sequence in a CIRS breast phantom.
(b) Shear wave propagation measured in the CIRS breast phantom at four locations. (c) Theoretical model using estimated
parameters R = 2, σx = 1.3mm, c = 2.12 m/s and α = 0.067 Np/mm/KHz. CIRS = Computerized Imaging Reference Systems,

Norfolk, VA, USA.

Fig. 3. Temporal Fourier transforms of shear wave measured in (a) the CIRS breast phantom, (b) the CIRS viscoelastic phantom
and (c) in vivo human liver. The region of the frequency axis used for estimating α is shaded in green. The solid lines denote
waveforms without correction for geometric spreading, and the dashed lines denote waveforms after correction for geometric

spreading (see eqn [22]). CIRS = Computerized Imaging Reference Systems, Norfolk, VA, USA.
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error) obtained from the experimental curves (Figs. 2b, 4b
and 5b). In other phantom studies, we found that the kinetic
energy group velocity estimator was more accurate than
the least-squares error estimator using transformed phase
relations. We attribute this in part to the imperfections of
phase unwrapping, which can occur. Further corrobora-
tion is gained from independent measurements of phase
velocity of shear waves within the CIRS breast and vis-
coelastic phantoms (Fig. 6a, 6b) and in the same normal
human liver (Fig. 6c).

These measurements were obtained at discrete shear
wave frequencies using the reverberant shear wave method
described by Parker et al. (2017) and Ormachea et al. (2018).
The breast and viscoelastic phantoms and the normal liver
are seen to have a shear wave speed (SWS) group veloc-

ity of 2 m/s near 100 Hz, based on the estimations obtained
from the models described in this article. These group ve-
locities are higher than phase velocities measured using
the reverberant shear wave methods at discrete frequen-
cies. This is expected from the definitions of group velocity
versus phase velocity in dispersive media (Blackstock
2000:ch. 9; Graff 1975). Furthermore, we note that the dis-
persion of SWS near 200 Hz using the reverberant shear
wave method is in the range of 0.28 m/s per 100 Hz for
the CIRS breast phantom, 0.59 m/s per 100 Hz for the CIRS
viscoelastic phantom and 0.87 m/s per 100 Hz for the liver,
consistent with other reports (see Barry et al. 2012; Deffieux
et al. 2009; Muller et al. 2009; Parker et al. 2015), but lower
than some magnetic resonance elastography estimates of
dispersion (see Table 2 in Parker et al. 2015) obtained at

Fig. 4. (a) Snapshot of velocity values in two dimensions following a 0.65-ms push-pulse sequence in a CIRS viscoelastic
phantom. (b) Shear wave propagation measured in the CIRS viscoelastic phantom at four locations. (c) Theoretical model using
estimated parameters R = 8, σx = 1.3mm, c = 2.46 m/s and α = 0.667 Np/mm/KHz. CIRS = Computerized Imaging Refer-

ence Systems, Norfolk, VA, USA; ROI = region of interest.
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lower frequencies. Additional studies using an additional
measurement, stress relaxation of isolated samples, are
planned to further refine the expected value of the CIRS
phantom’s SWS and viscoelastic properties.

Some limitations of this study should be consid-
ered. The theory assumes that the push pulse is long in
extent in the z-axis or depth and has an elevational focus
that is broader by a factor of 2 or greater than the focus
in the lateral plane. Thus, for low f-number, single focal
depth and circularly symmetric transducers, the theory
would not be expected to be accurate. In particular, the
influence of low-intensity but extended regions above and
below the focal region has been described by Bercoff et al.
(2004b) using numerical methods. However, circularly sym-
metric solutions are found in Parker and Baddour (2014),
and can be applied for higher f-number systems. Further-
more, the question of a gold-standard independent

measurement of the viscoelastic properties of the liver and
other soft tissues is longstanding. One complication is the
known short-term fluctuations in SWS that are possible
in the liver under a number of conditions (Cosgrove et al.
2013). The dynamic state of the vascular system in a soft
tissue could be an influential co-factor in raising or low-
ering the SWS by measurable amounts over time (Parker
2014, 2015, 2017a, 2017b; Parker et al. 2016).

CONCLUSIONS

Analytical models were developed that can predict
the shape of shear waves produced by push pulses in vis-
coelastic tissues. These closed-form solutions are also used
to extract estimates of shear wave speed and shear wave
attenuation, but do not rely on any single viscoelastic model
for tissue and so do not depend on traditional Kelvin–

Fig. 5. (a) Snapshot of velocity values in two dimensions following a 0.65-ms push-pulse sequence in a normal human liver.
(b) Shear wave propagation measured in the normal human liver at four locations. (c) Theoretical model using estimated pa-

rameters R = 8, σx = 1.3 mm, c = 1.74 m/s and α = 1.28 Np/mm/KHz.
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Voigt or Zener model parameters. By use of the forward
propagation model and its estimators, good agreement was
found between measured and predicted waveforms. Fur-
thermore, the model and estimator results were properly
bounded by independent measurements of a phantom and
liver obtained from the reverberant shear wave method.
These developments may be useful in quantifying the bio-
mechanical state of soft tissues.
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APPENDIX A

DERIVATION OF CONSTRAINED
ESTIMATORS FOR Α AND C0

Suppose we have an estimation problem of the form

A = c Tuv

where c is an unknown parameter and A is the system

matrix. To obtain a least-squares estimator for c, we min-

imize the objective function
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Compute the partial derivative ∂ ( )cE u v A, , with
respect to the unknown parameter c and set to zero:
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APPENDIX B

DERIVATION OF UNCONSTRAINED
ESTIMATORS FOR Α AND C0

Here, we model the surface of best fit as a general
second-order surface in x and y of the form

f u v a a u a v a uv a u a v,( ) = + + + + +0 1 2 3 4
2

5
2 (47)

and accordingly minimize the objective function

E u v A A f u vmn m n
nm

, , ,( ) = ( )( )−∑∑ 2
(48)

Differentiating with respect to each of the six unknown
parameters and setting each equation to zero, we obtain
a system of normal equations, written below in matrix form,

using the shorthand notation up p

p≡ u (i.e., the ℓp norm

of the vector u raised to the pth power) and u u⊗ to denote
elementwise multiplication:
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(49)

Also note that 1 refers to the vector whose ele-
ments are all unity, and whose dimension changes in the
context of its use. The vector 1 in the upper left-hand corner
of the matrix in eqn (49) has MN elements, where M and
N are the dimensions of u and v, respectively, while the
vector 1 on the right-hand side of the equation is either
M- or N-dimensional depending on whether it is used in
a right-hand or left-hand multiplication with A R∈ ×M N .
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