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ABSTRACT  

Determining the mechanical properties of tissue such as elasticity and viscosity is fundamental for better understanding 
and assessment of pathological and physiological processes. Dynamic optical coherence elastography uses shear/surface 
wave propagation to estimate frequency-dependent wave speed and Young’s modulus. However, for dispersive tissues, 
the displacement pulse is highly damped and distorted during propagation, diminishing the effectiveness of peak tracking 
approaches. The majority of methods used to determine mechanical properties assume a rheological model of tissue for 
the calculation of viscoelastic parameters. Further, plane wave propagation is sometimes assumed which contributes to 
estimation errors. To overcome these limitations, we invert a general wave propagation model which incorporates (1) the 
initial force shape of the excitation pulse in the space-time field, (2) wave speed dispersion, (3) wave attenuation caused 
by the material properties of the sample, (4) wave spreading caused by the outward cylindrical propagation of the 
wavefronts, and (5) the rheological-independent estimation of the dispersive medium. Experiments were conducted in 
elastic and viscous tissue-mimicking phantoms by producing a Gaussian push using acoustic radiation force excitation, 
and measuring the wave propagation using a swept-source frequency domain optical coherence tomography system. 
Results confirm the effectiveness of the inversion method in estimating viscoelasticity in both the viscous and elastic 
phantoms when compared to mechanical measurements. Finally, the viscoelastic characterization of collagen hydrogels 
was conducted. Preliminary results indicate a relationship between collagen concentration and viscoelastic parameters 
which is important for tissue engineering applications.   

Keywords: Elastography, viscoelasticity, cylindrical waves, optical coherence tomography, shear waves, surface 
acoustic waves, viscoelastic phantoms. 

1. INTRODUCTION
The bio-mechanical properties of tissue such as elasticity and viscosity are fundamental properties of normal and 
pathological tissues.1,2 In this regard, optical coherence tomography-based elastography (OCE) offers the possibility of a 
non-invasive, high-resolution, and high-contrast measurement of tissue biomechanical properties.3,4 Dynamic OCE 
techniques use short-duration pulses produced by a selected excitation source in order to produce mechanical wave 
propagation in the tissue being studied.5 By tracking the propagating wave, Young’s modulus and other biomechanical 
parameters can be calculated based on the estimation of the wave speed and the selection of the correct wave propagation 
model dictated by the boundary conditions of the sample.6   

The estimation of viscous parameters in addition to the classic elastic modulus is of great interest since it can provide of 
useful information in disease diagnosis.8,9 Unfortunately, in many dispersive lossy tissues, propagation of shear or 
surface waves is rapidly damped and distorted, complicating the attempts of estimating wave speed using typical 
methodologies such as peak tracking.7 

*fzvietco@ur.rochester.edu; phone 1 585 275-5069; odalab-spectrum.org/Rochester/

Optical Elastography and Tissue Biomechanics V, edited by Kirill V. Larin, David D. Sampson, Proc. of
SPIE Vol. 10496, 104960P · © 2018 SPIE · CCC code: 1605-7422/18/$18 · doi: 10.1117/12.2287553

Proc. of SPIE Vol. 10496  104960P-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/19/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

In OCT, some work has been done for the viscoelastic measurement of tissue assuming a rheological model.10-13 In most 
of these studies, frequency-dependent wave speed measurements are fitted to theoretical models of dispersion 
(rheological models), disregarding valuable information given by the wave attenuation process. Therefore, the use of 
model-independent approaches for the viscoelastic characterization of tissue is an important trending topic in 
elastography since it can provide accurate intrinsic information without assumptions regarding the tissue mechanical 
behavior, which is in many cases unknown.  
 
Some model-independent approaches have been proposed for ultrasound elastography,7,14-16 and OCE.17,18 While these 
approaches calculate viscoelastic properties of tissue without using a rheological model, some assumptions made may 
produce biased results. For example, in Schmitt et al.,14 the plane wave assumption can be difficult to satisfy for most of 
the excitation methods. Also, Nenadic et al.,15 Kazemirad et al.,16 and Leartprapun et al.,17 assume that waves will be 
observed in the asymptotic range far from the excitation source which may not be possible if the wave is highly 
attenuated by dispersive lossy media. Finally, Parker and Baddour7 investigated the propagation of a cylindrical 
axisymmetric Gaussian shear wave in a viscoelastic media by proposing a full analytical model-independent solution that 
takes a first-order approach to dispersion. 
 
In this paper, we invert a general wave propagation model following the approach of Zvietcovich et al.,18 that 
incorporates space-time propagation, decay, and distortion of pulses in a dispersive medium in order to accurately 
estimate the elastic and viscous components of such media. The model contemplates the initial shape of the acoustic 
radiation force (ARF) push in space and time and uses a general first-order approximation of dispersion, avoiding the use 
of any particular rheological model of tissue. Experiments were conducted in elastic and viscoelastic tissue-mimicking 
phantoms by producing a Gaussian push using ARF excitation, and measuring the surface wave propagation using a 
Fourier domain optical coherence tomography (FD-OCT) system. Results from the inversion method were compared to 
mechanical measurements (MM) for validation. Finally, a preliminary experiment in collagen hydrogels was performed 
in order to confirm the validity of our approach for tissue engineering and regenerative medicine applications. 

2. THEORY 
2.1 Gaussian shear pulse propagation in an infinite medium 

The governing equation in cylindrical coordinates for the propagation of a Gaussian shear pulse in a viscoelastic medium 
produced by an ultrasound (US) based ARF excitation is described as19 ∇ଶݑ௭(ݎ, (ݐ − ଵ௖మ డమ௨೥(௥,௧)డ௧మ =  (1) ,(ݐ)ܶ(ݎ)௭ܨ−
 
where ݎ = ଶݔ) +  is the	is the displacement of the shear wave in the z-direction; ܿ	௭ݑ ,ଶ)ଵ/ଶ, as shown in Figure 1aݕ
velocity of the shear wave; ܨ௭(ݎ) is the applied body force proportional to the ARF beam; and ܶ(ݐ) is the temporal 
application, which we will take as a rectangular function of duration a delayed a/2, rect(௧௔ − ଵଶ).   
 
Applying the Hankel transform થ in space, and the non-unitary angular frequency Fourier transform ণ in time to 
Equation 1 in cylindrical coordinates yields 
ଶߝ−  ෡ܷ(ߝ, ߱) + ఠమ௖మ ෡ܷ(ߝ, ߱) = (ߝ)෠ܨ− ෠ܶ(߱), (2) 
 
where ෡ܷ(ߝ, ߱) = ণ{થ{ݑ௭(ݎ, ,ߝ){(ݐ ,ߝ){(ݐ (ߝ)෠ܨ ,is the spatial frequency, ߱ is the temporal angular frequency ߝ ,(߱ =થ{ܨ௭(ݎ)}(ߝ), and ෠ܶ(߱) = ণ	{ܶ(ݐ)}(߱). Then, isolating ෡ܷ(ߝ, ߱) in Equation 2, applying the inverse Hankel transform 
using Baddour’s theorem,20 and selecting the appropriate solution according to the Sommerfeld radiation condition we 
obtain  
,ݎ)ොݑ  ߱) = −గ௜ଶ (ݎ݇)଴(ଶ)ܪ (݇)෠ܨ ෠ܶ(߱), (3) 
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(a) (b) 
Figure 1. (a) Schematic of a Gaussian-shaped pulse produced in a dispersive medium by an ultrasound ARF transducer. The center 
of the pulse is the origin for the Cartesian and cylindrical coordinate system. (b) Experimental setup: PhS-OCT system 
implemented with a swept-source laser for motion detection.
 
where ݇ is the complex wave number ݇ = ఠ௖ −  is a Hankel function of (ݔ)଴(ଶ)ܪ is the absorption coefficient, and ߙ ,ߙ݅
the second kind. We assume that the application force ܨ௭(ݎ) has a Gaussian beam pattern shape that is applied for a 
transient time a in the media. Then, the spatial Hankel and temporal Fourier transforms of ܨ௭(ݎ)ܶ(ݐ) are given by 
(݇)෠ܨ  ෠ܶ(߱) = ଴݁ିఙమ௞మ൧ܣൣ ൤݁ି೔ഘೌమ sinc(ఠ௔ଶగ)൨, (4) 
 

where ܣ଴ is the force amplitude; ߪ is related to the curve width of the ARF Gaussian shape, and sinc(ݔ) = ୱ୧୬	(గ௫)గ௫ . We 
are interested in finding the analytic solution of Equation 3 for particle velocity ݒො(ݎ, ߱) = ,ݎ)ොݑ߱݅ ߱). Then, using 
Equations 3 and 4, we have 
,ݎ)ොݒ  ߱) = ଴ܣ గఠଶ ఙమ௞మ݁ି೔ഘೌమି݁(ݎ݇)଴(ଶ)ܪ sinc(ఠ௔ଶగ), (5) 
 
which is a closed-form analytical solution in the ݎ-	߱ space that describes the cylindrical spreading of the pulsed wave, 
attenuation, and dispersion when it propagates through a viscoelastic medium. Given the uncertainties in choosing an 
appropriate rheological model, we seek a general solution that is mechanism-independent. Therefore, we introduce a 
first-order Taylor approximation of the frequency-dependent phase speed ܿ and attenuation ߙ of the wave such that 
 ܿ ≡ ܿ଴ + ܿଵ ∙ |߱|   and   ߙ ≡ ଵߙ ∙ |߱|, (6) 
 
where  ܿ଴ ≫ ܿଵ߱. Therefore, the complex frequency-dependent wavenumber will be described as 
 ݇(߱) = ఠ௖బା௖భ|ఠ| −  ଵ|߱|. (7)ߙ݅
 
For further notation simplification, we use  ݇ᇱ(߱) = ఠ௖బା௖భ|ఠ|, and ݇ᇱᇱ(߱) =  ଵ|߱|. In a linear and isotropic viscoelasticߙ
material, the complex shear modulus ܩ∗(߱) = (߱)ᇱܩ +  ᇱ(߱) is the lossܩ ᇱ(߱) is the shear storage, andܩ ᇱᇱ(߱), whereܩ݅
moduli, can be obtained using the real and imaginary parts of the wavenumber in Equation 7 as21 
(߱)ᇱܩ  = ଶ߱ߩ ௞ᇲ(ఠ)మି௞ᇲᇲ(ఠ)మ(௞ᇲ(ఠ)మା௞ᇲᇲ(ఠ)మ)మ, (8a) ܩᇱᇱ(߱) = ଶ߱ߩ2 ௞ᇲ(ఠ)௞ᇲᇲ(ఠ)(௞ᇲ(ఠ)మା௞ᇲᇲ(ఠ)మ)మ, (8b) 
 
where ߩ is the density of the material. 
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2.2 Shear to surface acoustic wave relationship 

The model described in Section 2.1 was conceived for shear wave propagation. However, if we consider a semi-infinite 
solid medium, the predominant surface acoustic wave (SAW) propagating in the solid-vacuum interface are Rayleigh 
waves.22 The relationship between shear wave and Rayleigh wave phase speed in a linear isotropic medium for a 
Poisson’s ratio ߥ ≈ 0.5 is given by23 
 ܿ ≈ 1.05 ∗ ܿୖୟ୷୪ୣ୧୥୦. (9) 
 
Moreover, Rayleigh waves from a point source follow cylindrical spreading 1/√݇ݎ as described in Viktorov,23 which is 

consistent with the asymptotic form of the Hankel term in Equation 5, หܪ଴(ଶ)(݇ݎ)ห ≅ ට ଶగ௞௥, for complex values of k.24 

Therefore, making the adjustment for phase speed as described in Equation 9, the shear wave model of Equation 5 is 
suitable for describing the Rayleigh wave propagation. 
 

3. MATERIALS AND METHODS 
3.1 Experimental setup 

The experimental setup is shown in Figure 1b. A 5 MHz confocal ultrasonic transducer (PIM7550-2inchFL, Dakota 
Ultrasonics, Scotts Valley, CA, USA) with 5.01 cm of focal length was excited with a 1 ms sinusoidal tone of 5 MHz 
provided by a function generator (AFG320, Tektronix, Beaverton, OR, USA).  The generator was connected to a RF 
power amplifier (25A250, Amplifier Research, Souderton, PA, USA) in order to produce an approximate Gaussian 
radially symmetric (ߪ = 0.338	mm) focused ARF push within the sample at the air-solid surface interface. The 
ultrasonic transducer was coupled to the sample with saline water. A phase-sensitive optical coherence tomography 
(PhS-OCT) system implemented with a swept source laser (HSL-2100-WR, Santec, Aichi, Japan) (center wavelength  
1318 nm) was used to acquire 3D motion frames of the sample within a region of interest (ROI) of 10 × 10 mm in the xy-
plane, and a maximum depth of 2.5 mm in the z-plane. The OCT acquisition and the excitation of the 5 MHz transducer 
were triggered by the computer controlling the entire process. 

The PhS-OCT characteristics include a full-width half-maximum (FWHM) bandwidth of 125 nm, and a light source 
frequency sweep rate of 20 kHz. The maximum sensitivity of the system was measured to be 112 dB.25 The imaging 
depth of the system was measured to be 5 mm in air (-10 dB sensitive fall-off). The optical lateral point spread function 
was approximately 30 µm, and the FWHM of the axial point spread function after dispersion compensation was 10 µm. 
The synchronized control of the galvanometer and the OCT data acquisition was conducted through a LabVIEW 
platform (National Instruments, Austin, TX, USA) connected to a workstation. The phase stability of the system was 
calculated as the standard deviation of the temporal fluctuations of the Doppler phase-shift (∆߶௘௥௥) while imaging a 
static structure.26 Results show ∆߶௘௥௥ = 4.6 mrad when using Loupas’ algorithm.27 The displacement sensitivity is 
measured as the minimum detectable axial particle displacement (ݑ௭,୫୧୬). We found ݑ௭,୫୧୬ = 0.358	nm. Finally, the 
maximum axial displacement supported by the system without unwrapping the phase-shift signal (∆߶୫ୟ୶ = ௭,୫ୟ୶ݑ is (ߨ =  .mߤ	0.24
 
3.2 Sample preparation and measurement 

Two tissue-mimicking phantoms where used in experiments. A cylindrically-shaped custom shear wave viscoelastic 
phantom (model no. 16410001, CIRS, Norfolk, VA, USA) was used as dispersive medium (5.4 cm in diameter × 2.2 cm 
in height). A cylindrically-shaped aqueous elastic phantom (Aquaflex US del pad, Parker Laboratories INC., Fairfield, 
NJ, USA) was selected as the elastic medium (9 cm in diameter × 2 cm in height). The frequency-dependent Young’s 
modulus of each phantom was measured using a stress-relaxation by compression test. The measurement was conducted 
using a MTS Q-Test/5 Universal Testing Machine (MTS, Eden Prairie, MN, USA) with a 5 N load cell using a 
compression rate of 0.5 mm/s, a strain value of 5%, and total measurement time of 600 s. The stress-time plots obtained 
by the machine were fitted to a three parameter Kelvin-Voigt fractional derivative (KVFD) model28 for the calculation of 
frequency-dependent complex Young’s modulus. For both phantoms, the density was considered ߩ = 1	g/cmଷ. The 
three estimated parameters of the KVFD model are detailed in Table 1. 
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Table 1. Mechanical testing results in elastic and viscoelastic phantoms. Kelvin-Voigt fractional derivative parameters (left col.) 
and compression test results (right col.) are shown for both media. Quasi-static shear wave speed was calculated using ܿ(߱ ≈ 0) =ܴ݈݁ܽ൛ඥ(ߩ3)/∗ܧൟ for ߩ = 1	g/cmଷ and assuming incompressibility. All experiments were performed at room temperature (25 ◦C). 
 

 Stress relaxation test: Kelvin-Voigt fractional derivative 
model parameters 

Quasi-static compression test: 
Young’s modulus and shear speed ࡱ૙ (ࢇࡼ࢑) ࢇࡼ࢑) ࣁ ࣓)ࡱ ߬ (ࢻ࢙ ≈ ૙) ࢉ(࣓ ≈ ૙) 

Viscoelastic 
phantom 0.711 ± 0.481 5.203 ± 0.852 0.178 ± 0.028 4.98 ± 0.24 1.29 ± 0.02 

Elastic 
phantom 9.969 ± 9.661 24.928 ± 12.217 0.086 ± 0.025 34.51 ± 0.85 3.39 ± 0.04 

 

 
Finally, we investigate the feasibility of using the proposed general propagation model approach for quantifying the 
viscoelastic properties of collagen hydrogels in tissue engineering environments. A previous study demonstrated that 
measurement of stiffness of collagen gels using SWEI can be complicated by the presence of Scholte waves.29 Collagen 
solutions were prepared on ice by combining in order 10X phosphate buffered saline (PBS), Type I collagen (Corning, 
Type I rat tail collagen), and 1 X PBS. Sodium hydroxide was added to adjust the pH to 6.8-10. Collagen solutions were 
degassed on ice for 40 minutes at 18 psi. After pipetting collagen solution into 1 cm diameter wells within a 6-well plate 
modified with elastomer molds, the hydrogels polymerized in an incubator (37 °C, 8% CO2) for at least one hour. 
Polymerized hydrogels contained collagen concentrations of 2 mg/mL and 5 mg/mL. 
 
Collagen hydrogels with starting concentrations of 2 mg/mL and 5 mg/mL were dehydrated to concentrations of 6.7 
mg/mL and 10.6 mg/mL, respectively. PBS was removed from the polymerized hydrogel using rolled Kimwipes. The net 
mass of PBS removed from the hydrogel was determined by computing the difference in mass between the wet and dry 
Kimwipe on a weigh boat. We assumed no collagen was removed, and the mass of collagen and remaining volume of 
PBS in the hydrogel was used to calculate the dehydrated collagen concentration. 
 
After fabrication, collagen hydrogels were removed from the wells and placed on top of a holder covered with a Saran 
membrane, which was partially submerged in a tank of saline water coupling the ultrasonic transducer to the sample. The 
Saran membrane separated the collagen hydrogel from the water, and provided an acoustic propagation path with 
reduced reflections. The ARF push was focused at the center of the outer surface of all collagen gels to ensure cylindrical 
wave propagation. 
 
3.3 Acquisition and processing 

Due to speed limitations of the OCT acquisition system, a complete phase front of a single ARF excitation cannot be 
instantly acquired within a ROI. Therefore, a repeated excitation/acquisition triggered at any single spatial location 
within the ROI is conducted. This method, also called the M-B mode acquisition protocol, is described in Zvietcovich et 
al.5 

The repeated acquisition and ARF excitation are possible since they are synchronized with the same cyclic trigger signal 
of 7 ms periodicity. The ARF tone is formed by 5000 cycles of a 5 MHz harmonic wave equivalent to a 1 ms excitation. 
The M-B mode approach is used for generating x-axis space-time representations of particle velocity ݒ௭(ݖ) at a given z0 
and y0 position. In this study, we constrained the analysis to the surface of the sample so that z0 corresponds to the axial 
position of surface for any (x0, y0) location. Each M-B acquisition spans 200 locations in the x-axis (10 mm), and ܯ = 100 time samples (5 ms) as shown in Figure 2. Then, we repeat this process at each location y0 in the y-axis for 200 
positions (10 mm). In total, we acquired a 3D matrix volume of 200 ×200 ×100 measurements of ݒ௭(ݖ଴) in the x, y, and 
time axes, respectively, using the described protocol in order to cover the ROI of 10 ×10 mm at z0, and 5 ms in the time 
frame. Each profile cut of the 3D matrix in the xy-plane corresponds to a motion frame at a frame rate of 20 kHz (time 
resolution ∆ெ=50 µs). The total acquisition time was 4.6 min.  
 
Without loss of generality, we can call the 3D matrix representing particle velocity at the surface of the sample ݒ௭బ(ݔ, ,ݕ  where x and y represent spatial coordinates on the surface, and t is the time domain. We want to fit the ,(ݐ
analytical model of Equation 5 (ݒො(ݎ, ߱)) to the data in ݒ௭బ(ݔ, ,ݕ ,ݎ)ොݒ ,however ,(ݐ ߱) is defined in the cylindrical r-axis.  
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(a) 

 (b) 
Figure 3. Motion snapshots of cylindrical wave propagation at different instants for (a) viscoelastic and (b) elastic phantoms. Color 
bar scale is in radians related to the OCT Doppler phase-shift caused by particle motion in phantoms. White spatial scale reference: 
1 mm.  

 
Profile cuts in the x-direction centered to contain the ARF excitation origin were obtained from ݒ௭బ(ݔ, ,ݕ  in the (ݐ
viscoelastic and elastic cases and are shown in Figures 4a and 4b, respectively. A Gaussian bell shape is initially 
observed at the first instant. After solving Equation 10, results are shown in Table 2. In addition, parameter a in the 
rectangular function of the application function ܶ(ݐ) is set to be ܽ = 1	ms. Figures 4c and 4d show หݒො௭బ(ݎ, ߱)ห plots for 
the viscoelastic and elastic cases, respectively. The appearance of the sinc function in the frequency axis confirms the 
validity of ෠ܶ(߱) in Equation 4. Moreover, the attenuation of the main lobe in หݒො௭బ(ݎ, ߱)ห for the viscoelastic case tends 
to move the peak towards smaller values of frequency as r increases, which makes evident the presence of a frequency-
dependent attenuation attributed to ߙଵ. In contrast, this behavior is not strong for the elastic case, as expected.  
 
Table 2. Estimation of optimized parameters {ܿ଴∗, ܿଵ∗,  ଵ∗} using the Levenberg-Marquardt inversion method for solving Equation 10ߙ
in experiments with phantoms and porcine cornea tissue. 

∗૙ࢉ   (m/s) ࢉ૚∗  (m/s/Hz) ࢻ૚∗  (NP/mm/kHz) 

Viscoelastic phantom 2.88 ± 0.03 9.75*10-7± 0.87 *10-7 0.049 ± 0.001 

Elastic phantom 4.61 ± 0.02 2.58*10-7 ± 0.14 *10-7 0.0098 ± 0.0005 
 

 
 
The Levenberg-Marquardt method was applied to Equation 10 for different initial values of {ܿ଴, ܿଵ,  ଵ}, and we foundߙ
convergent solutions for the viscoelastic and elastic cases, as reported in Table 2. Equation 5 is mesh plotted in the ݂ −  ݎ
space using the optimized parameters {ܿ଴∗, ܿଵ∗,  .ଵ∗} in Figures 4c and 4d for the viscoelastic and elastic cases, respectivelyߙ
Given the results of mechanical testing in Table 1, we plotted the real and imaginary parts of the wavenumber as a 
function of frequency in Figure 5, and we compared them with the components of the complex wavenumber obtained 
using results in Table 2 and Equation 7. We found good agreement of our model within the boundaries of the mechanical 
testing results for the viscoelastic and elastic cases. It is also evident that ߙଵ∗ for the viscoelastic case is half an order of 
magnitude higher compared to the elastic one, which was expected.  
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Figure 5. Frequency-dependent wavenumber comparison between mechanical measurements (MM) results using the KVFD 
model and our general propagation model (using optimized parameters {ܿ଴∗, ܿଵ∗, ߱ .({∗ଵߙ =  and f = frequency. The real and ,݂ߨ2
imaginary part of the wavenumber are plotted as a function of frequency for the viscoelastic and elastic phantoms. 

(a) (b) 

(c) (d) 
Figure 4. Experimental plots of ݒ௭బ(ݔ, ,ݕ ,ݎ)ො௭బݒand ห ,(top row) (ݐ ߱)ห (bottom row) for a viscoelastic (a, c) and elastic (b, d) 
media. ߱ = ܽ and f = frequency. For all cases, the input force has an approximate Gaussian shape, and ,݂ߨ2 = 1	ms. Black 
mesh in (c, d) shows |ݒො(ݎ, ߱)| for the optimized parameters {ܿ଴∗, ܿଵ∗,  .ଵ∗} using the Levenberg-Marquardt inversion methodߙ
Particle velocity units are show in radians referring to the OCT Doppler phase-shift. 
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4.2 Collagen hydrogels 

Collagen is the predominant structural protein in a wide range of tissues, and therefore can serve as a versatile scaffold 
for a variety of tissue engineering applications31.  The mechanical properties of engineered scaffold materials can 
influence cellular behaviors such as migration and multicellular organization, and can predict how an engineered tissue 
will respond to physiological loading conditions once implanted in the body32,33,34. Furthermore, cells are capable of 
modifying their environment through processes such as extracellular matrix deposition, contraction, and protease 
degradation, and these behaviors may influence the properties of a biological material over time35,36. Mechanical testing 
can measure viscoelastic properties, but these techniques are destructive to the developing engineered tissues. Therefore, 
innovating non-invasive, non-destructive technologies to quantify viscoelastic parameters is essential for longitudinal 
monitoring of engineered tissue constructs. 
 
Results from an exploratory study are shown in Figure 6. The figure shows the shear speed parameter ܿ଴∗, and the 
attenuation coefficient ߙଵ∗ for the four collagen hydrogel concentrations. ܿ଴∗ shows a decreasing tendency for the first 
three samples when concentration increases. However, the last sample concentration has the maximum ܿ଴∗ result. Values 
of the attenuation coefficient are more consistent as they increase with the concentration for all cases, indicating a 
potential relationship to collagen microstructure. Future work will concentrate on the validation of this technique in 
collagen hydrogels since it holds potential as a non-destructive, non-invasive tool to evaluate the mechanical properties 
of engineered tissues during their fabrication and development. 
 

 
 
Figure 6. Shear speed ܿ଴∗ (left axis) and attenuation ߙଵ∗ (right axis) calculated from collagen hydrogels at different 
concentrations using our general propagation model. Parameter ܿଵ∗ was found to be negligible for all cases and not significant 
for further comparison. 
 

5. CONCLUSION 
The application of an analytical general cylindrical wave propagation model for the viscoelastic characterization of 
dispersive media has been demonstrated. Experimental results in elastic and viscoelastic phantoms support the 
effectiveness of the approach when compared to mechanical testing results. Our proposed model of propagation takes 
into account (1) the initial force shape of the excitation pulse in the space-time field, (2) wave speed dispersion, (3) wave 
attenuation caused by material properties of the sample, (4) wave spreading caused by the outward cylindrical 
propagation of the wavefronts, and (5) the rheological-independent estimation of the dispersive medium. The model is 
versatile enough to be tuned with any type of input push-force produced by the desired excitation method. Moreover, in 
contrast to the majority of approaches that use only the frequency-dependent wave speed data for the calculation of 
viscoelastic parameters using a rheological model, our approach utilizes the wave attenuation data, which is fundamental 
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for the accurate viscoelastic characterization of the sample without assuming any rheological model. This last advantage 
is significant for the study of tissue with unknown mechanical behavior. Finally, wave propagation in collagen hydrogels 
was analyzed and compensated for cylindrical spreading using this approach. Viscoelastic parameters of the hydrogels 
were calculated and compared to their concentrations. Future work will extend this research to a general Lamb wave 
model using different rheological models for the accurate estimation of viscous parameters in other tissues such as 
porcine and human cornea. 
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