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Abstract

Purpose: Recent theories examine the role of the fractal branching vasculature as a primary site
of Born scattering from soft normal tissues. These derivations postulate that the first-order
statistics of speckle from soft tissue, such as the liver, thyroid, and prostate, will follow a
Burr distribution with a power law parameter that can be related back to the underlying power
law, which governs the branching network. However, the issue of scatterer spacing, or the num-
ber of cylindrical vessels per sample volume of the interrogating pulse, has not been directly
addressed.

Approach: Speckle statistics are examined with a 3D simulation that varies the number density
and the governing power law parameter of an ensemble of different sized cylinders. Several
in vivo liver scans are also analyzed for confirmation across different conditions.

Results: The Burr distribution is found to be an appropriate model for the histogram of ampli-
tudes from speckle regions, where the parameters track the underlying power law and scatterer
density conditions. These results are also tested in a more general model of rat liver scans in
normal versus abnormal conditions, and the resulting Burr parameters are also found to be appro-
priate and sensitive to underlying scatterer distributions.

Conclusions: These preliminary results suggest that the classical Burr distribution may be useful
in the quantification of scattering of ultrasound from soft vascularized tissues and as a tool in
tissue characterization.
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1 Introduction

The study of speckle statistics from ultrasound interrogation of soft tissues has a long and dis-
tinguished history with a number of treatment theories originally proposed in studies of radar and
optical scattering from random materials and media. These treatments lead to classical models of
the first-order statistics of speckle, including Rayleigh distributions, homodyne-K, and marked
regularity models.1–9 The key assumptions about random acoustic scatterers within tissues have
been commonly linked to cellular and connective tissues, furthermore linked to concepts, such as
average scatterer sizes and concentrations.10–22 However, recently, we proposed a different
framework for analyzing backscatter from soft vascularized tissues, such as the liver, prostate,
brain, and thyroid. The key structures are considered to be the branching cylindrical network
of fluid-filled channels that have a few percent difference in acoustic impedance from the
reference media, which is the tissue parenchyma composed of close-packed cells. The branching
fluid networks are self-similar, fractal networks and we hypothesize that the mathematical
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parameters of the fractal network substantially determine the first- and second-order statistics of
backscatter23–25 from these tissues.

To date, the effects of cylindrical vessel density (hypervascularized versus hypovascularized)
and the effect of the size of the interrogated sample volume on the resulting first-order statistics
have not been examined. Simulations are conducted in k-Wave26 to quantify the effects of these
parameters. It appears that the first-order statistics from a model of cylindrical branching vessels
will vary smoothly within three different regimes: the sparse regime where there are few vessels
per sample volume of the interrogating pulse, an intermediate range where the power law dis-
tribution of the vessels dominates, and then, a high vessel density range where the first-order
statistics shift toward the classical Rayleigh (fully developed) speckle. These results are com-
pared with a few ultrasound exams from different tissues and at different frequency bands to
confirm the multiscale nature of the formulations.

2 Theory

The first-order statistics for the branching vasculature were recently derived.25 Here, we sum-
marize the main points. First, we assume that a broadband pulse propagating in the x direction is
given by separable functions:
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For example, let Gyðy; σyÞ ¼ exp½ð−y2∕2σ2yÞ�, i.e., Gaussian in the y (and similarly in the z)
direction, and where the pulse shape Px in the x direction is given by
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where GH2 is a second-order Hermite polynomial for the pulse shape with a spatial scale factor
of σx,

27,28 representing a broadband pulse. Its spatial Fourier transform is then as follows:
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where we use Bracewell’s convention29 for the form of the Fourier transform.
Using a 3D convolution model,2,30,31 we consider the “dominant” echoes from the pulse

interacting with each generation of elements in a branching, fractal, self-similar set of vessels
shown in Fig. 1, whose number density follows a power law behavior NðaÞ ¼ N0∕ab. From
these echoes, the histogram of envelopes is determined by summing up over all the fractal
branches.

The isotropic spatial and angular distribution of each generation of fractal branching struc-
tures is based on a scalable element. Specifically, consider a long fluid-filled cylinder located
along the z-direction of radius a:

Fig. 1 Model of 3D convolution of a pulse with the fractal branching cylindrical fluid-filled channels
in a soft tissue.
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where κ0 is the fractional variation in compressibility, where it is assumed that κ0 ≪ 1, consistent
with the Born formulation, FðρÞ represents the Hankel transform, which is the 2D Fourier trans-
form of the radially symmetric function fðrÞ, J1½·� is a Bessel function of the first kind of order 1,
and ρ is the spatial frequency equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
. The fractional variation in compressibility, κ0,

between blood vessels and liver parenchyma has been estimated to be ∼0.03 or a 3% difference
based on published data.24

The convolution of the pulse with a cylinder of radius a is dominated by the case, where the
cylinder is perpendicular to the direction of the forward propagating pulse, the x-axis in our case.
Thus, assuming an optimal alignment, the results of the 3D convolution in space, depicted in
Fig. 1, are given by the product of the transforms:
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3DIfechoðx; y; zÞg ¼ I3Dfpðx; y; zÞg · ðkxÞ2I3Dfcylinderðx; y; zÞg; (5)

where the ðkxÞ2 term premultiplying the cylinder transform stems from the Laplacian spatial
derivative in the Born scattering formulation32,33 and in the 3D convolution model.2,34 In our
case, using the 3D spatial Fourier transforms for the pulse [Eq. (3)] and the perpendicular cyl-
inder [Eq. (4)], and inserting them into Eq. (5), we have on the right side of the equation:
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where the delta function in kz stems from the fact that the cylinder is long in the z-direction. We
can then assess the total energy in the echo as a function of the parameters by applying Parseval’s
theorem, where the integral of the square of the transform equals the integral of the square of the
echo, and after integration over the delta function in kz coordinate:
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The square root of this gives the root mean square (RMS) amplitude of the echo from a single
cylinder as a function of the radius a. We also assume that this RMS amplitude from each echo
corresponds to a proportionally higher maximum value of the envelope, as a function of cylinder
radius a, denoted as A½a�.

From this framework and numerical evaluation of Eq. (7) over a range of realistic parameters,
we found25 an approximation, which will be useful for deriving a closed form solution of the
echo amplitude for any single long cylinder of radius a, A½a� ¼ A0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a − amin

p
for a > amin and

0 if a < amin. The overall function is justified by the nearly linear increase in the energy term
above some minimum threshold, and the asymptotic modulus of J1ðakÞ which is proportional35

to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2∕ðπakÞp

as ak becomes large. Of course, the exact shape is dependent on the particular
pulse shape’s spectrum and the beam pattern, and so, this square root function for echo amplitude
is only a rough approximation.

The parameter amin depends on the number of factors, including the dynamic range selected
(for example, 45 dB) and the radius below which the weak Rayleigh scattering (long wavelength,
small a, small κ0) behavior of the cylinder interacting with the particular pulse transmit signal
cannot be distinguished from the noise floor and quantization floor of the receiver.

Now, applying the general theory of transformed distributions,36 we have within the fractal
branching ensemble of cylinders the number density of vessels at different radii given by
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N½a� ¼ N0∕ab. We treat this as equivalent to the probability that the incident pulse will
encounter a cylinder of radius a, and this can be transformed into the probability distribution
of amplitudes AðaÞ. The general rule for transformations is as follows:
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ðA∕A0Þ2 þ amin. Thus, substituting these into Eq. (8), the probability distribution of the ampli-
tude N½A� is
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So, for example, if b ¼ 2 and A0 and N0 are unity, then N½A� ¼ 2A∕ðA2 þ aminÞ2, and this is
plotted in Fig. 2 along with variations in parameters.

This provides a four-parameter fit fN0; A0; amin; bg to a histogram taken from a reasonably
sized region of interest (ROI) within a vascularized tissue or organ. The ROI size must encom-
pass a range of cylindrical vessel radii, from large to small, and within the assumption of an
isotropic and spatially uniform distribution of vessels across the ROI.

However, of these four parameters, N0, A0, and amin are influenced by system parameters,
such as amplifier gain and the size of the ROI. To simplify the analysis, one can normalize
the distribution by its integral ∫N½A�dA ¼ N0∕½ðb − 1ÞðaminÞb−1� to form a proper probability
density function (PDF), which integrates to unity:
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Furthermore, by substituting λ ¼ A0

ffiffiffiffiffiffiffiffiffi
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p
, we find this reduces to a two-parameter distribution:
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which is a Burr type XII distribution37,38 with c ¼ 2. Thus, the normalized distribution offers
a simplification to a two-parameter distribution with analytic expressions for PDF, cumulative
distribution function, and moments.38 For example, the peak of the distribution occurs at
A ¼ λ∕

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2b − 1

p
for b > 1∕2.

Fig. 2 The proposed histogram function of envelope amplitudes A, having the form
A∕ðA2 þ aminÞb . (a) Normalized functions, where amin ¼ 1∕2 and the power law parameter b is
3, 2.5, 2, and 1.5, are shown. (b) Normalized functions where the power law parameter is fixed
at 2.5, however, amin is varied as 1/4, 1/2, 3/4, and 1. Vertical axis: counts (arbitrary units);
horizontal axis: envelope amplitude (arbitrary units).
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Thus, we argue that the Burr distribution [Eq. (11)] is the expected histogram distribution of
echo amplitudes from a fractal branching set of Born cylinders. In particular, the power law
parameter b is a major parameter of interest.

3 Methods

The numerical simulations are achieved using k-Wave to simulate the time-domain propagation
of compressional wave in 3D. k-Wave is an open-source toolbox developed in MATLAB that
solves the acoustic wave equations using the k-space pseudospectral method.26

In this study, the simulation domain is a 3D block of 15 mm (in depth, x) × 13 mm (in the
lateral direction, y) × 3 mm (in the transverse direction, z). It is uniformly divided into small grid
elements of ∼69.4 μm in the x, y, and z directions. The 3D orientation of the transducer for
simulation is shown in Fig. 3(a). A few cylindrical branches are also shown here for the clari-
fication of the random branching orientation in the domain.

The medium consists of a uniform background and a set of cylindrical branches with different
radii ranging from one to six grid elements mimicking the scattering structures as vessels. The
centers of the cylinders are distributed randomly in the x–y plane of Fig. 3(b) using the uniform
random distribution function in MATLAB, with an added step to ensure that there is no overlap
among any two branches generated. The cylindrical branches are placed along the transverse
direction ðzÞ perpendicular to the direction of propagation ðxÞ since the orientation provides
the dominant echoes accounted for in our theory.25 The round cylindrical shapes in the model
are not exact due to the discretization of radii to grid elements; flat surfaces may appear in some
areas on the surface of cylindrical branches. Since flat walls are not realistic and result in strong
reflective surfaces, the cylindrical radii are perturbed randomly to avoid the effect of artificially
flat boundaries.

Each cylindrical branch is also assigned a specific radius a according to a number density of
NðaÞ in the medium prescribed by the fractal branch power law relation as NðaÞ ¼ N0∕ab. In
this study, three sets of different simulations are performed, each based on the value that is picked
for the power law parameter b from the physiological ROI (2 < b < 3): b ¼ 2.2, 2.5, and 2.8.
For each set, N0 is varied from 100 to 400 in increments of 50, guaranteeing that for each N0,
there is at least one cylinder with the largest radius using the power law formulae. In Fig. 3(b),
a 2D representation of cylindrical branch distributions for the case of b ¼ 2.8 and 200 is shown.

Fig. 3 (a) 3D orientation of the transducer in the simulation domain. A few cylindrical branches are
also shown here to illustrate the random branches’ orientation in the domain. (b) 2D view (x–y ) of
the random distribution of cylindrical scatterers shown as black circular spots in the uniform white
background, corresponding to the case of b ¼ 2.8 and N0 ¼ 200.
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Two cycles with a frequency of 4 MHz are applied as the tone-burst excitation signal using
a virtual linear array transducer defined in k-Wave that serves as both source and sensor to the
transmit signal and the receive reflection signal, respectively. The transducer is focused at a depth
of 10 mm from the top surface of the domain. The center frequency of 4 MHz is applied to mimic
the frequency used in tissue scans. Other physical properties of the transducer are listed in
Table 1. To avoid side lobe effects, the element width of the transducer satisfies the following
condition:

EQ-TARGET;temp:intralink-;e012;116;469element width ≤
λ

2
; (12)

where λ is the wavelength.
The properties of the medium defined here are speed of sound, density, and absorption

coefficients. As the medium is heterogeneous, these are defined as matrices in the size of the
entire computational domain and a value is assigned to each single element. For elements in the
background and cylindrical branch regions, the speed of sound is set to 1540 and 1500 m∕s,
respectively. The density is assumed to be uniform throughout the entire medium, taking the
value of 1000 kg∕m2. The absorption coefficient is set to a small value.

Computational time step size is set using a Courant–Friedrichs–Lewy (CFL) number smaller
than 0.3 to make the simulation stable ðCFL ¼ c0dt∕dxÞ.39 The B-mode image of the domain is
reconstructed using sum and delay beamforming, frequency filtering, envelope detection, and
log compression from the raw RF data.

Separately, experimental results were obtained from liver experiments. Rat experiments
were reviewed and approved by the Institutional Animal Care and Use Committee of Pfizer,
Inc., Groton Connecticut, where the ultrasound scan was acquired using a Vevo 2100
(VisualSonics, Toronto, Canada) scanner and a 21-MHz center frequency transducer (data
provided courtesy of Terry Swanson). Parameter estimation was performed using MATLAB
(MathWorks, Inc., Natick, Massachusetts) nonlinear least-squares minimization of error for
two-parameter fits of the Burr distribution to the data.

4 Results

A range of simulations was evaluated with the cylindrical scatterer density parameters varied
between a power law b of 2.2, 2.5, and 2.8 and N0 of 100, 200, 300, and 400. Visually, the
results shown in Fig. 4 demonstrate the higher density of scatterers with increasing N0. The
envelope of the return echoes from these different simulations indicates progressive shifts as
the number density of scatterers changes.

In Fig. 5, single A-line envelopes are taken from the center vertical line in the simulations of
Fig. 4. At the lowest scatterer density, the envelope has many regions at or near zero. However,
as the density increases, the behavior indicates more and higher local maxima with sharp speckle
minima that indicate complex summations of nearby scattering sites.

Table 1 Physical properties of the transducer in the
simulation.

Transducer properties Value

Number of elements 32

Focus 10 mm

Element width 0.0694 mm

Element height 1.597 mm

Elevation focus 10 mm

Kerf 0

Parker and Poul: Speckle from branching vasculature: dependence on number density

Journal of Medical Imaging 027001-6 Mar∕Apr 2020 • Vol. 7(2)



The histograms for three of these cases are shown in Fig. 6 as three samples out of all of the
simulations done, showing the Burr-fitted curves and the corresponding fitting parameters. The
case of N0 ¼ 100 is not shown because the excess amount of signal at or near zero creates a poor
curve fit to Eq. (11); large anechoic regions are not accounted for in the theory.

A summary of all results over the parameter space is given in Fig. 7, also indicating the range
of results found over 10 independent simulations of identical parameters. The clear trend is for an

increasing fit of the power law estimate b̂ not only with the generating power law b but also with
the number density of scatterers. This may be explained in Table 2, which reports the average
number of scattering cylinders that would lie within the volume of the interrogated pulse. The
sample volume produced by the 4-MHz pulse was found to be roughly elliptical with a −10 dB

area of ∼0.26 mm2, averaged over the ROI. When the average is less than 1, there are significant

Fig. 5 Envelope plots along the middle line for the power law parameter b ¼ 2.5. The two arrows
indicate the length of the ROI from which the histogram plots are obtained.

Fig. 4 Comparison of the random scattering fields (top row) and corresponding B-mode images
(bottom row) for different number densities based on the power law equation for b ¼ 2.5. Column
(a) N0 ¼ 100, column (b) N0 ¼ 200, column (c) N0 ¼ 300, and column (d) N0 ¼ 400. A ROI
(dashed lines) is shown for analysis.
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anechoic regions, however, as the scatterer density per sample volume increases toward 4 or

higher, significant complex summations can result, and higher estimates of the power law b̂
are obtained from the histogram of the envelopes.

To test the generality of the results, we examine in vivo scans from rat liver experiments. A

normal liver is shown in Fig. 8 with histogram and fits to a Burr distribution (b̂ ¼ 2.8), then, in

Fig. 9, a fibrotic liver with low fat (b̂ ¼ 2.1), and finally, in Fig. 10, a fibrotic liver with high fat

accumulation in vesicles (b̂ ¼ 3.2). These examples are not simple manipulations of cylindrical
number density, and so, represent more general cases than those shown in simulations. However,
the fibrotic mesh can be considered to be an increase (compared to normals) of larger scatterers,

Fig. 7 Summary of simulation results using the fractal branches theory for comparison of results
for fitted b̂. Error bars for fitting parameter are also shown when N0 ¼ 250 and b ¼ 2.2, 2.5, and
2.8, each resulting from 10 repetitions of the simulation.

Table 2 Averaged number of scatterers within pulse area in k-Wave simulations.

Variable N0 ¼ 100 N0 ¼ 200 N0 ¼ 300 N0 ¼ 400

b ¼ 2.2 Number of cylinders/pulse 0.81 1.62 2.43 3.25

b ¼ 2.5 Number of cylinders/pulse 0.94 1.88 2.82 3.77

b ¼ 2.8 Number of cylinders/pulse 1.11 2.21 3.32 4.43

Fig. 6 Fractal branches curve-fitting for: (a) N0 ¼ 200 and b ¼ 2.5. Curve-fit parameters:
b̂ ¼ 2.341, λ ¼ 1412. Goodness of fit: R2 ¼ 0.9869, root mean square error ðRMSEÞ ¼ 0.2088.
(b) N0 ¼ 300 and b ¼ 2.5. Curve-fit parameters: b̂ ¼ 4.048, λ ¼ 2980. Goodness of fit:
R2 ¼ 0.9954, RMSE ¼ 0.1059. (c) N0 ¼ 400 and b ¼ 2.5. Curve-fit parameters: b̂ ¼ 5.593,
λ ¼ 4280. Goodness of fit: R2 ¼ 0.996, RMSE ¼ 0.08801.
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Fig. 8 (a) B-scan image of normal rat liver. A ROI is selected (dashed lines) for analysis.
(b) Fractal branching theory fit to the histogram of normalized echo amplitude. Curve-fit param-
eters: b̂ ¼ 2.832, λ ¼ 407.1. Goodness of fit: R2 ¼ 0.996, RMSE ¼ 0.04665.

Fig. 9 (a) B-scan image of low fat fibrotic rat liver. A ROI is selected (dashed lines) for analysis.
(b) Fractal branching theory fit to the histogram of normalized echo amplitude. Curve-fit param-
eters: b̂ ¼ 2.184, λ ¼ 532.5. Goodness of fit: R2 ¼ 0.9933, RMSE ¼ 0.03381.

Fig. 10 (a) B-scan image of high fat fibrotic rat liver. A ROI is selected (dashed lines) for analysis.
(b) Fractal branching theory fit to the histogram of normalized echo amplitude. Curve-fit
parameters: b̂ ¼ 3.219, λ ¼ 871.8. Goodness of fit: R2 ¼ 0.9878; adjusted RMSE ¼ 0.04887.
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hence, consistent with a lower b (consistent with a number density favoring the larger scatterers).
The case with fibrosis and significant accumulation of microvesicular and macrovesicular fat
would be consistent with a higher b (favoring a high density of smaller scatterers). Thus, the
results indicate some degree of generality of the framework of the Burr distribution, not restricted
solely to cylindrical scatterers.

5 Discussion and Conclusion

The derivation leading to the Burr distribution for speckle25 has a number of key assumptions,
whereby the accounting of echo amplitudes presumes that each cylindrical vessel at normal inci-
dence to the interrogating pulse contributes according to its own scattering transfer function.
There is no accounting for multiple vessels within the sample volume formed by the interrogat-

ing pulse, and when these conditions are present, the estimated b̂ from the Burr distribution
should approximate the underlying power law that governs the fractal branching of the vascular
tree. From the numerical simulations, we see this is valid within a zone of scatterer density of
between one and two average cylindrical scatterers per sample volume of the interrogating pulse.
Below that zone, there are few scatterers and much of the envelopes from a scan line are at or
near zero from the asymptotic decay of the echo at long distances from the rare scatterers. This
skews the distribution toward lower values of echo amplitudes.

Conversely, when the number density of vessels is so high that there are many within a
pulse’s volume, then complex summation becomes important. In the classical theory where the
random point scatterers are identical and at a number density higher than approximately seven,40

then we would expect Rayleigh-distributed envelopes.1 However, in our framework, the scat-
terers are not identical, they are sampled from a power law distribution of vessel diameters,

and so, the general trend is toward higher values of b̂ as more cylinders are included within the
pulse sample volume. These overall trends are shown in Fig. 4. As the number density and as

b increase within any tissue, the Burr parameters b̂ and λ will increase.
We note that the Burr distribution as we derived in Eq. (11) has the denominator term with

ðA∕λÞ2, and the square term can be traced back in the original derivation to the approximation of
how the peak of the echo envelope increases with increasing scatterer size. This result is not
precise and can depend on the exact nature of the broadband pulse incident on a cylindrical
scatterer. If we allow some perturbation of this, then, the histogram formula can be written
as follows:

EQ-TARGET;temp:intralink-;e013;116;325Nnorm ¼
cðb − 1Þ
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h
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λ

�
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i
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where c is now a third parameter not constrained to 2. This is simply a more general form of the
Burr distribution.37,38 We have found that this is useful for cases with low N0 that contain larger
anechoic spaces. For example, if the histogram in Fig. 6(a) (N0 ¼ 200) is fit to Eq. (13) instead
of Eq. (11), then, we find c ¼ 1.7 instead of the assumed 2, and with a higher R2 (0.99 instead of
0.98). Thus, the three-parameter Burr distribution might have general applicability to a wider
range of conditions.

In the liver examples, it is plausible that fibrosis increases the number of larger scatterers
(fibrotic patches), whereas fat increases greatly the number of very small (Rayleigh) scatterers.

The corresponding changes in b̂ as compared with a normal reference case are consistent with
these changes in tissue. These results open the possible use of the Burr distribution parameters as
biomarkers for tissue vascularity and structural composition.
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