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1. Introduction

Within the broad field of elastography (Ophir et al 2011, Parker et al 2011), one approach to generating shear 
waves in tissues utilizes a push pulse of acoustic radiation force (ARF) from a focused ultrasound transducer 
(Sarvazyan et al 1998). The resulting disturbance can be tracked using motion detection techniques implemented 
in different imaging systems, such as ultrasound and optical coherence tomography (OCT), and, from these 
waveforms, parameters including shear wave speed are extracted. Accurate analytical models can be helpful in 
understanding the phenomenon of how the shear waves evolve over space and time in tissues. A number of 
analytical models have been proposed (Sarvazyan et al 1998, Nightingale et al 1999, Bercoff et al 2004, Fahey 
et al 2005, Vappou et al 2009, Schmitt et al 2010, Parker and Baddour 2014, Wijesinghe et al 2015, Kazemirad 
et al 2016, Leartprapun et al 2017, Nenadic et al 2017) to capture the evolution of shear waves from a push pulse, 
under a range of conditions and assumptions relevant to clinical elastography.

Herein, we focus on the specific case of a rotationally symmetric push pulse that is long in the axial direc-
tion, leading to solutions in cylindrical coordinates. A prior set of derivations was proposed by Parker and Bad-
dour (2014) with additional experimental and theoretical developments (Zvietcovich et al 2017a, Baddour 2018, 
Parker et al 2018) published more recently. However, a number of issues remain and are the subject of this paper. 
First, within the possible uses of Baddour’s Integral Theorems (Baddour 2011), we examine which strategy leads 
to the more straightforward solutions including numerical solutions. In this case, we choose a path that avoids 
the singularities and other issues associated with the complex Hankel functions in favor of a path leading to a 
simpler Bessel function integrand, commensurate with Hankel transform interpretation. Second, we apply these 
techniques to two phantom materials with lower and higher viscoelastic loss parameters to predict the propagat-
ing shear wave pulses from an applied push pulse. These predictions are compared with experimental OCT data 
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Abstract
Many approaches to elastography incorporate shear waves; in some systems these are produced by 
acoustic radiation force (ARF) push pulses. Understanding the shape and decay of propagating shear 
waves in lossy tissues is key to obtaining accurate estimates of tissue properties, and so analytical 
models have been proposed. In this paper, we reconsider a previous analytical model with the goal 
of obtaining a computationally straightforward and efficient equation for the propagation of shear 
waves from a focal push pulse. Next, this model is compared with an experimental optical coherence 
tomography (OCT) system and with finite element models, in two viscoelastic materials that 
mimic tissue. We find that the three different cases—analytical model, finite element model, and 
experimental results—demonstrate reasonable agreement within the subtle differences present in 
their respective conditions. These results support the use of an efficient form of the Hankel transform 
for both lossless (elastic) and lossy (viscoelastic) media, and for both short (impulsive) and longer 
(extended) push pulses that can model a range of experimental conditions.
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and with finite element analysis results. The three approaches produce similar results and confirm the utility of 
our analytical model within reasonable experimental parameters.

The paper is organized as follows: first, in section 2, we review the theory of axisymmetric propagating shear 
wave pulses in elastic and then in viscoelastic materials. Subsequently, in section 3, we describe the methodology 
for selecting phantom materials mimicking lossless and lossy conditions and the viscoelastic characterization 
using mechanical testing analysis. This section also includes: the description of wave propagation experiments 
(EXP) in those phantoms using an OCT system and an ARF ultrasonic transducer all implemented in an inte-
grated setup; details on the simulation of wave propagation under the same material properties and boundary 
conditions using finite elements (FE); and the predictions of our proposed model in the same context. In sec-
tion 4, results are shown and compared for the following cases: OCT EXP, finite element models, and our model 
predictions. The utility of our model, its extension under the assumptions made, and limitations are discussed in 
section 5. Finally, conclusions of the entire work are summarized in section 6.

2. Theory

2.1. Cylindrical shear wave equation produced by a body force excitation
The governing equation describing the motion produced by a propagating shear horizontal wave in a 
homogeneous, isotropic and elastic material, using the notation from Graff (1975) in cylindrical coordinates, is 
given as

∇2uz (r, θ, z; t)− 1

c2

∂2uz (r, θ, z; t)

∂2t
= − 1

c2
Fz (r, θ, z) g(t), (1)

where ∇2 is the Laplacian operator in cylindrical coordinates, uz (r, θ, z; t) is the displacement of the shear wave 
in the z-direction, c is the velocity of the wave; Fz(r, θ, z) is the distribution of the applied body force in the z-
direction, and g(t) is the temporal application of the force. We assume that, given the direction of the applied 
force, the produced shear wave will propagate cylindrically outwards from the source origin, parallel to the 
r̂θ̂ -plane. Therefore, the displacement is polarized in the z-direction, and any derivates of uz  with respect to θ or 
z  are zero.

The force source Fz(r, θ, z) is assumed to be axisymmetric and extended uniformly in the z-direction, similar 
to most of the ultrasound (US)-based ARF excitation beams. Figure 1 shows a Gaussian-shaped force produced 
by a spherically focused US transducer located at the origin of a polar coordinate system, and described as

Fz (r, θ, z) = A0

Å
1

2σ2

ã
e−( r

2σ )2

, (2)

where σ2 is the half variance of the pulse shape, and A0 is the force intensity.
Introducing the displacement and source constraints, and assuming displacement and particle velocity are 

set to zero everywhere as initial conditions, equation (1) can be rewritten as

∇2uz (r, t)− 1

c2

∂2uz (r, t)

∂t2
= − 1

c2
Fz(r)g(t). (3)

The shear speed c in equation (3) is related to the shear modulus µ of an elastic, homogenous, and incom-

pressible medium with a density ρ  as c =
√

µ/ρ . However, in a viscoelastic medium, the shear modulus is a com-
plex and frequency-dependent quantity µ̂ (ω) = µs (ω) + iµl (ω), where µs (ω) and µl (ω) are called the shear 

storage and loss moduli, respectively (Carstensen et al 2014). Then, ̂c(ω) =
√

µ̂ (ω) /ρ , and the wave equation is 
better represented in the Fourier domain. Taking the temporal Fourier transform � of equation (3), yields

∇2Uz (r,ω) + k̂(ω)2Uz (r,ω) = − 1

ĉ(ω)2 Fz(r)G(ω), (4)

where Uz (r,ω) = �{uz (r, t)}, k̂  is the complex wave number k̂(ω) = ω/̂c(ω), G(ω) = �{g(t)}, and ω  is the 
angular frequency with respect to time.

2.2. Cylindrical coordinate solution: green’s function in an elastic medium
The Laplacian operator in equation (3) for cylindrical coordinates leads naturally to the Hankel transform (Graff 
1975). Thus, applying the zeroth order Hankel transform H0 in space to equation (4) in cylindrical coordinates 
yields:

“Uz (ε,ω) =
1

c2

F̂(ε)G(ω)

ε2 − ω2

c2

 (5)
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where F̂ (ε) = H0{Fz(r)}, ε is the spatial frequency, G (ω) = �{g (t)}, “Uz (ε,ω) = �{H{uz (r, t)} (ε, t)}, and 
where we assume convergence of the transform integrals under well-behaved and realizable functions. Applying 

the inverse Hankel transform to “Uz (ε,ω), we obtain:

Uz (r,ω) =
1

c2

ˆ ∞

0

F̂ (ε) · G (ω)

ε2 − ω2

c2

J0(εr)εdε. (6)

Alternatively, if we apply the inverse Fourier transform to “Uz (ε,ω), we obtain:

ûz (ε, t) =
1

2πc2

ˆ ∞

−∞

F̂ (ε)G(ω)

ε2 − ω2

c2

e+iωtdω (7)

where G(ω) is the temporal Fourier transform of any arbitrary shape of g(t). Thus,

ûz (ε, t) =
F̂ (ε)

2π

ˆ ∞

−∞

G(ω)

c2ε2 − ω2
e+iωtdω (8)

for ε � 0. Now, applying Baddour’s Theorem 5 of Baddour (2011):

ûz (ε, t) =
iF̂ (ε)

2

ï
G(−cε)e−icεt

cε

ò
 (9)

for ε � 0, and t > 0. Then, assuming g(t) is real, so G (−cε) = G∗(cε), and evaluating particle velocity:

v̂z (ε, t) =
d

dt
[ûz (ε, t)] =

F̂ (ε)

2

[
G∗(cε)e−icεt

]
 (10)

for ε � 0, and t > 0. Now, taking the inverse Hankel transform

vz (r, t) =
1

2

ˆ ∞

0
ε · F̂ (ε)G∗(cε) · J0(εr)e−icεtdε (11)

for ε � 0, r � 0, and t > 0. Assuming g (t) = δ(t) is a temporal impulse, then G∗ (ω) = 1. Furthermore, from 

a real intensity pattern Fz(r), we have F̂ (ε) as a real function. Then, we select the real part of equation (11) as the 
physical component of the wave for r � 0 and t > 0, yielding

Figure 1. Schematic of a Gaussian-shaped force pulse produced in a viscoelastic medium by an ultrasound ARF transducer. The 
center of the pulse is the origin of the coordinate systems, with r and θ as the radial and angular components in the cylindrical 
coordinate system, and x, y, and z as the Cartesian axes.
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vz (r, t) =
1

2

ˆ ∞

0
ε · F̂ (ε) · J0(εr) cos(cεt)dε (12)

for ε � 0, r � 0, and t > 0. Let us assume, for instance, that Fz(r) is a Gaussian-shaped force given by equation (2), 

then F̂ (ε) = A0e−(σε)2

. Then, following Chapter 5 of Graff (1975), the constant A0 is scaled by 2c2 and we obtain:

vz (r, t) = c2

ˆ ∞

0
ε · e−σ2ε2

· J0(εr) cos(cεt)dε. (13)

Comparing equation (13) with results from equation (31) in Parker and Baddour (2014) for the same situation:

vz (r, t) =

ˆ ∞

0
ω · e−σ2(ω

c )
2

· J0(
ω

c
· r) cos(ωt)dω (14)

which appears identical with the substitution of ε for ω/c. This route of derivation (equations (5)–(14)) places 
simpler interpretations on the functions without the complexities of applying Hermitian properties and causality 

to the complex Green’s function H(2)
0 [(ω/c) · r], a complex Hankel function of the second kind, which contains 

a singularity at the origin.
Since we used g (t) = δ(t), equation (13) is then the temporal impulse response of the system for a Gaussian-

shaped beam pattern. Then, the time domain response for an extended push pulse g (t) can be obtained simply 
by the time domain convolution equation:

ve (r, t) =

ˆ ∞

0
g (τ) vi(r, t − τ)dτ (15)

for r � 0 and t > 0, ve  represents the response to an extended push and vi  the impulse response obtained from 
equation (13).

2.3. Green’s function in a lossy medium
In this case, we examine the conventional approach where the complex wave number k̂  is defined as:

k̂ = β (ω)− iα (ω) =
ω

cp (ω)
− iα(ω) (16)

where cp (ω) is the phase velocity, α(ω) the attenuation, and the frequency dependence of both is dispersive and 
linked by the Kramers–Kronig equations (Szabo 1995). Assuming small dispersion such that cp (ω) ∼= c0, where 
c0 is a constant real speed value with dimensionality of m s−1, and using the first order Taylor approximation of 
attenuation such that α(ω) ∼= ωα1, where α1 dimensionality is in (Np/m)/(rad/s), equation (16) becomes

k̂ ≈ ω

c0
− iωα1. (17)

Following the notation of equation (4), the complex wave number in a viscoelastic medium is defined as 

k̂(ω) = ω/̂c(ω), where ̂c(ω) is the complex speed. Then, using equation (17), we find

ĉ =
c0

1 − ic0α1
≈ c0 (1 + ic0α1) = c0 + ic2

0α1. (18)

Taking the Hankel transform of equation (4) for the viscoelastic case, we obtain:

“Uz (ε,ω) =
F̂(ε)G(ω)

(̂cε)2 − ω2
 (19)

where F̂ (ε) = H0{Fz(r)}, ε is the spatial frequency, and “Uz (ε,ω) = �{H0 {uz (r, t)} (ε, t)}. Applying the 
inverse Fourier Transform to equation (19), we obtain:

ûz (ε, t) =
1

2π

ˆ ∞

−∞

F̂ (ε)G (ω)

(̂cε)2 − ω2
e+iωtdω. (20)

From Baddour’s Theorem 6 (Baddour 2011) for complex wave number with positive real part, and solving for 
t > 0, we have

ûz (ε, t) = − i

2

[
F̂ (ε)G(̂cε)e+i ĉ εt

ĉε

]
. (21)

Applying the temporal derivative to equation (21) in order to calculate particle velocity, and replacing ĉ  with 
equation (18), we obtain

Phys. Med. Biol. 64 (2019) 025008 (13pp)
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v̂z (ε, t) =
1

2

î
F̂ (ε)G(̂cε)

ó
e+ic0εt · e−ε c2

0α1t . (22)

Defining Fz(r) as a Gaussian-shaped force given by equation (2), and g (t) = δ(t) as a temporal impulse, then 

F̂ (ε)G (ω) = A0e−(σε)2

. After applying the inverse Hankel transform on the real part of equation (22), we 
obtain:

vz (r, t) =
A0

2

ˆ ∞

0
ε · e−σ2ε2

· J0(εr) cos(c0εt)e−ε c2
0α1tdε (23)

which is an attenuated version of equation (13), under small dispersion, and weak attenuation assumptions. We 
note as well that equation (23) is consistent with equation (45) of Parker and Baddour (2014), under the weak 
dispersion assumption, despite the different approach taken therein to the solution. That comparison is made in 
more detail in appendix A.

3. Methods

3.1. Sample preparation and mechanical measurements
For the analysis, two tissue-mimicking phantoms were selected and used in EXP. A lossy viscoelastic phantom 
material M1 (model no. 16410001, CIRS, Inc., Norfolk, VA, USA), and a lossless aqueous viscoelastic phantom 
material M2 (Aquaflex US del pad, Parker Laboratories Inc., Fairfield, NJ, USA). The frequency-dependent 
Young’s modulus of each phantom was measured using a stress-relaxation by compression test. The measurement 
was conducted using a MTS Q-Test/5 Universal Testing Machine (MTS, Eden Prairie, MN, USA) with a 5 N load 
cell using a compression rate of 0.5 mm s−1, a strain value of 5%, and total measurement time of 600 s. The stress-
time plots obtained by the machine were fitted to a three parameter Kelvin–Voigt fractional derivative (KVFD) 
model (Zhang et al 2008) for the calculation of frequency-dependent complex Young’s modulus given as

Ê (ω) =
[

E0 + η cos(
πτ

2
)ωτ

]
+ i

[
η sin(

πτ

2
)ωτ

]
, (24)

where E0 is the relaxed elastic constant, η is the viscous parameter, and τ  is the order of fractional derivative. 

Ê (ω) has the same form as µ̂ (ω), and Ê (ω) = Es (ω) + iEl (ω), where Es (ω) and El (ω) are called the Young’s 
storage and loss moduli, respectively. Measurements were conducted in three samples of each phantom type 
in order to calculate the mean and standard deviation (error) for each predicted frequency-dependent result. 
Estimations of the three parameters of the KVFD model for phantom materials M1 and M2 (table 1) are 
used to calculate the real and imaginary part of equation (24), plotted versus frequency in figure 2(a). Then, 
for a nearly incompressible (Poisson’s ratio close to 0.5), homogeneous, and isotropic medium, the complex 
velocity of the shear wave for each phantom with a material density of ρ  can be calculated (Parker et al 2011) as 

ĉ(ω) =
√
µ̂(ω)/ρ =

»
Ê(ω)/(3ρ), and the complex wave number of equation (16) can be expressed as

k̂(ω) =
ω

ĉ(ω)
=




ω√
2/(3ρ)

…∣∣∣Ê
∣∣∣+ Es

∣∣∣Ê
∣∣∣


− i




ω√
2/(3ρ)

…∣∣∣Ê
∣∣∣− Es

∣∣∣Ê
∣∣∣


 , (25)

where Es = Real{Ê} (see appendix B for details of the derivation). For both phantom materials, ρ = 1 g cm−3. 
The complex wave number from equation (25) is plotted in figure 2. Herein, c0 and α1 are estimated by fitting 

Real{k̂ (ω)} to ω/c0, and Im{k̂ (ω)} to ωα1, respectively, over a frequency range from 0 Hz to 1500 Hz. Both 
components, ω/c0 and ωα1, come from the Taylor approximation of k̂  described in equation (17) and are 
estimated for both phantom materials M1 and M2 (table 1).

Table 1. Mechanical testing results in phantom materials M1 and M2. KVFD parameters (left col.) and complex wave number parameters 
(right col.) are shown for both materials. For all cases, ρ = 1 g cm−3 and incompressibility was assumed. All EXP were performed at room 
temperature (25 °C).

Stress relaxation test: KVFD model parameters

Complex wave number: 

k̂ = ω
c0
− iωα1

E0 (kPa) η (kPa sα) τ c0(m s−1) α1(
NP
m /rad)

M1 0.711  ±  0.481 5.203  ±  0.852 0.178  ±  0.028 2.88  ±  0.03 0.049  ±  0.001

M2 9.969  ±  9.661 24.928  ±  12.217 0.086  ±  0.025 4.61  ±  0.02 0.009  ±  0.002

Phys. Med. Biol. 64 (2019) 025008 (13pp)
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3.2. Numerical integration (NI)
Given equation (23), calculations of space-time representations of particle velocity vz(x, t) for a Gaussian-shape 
force (σ = 0.338 mm) and g (t) = δ(t) are performed using NI in MATLAB (The MathWorks, Inc. Natick, MA, 
USA). Radial spatial (r) and temporal (t) variables are set to range [−4.5; 4.5] mm (200 samples), and [0; 5] ms 
(400 samples), respectively. c0 and α1 are chosen from table 1 for M1, and M2, accordingly. Then, equation (15) 
is used to convolve results provided by equation (23) (impulse response) with g (t), for the following cases: (1) 

phantom material M1, temporal rectangular pulse g (t) = rect( t
τM1,2

− 1
2 ), with τM1 = 1 ms, and (2) phantom 

material M2, temporal rectangular pulse of τM2 = 0.1 ms.

3.3. Finite element simulation
Numerical simulations of shear wave propagation under an axisymmetric Gaussian force were conducted 
using FE in Abaqus/CAE version 6.14-1 (Dassault Systems, Vélizy-Villacoublay, France). A 2D axisymmetric 
deformable part was created and subjected to a Gaussian distribution body force with σ = 0.338 mm along the 
symmetry line (see figure 3). The outer vertical border was subjected to encastre boundary conditions (zero 
displacement and rotation). The model was meshed using approximately 13 280 hybrid, linear and quadrilateral-
dominant elements (CAX4RH). Time domain viscoelastic material properties were chosen to characterize 
phantom materials M1 and M2, which are shown in table 2 together with the selected density and Poisson’s 
ratio. Frequency-dependent Young’s modulus extracted from mechanical measurements in section 3.1 (figure 
2(a)) for M1 and M2 were provided as tabular data: ωR (h∗) = El/E∞, and ωI (h∗) = 1 − Es/E∞, as function 
of f = ω/2π, where E∞ is the long-term Young’s modulus, also known as the quasi-static Young’s modulus 
Es(ω ≈ 0). For the analysis, E∞ is considered E0 (table 1). The details on ωR (h∗) and ωI (h∗) parameters required 
by Abaqus/CAE for the viscoelastic material definition are explained in appendix C.

The type of simulation was selected to be dynamic-implicit for a time range of 15 ms in order to let the 
shear waves propagate along the medium without producing reflections from the outer boundaries. Simi-
larly, as in section 3.2, two sets of simulation were conducted: (1) phantom material M1, temporal rectangu-

lar pulse g (t) = rect( t
τM1,2

− 1
2 ), with τM1 = 1 ms, and (2) phantom material M2, temporal rectangular pulse 

of τM2 = 0.1 ms. For both cases, the body force distribution was set to be Fz (r) = A0

(
1

2σ2

)
e−( r

2σ )2

, with 

σ = 0.338 mm. Space-time representations of particle velocity vz0(r, t) were calculated in both cases at depth z0 
crossing through the middle of the medium along the xy-plane.

3.4. Experimental setup and acquisition
The experimental setup is shown in figure 4(a). A 5 MHz confocal ultrasonic transducer (PIM7550-2inchFL, 
Dakota Ultrasonics, Scotts Valley, CA, USA) with 5.01 cm of focal length was excited with a τ = {0.1, 1} 
ms sinusoidal tone of 5 MHz provided by a function generator (AFG320, Tektronix, Beaverton, OR, USA), 
representing shorter and longer acoustic push pulses. The generator was connected to a RF power amplifier 
(25A250, Amplifier Research, Souderton, PA, USA) in order to produce an approximate Gaussian, radially 
symmetric (σ = 0.338 mm) focused ARF push within the phantom up to the air-solid surface interface of the 
phantom. The ultrasonic transducer was coupled to the sample with saline water as shown in figure 3(b). A 
phase-sensitive optical coherence tomography (PhS-OCT) system implemented with a swept source laser  

Figure 2. Log–log of frequency-dependent complex Young’s modulus (a) and complex wave number (b) for both phantom 
materials M1 and M2, obtained from mechanical measurements using a stress relaxation by compression test. ω = 2πf , and 
f  =  frequency. Frequency-dependent results are predictions of the KVFD model and do not represent independent measurements 
over the frequency range.

Phys. Med. Biol. 64 (2019) 025008 (13pp)
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(HSL-2100-WR, Santec, Aichi, Japan) with a center wavelength of 1318 nm was used to acquire 3D motion 
(particle velocity) frames of the sample within a ROI of 9  ×  9 mm in the xy-plane, at a depth z0 = 2 mm in 
the z-plane. The OCT acquisition and the excitation of the 5 MHz transducer were triggered by the computer 
controlling the entire process. Details of the OCT system are provided in appendix D.

The ARF push was focused at a certain (x0, y0) position in the sample’s surface (figure 4(b)), and it produced 
a localized out-of-plane vertical displacement that generated a cylindrically-shaped Rayleigh wave propagating 
within the ROI (Zvietcovich et al 2016). The relationship between shear wave and Rayleigh wave phase speed in a 
linear isotropic medium for a Poisson’s ratio ν ≈ 0.5 is given by (Viktorov 2013)

c ≈ 1.05 ∗ cRayleigh. (26)

For all cases, we used equation (26) to correct Rayleigh wave speed to shear wave speed.

Figure 3. Schematic of a 2D finite element axisymmetric deformable part subjected to a Gaussian-shaped pulse in Abaqus/CAE 
version 6.14-1. Space-time representations of particle velocity vz0(r, t) were calculated in the region of interest (ROI).

Table 2. Viscoelastic material parameters of phantom materials M1 and M2 in Abaqus/CAE version 6.14-1. The frequency-dependent 
parameters for each material were provided as tabular data: ωR (h∗) = El/E∞, and ωI (h∗) = 1 − Es/E∞, as function of f = ω/2π, where 
E∞ is the long-term Young’s modulus.

Density, ρ (kg m−3) Poisson’s ratio, ν
Long-term Young’s  

modulus, E∞ (kPa)

Frequency-dependent tabular 

parameters

ωR{h∗} ωI{h∗}

M1 998 0.499 0.711 El/E∞ 1 − Es/E∞

M2 998 0.499 9.969

Figure 4. Experimental setup. (a) PhS-OCT system implemented with a swept-source laser for motion detection. (b) Placement of 
the phantom in a water tank, ARF US-transducer, and ROI. Motion is produced close to the surface of the sample.

Phys. Med. Biol. 64 (2019) 025008 (13pp)
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The M-B mode acquisition approach, as described in Zvietcovich et al (2017b), is used for generating x-axis 
space-time representations of particle velocity vz0(x, t) at the given depth z0 = 2 mm crossing the center of the 
ARF excitation (x0, y0). Then, vz0(x, t) is equivalent to vz0(r, t) in cylindrical coordinates due to the axisymmetric 
shape of the force. Each space-time representation spans 200 locations in the x-axis (9 mm), and M = 100 time 
samples (5 ms). To reduce noise, experimental results for both M1 and M2 cases were subjected to a local regres-
sion filtering approach using weighted linear least squares and a 1st degree polynomial model with a kernel size of 
10% of the time signal size. Two cases are analyzed using the proposed experimental setup: (1) phantom material 

Figure 5. Shear wave propagation in a medium material M1 in the form of space-time maps (left column), and space-velocity 
profiles for various time instants (right column). Motion is shown as particle velocity vz (r, t) for an input Gaussian body force of 
σ = 0.338 mm applied for a time duration of τM1 = 1 ms. Color bars represent particle velocity in m s−1. Legends in all plots (right 
column) correspond to time snapshot at six uniformly separated time instants.
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M1, temporal rectangular pulse g (t) = rect( t
τM1,2

− 1
2 ), with τM1 = 1 ms, and (2) phantom material M2, tempo-

ral rectangular pulse of τM2 = 0.1 ms.

4. Results

Wave propagation results were evaluated using parameters provided in table 1 for the proposed material M1 
and M2 in three cases: (1) NI using the proposed forward model, (2) simulations using FE in Abaqus/CAE, and 
(3) EXP in phantoms using an OCT imaging system. Particle velocity vz (r, t) is displayed in the form of space-

Figure 6. Shear wave propagation in a medium material M2 in the form of space-time maps (left column), and space-velocity 
profiles for various time instants (right column). Motion is shown as particle velocity vz (r, t) for a input Gaussian body force of 
σ = 0.338 mm applied for a time duration of τM1 = 0.1 ms. Color bars represent particle velocity in m s−1. Legends in all plots (right 
column) correspond to time snapshot at six uniformly separated time instants.
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time maps (left column), and space-velocity profiles for various time instants (right column) in figures 5 and 
6 for material M1, and M2, respectively. In all cases, the applied body force has a Gaussian shape described in 
equation (2) with a fixed σ = 0.338 mm. The time application of the body force is set to be a rect function starting 
at t = 0 s and a duration of τM1 = 1 ms for M1 (figure 5), and τM2 = 0.1 ms for M2 (figure 6). Normalized root-
mean-square error (NRMSE), expressed as a percentage, is computed in curves provided by simulations and 
EXP, taking curves obtained using NI as reference, for each phantom material case for further comparison as 
shown in figure 7.

5. Discussion

A good agreement in wave propagation profiles between NI of the proposed forward model, simulations using FE, 
and EXP in phantoms demonstrate the validity of our approach for two types of viscoelastic material excited by the 
same Gaussian-shaped force applied at two different duration times. However, a perfect match between the three 
cases is not expected for a number of reasons (see figure 7). First, the proposed forward model assumes negligible 
dispersion:cp (ω) ∼= c0, and a first order Taylor approximation of attenuation α (ω) = α1ω which constrains our 
model to a frequency band that satisfies those conditions. In addition, simulations using FE are conducted using 
frequency-dependent material properties provided by mechanical testing and a rheological model. Although the 
appropriateness of using a KVFD model to describe the material behavior of M1 and M2 has been demonstrated 
by the higher fitting quality (0.999) compared with other rheological models (Voigt, Kelvin–Voigt, Zennerm 
Standard Linear Solid, and Standard Linear Solid Fractional Derivative), the standard error of the measurements 
during mechanical testing can be relevant for the comparison at higher frequencies (see figure 2(b)). Finally, when 
experimental results are compared to our approach, a scaling factor of ½ is found between figures 5(b) and (f) 
for the M1 case, and a scale factor of 7/8 is found between figures 6(b) and (f) for M2. Particle velocity data in 
phantoms using an OCT imaging system are obtained only a few millimeters below the surface of the phantom. 
Although we applied the Rayleigh-to-shear speed correction (equation (26)), other surface wave properties such 
as non-zero particle velocity in the r-direction can be pointed to as an experimental source of disagreement.

Other limitations of this study include the imprecise knowledge of the experimental parameters related to the 
beam pattern and the viscoelastic materials, and the limited number of cases in the study. A larger range of beam 
widths and viscoelastic materials will be required to more carefully determine the limits of applicability of the 
model. Furthermore, the theory applies to homogeneous and isotropic materials. Strongly anisotropic tissues 
such as muscle will require additional analyses.

6. Conclusion

The proposed forward model, under axisymmetric source conditions and the other negligible dispersion 
assumptions, offers a convenient compromise between simplicity and accuracy by avoiding the complex Hankel 
function with a singularity at the origin, by using two material parameters to characterize viscoelastic media and 
performing one NI of a simple function. Summarizing our findings, for an axisymmetric intensity force source 
Fz (r) applied during an impulsive time, the shear wave particle velocity pattern can be expressed as either a 
spatial or a temporal transform.

Figure 7. Quantitative comparison of numerical integration (NI) curves versus FE and OCT EXP for each time instant and 
phantom material M1 and M2. Normalized root-mean-square error, shown as percentage, is used for the analysis of discrepancies 
between curves.

Phys. Med. Biol. 64 (2019) 025008 (13pp)
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vz (r, t) =
1

2

ˆ ∞

0
ε · F̂ (ε) · J0(εr) cos(cεt)dε (27)

or

vz (r, t) =

ˆ ∞

0
ω · F̂

(ω
c

)
· J0(

ω

c
· r) cos(ωt)dω (28)

for an elastic medium. For a viscoelastic and weakly attenuating medium with negligible dispersion, the shear 
wave particle velocity pattern is expressed as

vz (r, t) =
1

2

ˆ ∞

0
ε · F̂ (ε) · J0(εr) cos(c0εt)e−ε c2

0α1tdε (29)

or

vz (r, t) =

ˆ ∞

0
ωF̂

Å
ω

c0

ã
J0

Å
ω

c0
r

ã
cos(ωt)e−α1ωrdω. (30)

Furthermore, the form of the key equations (12) and (23) can be interpreted as the inverse Hankel transform of 
zeroth order of a modulated source term. As such, there are a number of efficient algorithms associated with the 
discrete Hankel transform that can be applied (Johnson 1987). Therefore, the proposed model can be efficiently 

implemented without the need for treating singularities of the H(2)
0  Green’s function, or excluding the source 

region. As such, these are useful for inverse-fitting problems in order to estimate c0 and α1 of a selected material 
based on the particle velocity space-time propagation plots. In addition, the model can be tailored to any other 
force application time g(t) by performing the simple convolution described in equation (15). Future work will 
concentrate on extending this model for non-axisymmetric conditions, and validating it for the study of skin 
conditions, liver fibrosis, and corneal keratoconus.
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Appendix A

Here, we demonstrate the dual nature of the attenuated integral formulas from this derivation and an earlier 
approach by Parker and Baddour (2014). In this earlier work, under the assumption of first order dispersion 
(i.e. c ∼= c0 + c1ω) and some approximate simplifications of the Hankel function of complex arguments, their 
equation (43) is re-written here for a Gaussian function as

uz (r,ω) ∼= −A0
πi

2
e−α1|ω|rH(2)

0

Çñ
ω

c0
−
Å
ω

c0

ã2

c1sign(ω)

ô
r

å
e−σ(ω

c0
)2

. (A.1)

Now, if we apply the small dispersion assumption, then c ∼= c0, and c1 = 0, and calculate particle velocity 
vz (r,ω) = iωuz (r,ω), we find:

vz (r,ω) ∼= A0
π

2
ωe−α1|ω|rH(2)

0

Å
ω

c0
r

ã
e−σ(ω

c0
)2

. (A.2)

Using the general constraint for real and causal functions in the inverse Fourier transform (equation (23) from 

Parker and Baddour 2014), expanding the H(2)
0  function into its Y0 and J0 components, and then identifying the 

J0 function as the real part of this Fourier integrand, we find:

vz (r, t) ∼= A0

ˆ ∞

0
ωe−α1ωrH(2)

0

Å
ω

c0
r

ã
e−σ(ω

c0
)2

cos (ωt)dω, (A.3)

which appears identical to equation (23) when substituting ε for ω/c0, the constant A0 is scaled by 2c2, and the 
attenuation term e−ε c2

0α1t  is replaced by e−α1|ω|r in equation (23). This duality has been described before by 
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Blackstock (2000) where the attenuation of propagating waves can alternatively and equivalently be assigned 
either as a function of space or time.

Appendix B

As explained in section 3.1, the derivation of equation (25) is conducted by assuming a complex Young’s modulus 

Ê (ω) = Es (ω) + iEl (ω), and a nearly incompressible (Poisson’s ratio close to 0.5), homogeneous, and isotropic 

medium, where the complex velocity of the shear wave is described as ̂c(ω) =
√

µ̂(ω)/ρ =
»

Ê(ω)/(3ρ). Then, 

the complex wave number can be expressed as:

k̂ (ω) =
ω

ĉ (ω)
=

ω
√

3ρ√
Ê

=
ω
√

3ρ
√

Ê∗
√

Ê
√

Ê∗
=

ω
√

3ρ
√

Ê∗∣∣∣Ê
∣∣∣ (B.1)

where Ê∗ is the complex conjugate of Ê, and 
∣∣∣Ê
∣∣∣ is the modulus of Ê. Then, using identity 3.7.27 (Abramowitz and 

Stegun 1965), 
√

Ê∗  can be represented as

√
Ê∗ =

Ã ∣∣∣Ê
∣∣∣+ Es

2
− i

Ã ∣∣∣Ê
∣∣∣− Es

2
. (B.2)

Substituting equation (B.2) into (B.1) we have:

k̂ (ω) = ω

…
3ρ

2

Ü…∣∣∣Ê
∣∣∣+ Es

∣∣∣Ê
∣∣∣

− i

…∣∣∣Ê
∣∣∣− Es

∣∣∣Ê
∣∣∣

ê

which is equivalent to equation (25) in the manuscript.

Appendix C

In Abaqus/CAE, the viscoelastic behavior of material can be defined in tabular form by giving real and 
imaginary parts of ωg∗(ω). As defined in the 22.7.2 section of the Abaqus user manual (ABAQUS/CAE 6.14 
User’s Manual, Online Documentation Help: Dassault Systèmes), g∗(ω) is the Fourier transform of the non-

dimensional shear relaxation function g (t) = GR(t)
G∞

− 1, where GR(t) is the time-dependent shear relaxation 

modulus, and ω = 2πf  is the angular frequency. Then, ωR (g∗) = Gl/G∞, and ωI (g∗) = 1 − Gs/G∞, where 

R (·) and I (·) are the real and imaginary part operators, respectively, and the complex shear modulus is defined 

as Ĝ (ω) = Gs (ω) + iGl (ω). Subscripts s and l refer to the storage and loss moduli, respectively. Since we are 

assuming a nearly incompressible material, Ĝ (ω) = Ê (ω) /2, and we can redefine the tabular parameters 

as ωR (h∗) = El/E∞ and ωI (h∗) = 1 − Es/E∞, where the complex Young’s modulus is defined as 

Ê (ω) = Es (ω) + iEl (ω). We have changed the notation from g∗ to h∗ to stress the change to Young’s modulus 
and avoid confusion with the previously defined g(t) in the manuscript as the temporal application of force. 
Finally, the tabular form ωR (h∗) and ωI (h∗) parameters can be provided to Abaqus as a function of f = ω/2π, 
since Es, El , and E∞ are already obtained from mechanical measurements (section 3.1).

Appendix D

The PhS-OCT characteristics include a full-width half-maximum (FWHM) bandwidth of 125 nm, and a light 
source frequency sweep rate of 20 kHz. The source power that entered the OCT interferometer was split by a 
10/90 fiber coupler into the reference and sample arms, respectively. In the reference arm, a custom Fourier 
domain optical delay line was used for dispersion compensation. In the sample arm, a collimated light beam 
diameter of 6.7 mm at 1/e2 was directed onto a test phantom by a focusing imaging lens (LSM05, Thorlabs 
Inc., Newton, NJ, USA), coupled with a galvanometer scanning mirror placed at the front focal plane of the 
imaging lens to achieve telecentric scanning. The back-scattered light from the sample was recombined with 
the light reflected from the reference mirror with a 50/50 fiber coupler. The time-encoded spectral interference 
signal was detected by a balanced photo-detector (1817-FC, New Focus, CA, USA), and then digitized with a 
500 Msamples/s, 12-bit-resolution analog-to-digital converter (ATS9350, AlazarTech, Pointe-Claire, QC, 
Canada). The maximum sensitivity of the system was measured to be 112 dB (Yao et al 2015). The imaging 
depth of the system was measured to be 5 mm in air (−10 dB sensitive fall-off). The optical lateral resolution 
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was approximately 30 µm, and the FWHM of the axial point spread function after dispersion compensation was 
10 µm. The synchronized control of the galvanometer and the OCT data acquisition was conducted through a 
LabVIEW platform (National Instruments, Austin, TX, USA) connected to a workstation. The phase stability 
of the system was calculated as the standard deviation of the temporal fluctuations of the Doppler phase-shift 
(∆φerr) while imaging a static structure (Meemon et al 2010). Results show ∆φerr = 4.6 mrad when using the 
Loupas’ algorithm (Loupas et al 1995). The displacement sensitivity is measured as the minimum detectable 
axial particle displacement (uz,min). We found uz, min = 0.358 nm. Finally, the maximum axial displacement 
supported by the system without unwrapping the phase-shift signal (∆φmax = π) is uz,max = 0.24µm.
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