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Introduction

The study of speckle as a random interference phenomenon 
from coherent illumination is over 100 years old. The early 
work in light (predating the laser) utilized prisms to select a 
narrow band and study scattering,1 but even at that time the 
author said, “The theme of our investigation is an old one.” 
With the advent of radar and laser sources, the research on the 
mathematical properties of optical speckle were accelerated.2-8 
In medical ultrasound, the mathematical treatment of speckle 
patterns is over 40 years in extent9 and has developed into a 
rich set of models for the statistics of backscattered echoes 
from tissues.10

For much of medical ultrasound, important goals include 
the differentiation of normal versus pathological tissues, the 
detection of lesions, and the post-processing of B-scans for 
improved rendering of images including computer assisted 
diagnosis by algorithms. All of these tasks are strengthened 
by a careful analysis of speckle or texture from scatterers 
within normal soft tissues, and then any changes associated 
with pathological conditions. Accordingly, over time a num-
ber of models of ultrasound speckle have been postulated, 
and many of these models have been adapted from earlier 
work from optics and electromagnetics. These models 
include the classical Rayleigh distribution,9,11-13 the 
K-distribution,14-16 a Rician distribution,6,17,18 the Nakagami 
distribution,19-21 a “marked model” distribution,22,23 and 
other advanced models24,25 with continuing applications to a 
variety of clinical targets.26-29

Recently, we have proposed an alternative approach to the 
first and second order statistics of speckle from soft vascular-
ized tissues.30-32 Essentially, this model postulates that the 
fractal branching vasculature and fluid channels have an 
acoustic impedance mismatch of approximately 3% with 
respect to the surrounding tissue parenchyma. This mismatch 
forms the dominant set of inhomogeneities in normal soft vas-
cularized tissues such as the prostate, thyroid, liver, and brain, 
and therefore the canonical scattering element is a cylinder, 
not a point or a sphere. Given the multi-scale, fractal structure 
of the vasculature, an ensemble average over all sizes from 
large to small leads to power law functions which propagate 
through different transfer functions and probability density 
functions (PDFs). This paper examines the first order statistics 
of speckle from tissue under the assumptions inherent in the 
framework where weak (Born approximation) scattering orig-
inates from a fractal branching set of cylindrical vessels within 
a reference medium and interrogated by a bandpass ultrasound 
pulse. It is shown that the echo amplitude, intensity, and log 
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amplitude histograms can be modeled by conventional PDFs 
that are known in the statistics literature, and therefore have 
well described properties. These all contain a power law 
parameter that originates from the tissue structure itself. 
Preliminary examples from a 3D wave simulation of scatter-
ing and an animal imaging study of the liver are given to dem-
onstrate the relevance of these functions.

Theory

Spatial Convolutions and Transforms

The key assumptions and formulas used in deriving the 
first order statistics of speckle from a fractal branching 
vasculature are summarized below. First, we assume that 
a bandpass pressure pulse P  propagating in the x  direc-
tion with velocity c  can be approximated by separable 
functions33:
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where Gy yy,σ( )  is a Gaussian-shaped transverse beampat-
tern in the y -direction with σ y  representing the width 
parameter, similar for G yz z, ,σ( )  and Px  is the propagating 
bandpass pulse shape in the x -direction.

Next, applying a 3D convolution model,33-35 we assess 
the dominant echoes from the pulse interacting with each 
generation of elements in a branching, fractal, self-similar 
set of vessels shown in Figure 1, and whose number density 
as a function of radius a  follows a power law behavior36 
N a N ab( ) = 0 ,  where b  is a real number greater than 1 
defining the branching behavior of the fractal vascular tree 
and N0  is a constant determining the overall number 
density.

The canonical scatterer shape for any branch is a long 
fluid-filled cylinder of radius a  with long axis aligned along 
the z -direction:
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where κ0  is the fractional variation in compressibility, 
assumed to be 1  consistent with the Born formulation, 
F ρ( )  represents the Hankel transform using Bracewell’s 
convention,37 which is the 2D Fourier transform of the radi-
ally symmetric function f r( ) , J1 ⋅[ ]  is a Bessel function of 
the first kind of order 1, and ρ  is the spatial frequency equal 

to k kx y
2 2+ .  The fractional variation in compressibility, κ0 ,  

between blood vessels and liver parenchyma has been esti-
mated to be approximately 0.03, or a 3% difference based on 
published data.31

In addition, we also consider a “soft-walled” cylindrical 
vessel representing a less sharp transition in acoustic imped-
ance between the fluid interior and the outer “solid” tissue:
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Its Hankel transform is given by theorem 8.2.24 of Erdélyi 
and Bateman38:
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The convolution of the pulse with a cylinder of radius 
a  is dominated by the case where the cylinder is perpen-
dicular to the direction of the forward propagating pulse, 
the x -axis in our case. Thus, assuming an optimal align-
ment, the 3D convolution result is given by the product of 
the transforms:

Figure 1.  Model of 3D convolution of a pulse with the fractal branching cylindrical fluid-filled channels in a soft tissue.
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where the kx( )2  term pre-multiplying the cylinder transform 
stems from the Laplacian spatial derivative in the Born scat-
tering formulation39,40 and in the 3D convolution model.35,41

By Parseval’s theorem, the integral of the square of the 
transform equals the integral of the square of the echo, and 
provides a measure of the energy within the echo:
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We assume the left side of Equation (6) is also propor-
tional to the average intensity I  of the echo as a function of 
the deterministic parameters on the right side, and the square 
root of this is proportional to the amplitude of the echo. From 
numerical evaluations of Equation (6) using either of two 
cylinders (Equations 2 or 3) and either of two bandpass 
pulses (Gaussian Hermite or hyperbolic secant) we found32 
an approximation which will be useful for deriving a closed 
form solution of the echo amplitude A,  A a A a a[ ] = −0 min  
for a a> min ,  and 0 otherwise. This approximate relationship 
is justified by the nearly linear increase in the energy term 
above some minimum threshold, and the asymptotic modu-

lus of J ak1 ( )  which is proportional42 to 2 πak( )  as ak  
becomes large. The exact shape is dependent on the particu-
lar pulse shape’s spectrum and the beampattern.

So as a working approximation, we apply the relation 

A a A a a[ ] = −0 min  (or for intensity I ,  I a I a a[ ] = −( )0 min ) 

for a a> min .  The parameter amin  depends on a number of fac-
tors, including the dynamic range selected (e.g., 45 dB) and the 
Rayleigh scattering (long wavelength, small a ) behavior of the 
cylinder interacting with the particular pulse transmit signal, 
along with the noise floor and quantization floor of the receiver.

Probability of Amplitudes

Consistent with fractal models,36,43 we assume that along the 
line of propagation of the incident pulse in Figure 1, and within 
the interrogated ensemble, the probability density of encoun-
tering vessels at different radii is given by a power law:

	 p a b a a a
b( ) = −( )( )( )−1 min min 	 (7)

for a a> min  and b >1,  and this will be transformed44 into 
the probability distribution of amplitudes, p A( ).  The gen-
eral transformation rule is:
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substituting these into Equation (8) the PDF p A[ ]  is:
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Furthermore, by substituting λ = A a0 min ,  we find this 
reduces to a two-parameter distribution:
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which is a Burr Type XII distribution45,46 with c = 2.  
Thus, the speckle PDF is given by a two-parameter distri-
bution with known analytic expressions for its cumulative 
distribution function, and moments.46 For example, the 
peak of the distribution occurs at A b= −λ 2 1  for 
b >1 2.

Thus, the Burr distribution (Equation 10) describes the 
expected histogram distribution of echo amplitudes from 
a fractal branching set of Born cylinders. In particular, 
the power law parameter b  is a major parameter of 
interest.

Probability of Intensity

For completeness, we examine the PDF of echo intensity 
from this model. Again, assume that the probability distribu-
tion of a fractal branching vasculature is described by a 
power law in radius a  ( amin  now pertains to vessel size 
minimum) as given in Equation (7).

Furthermore, assume the average backscatter intensity 
I a I a a( ) ≅ −( )0 min  for a a> min ,  zero otherwise. Then,
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Thus, using the transformation rules:
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which is a Lomax distribution, also related to a Pareto type II 
distribution.47 This can be more compactly written as:

	 p I
b

I
I

b

b( ) = −( )
+( )

−1 2
1

2

λ

λ
	 (14)

for I > 0  and b >1,  and where λ2 0= ⋅I amin .

Probability of Log-Transformed Envelope

In ultrasound imaging, it is conventional to display the echo 
amplitudes using a log or dB scale to help with visualization 
of the wide dynamic range. The log transformation affects 
the distribution, and again using probability transformation 
rules,44 let y A= ( )ln ,  dy dA A=1 ,  and A y= e .  Then:
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for y > 0  and b >1.  Note that in probability literature, this 
is related to the generalized logistic distribution, and for the 
special case where λ =1  and b = 2  this becomes the sech2 
distribution.48

Thus, each form of the received echoes from speckle 
(amplitude, intensity, ln[amplitude]) are given by stan-
dard PDFs known in the literature (Burr type XII, Lomax, 
generalized logistic). These have now been derived based 
on a simple transformation of probability distributions 
using a mapping function linking vessel radius to echo 
strength. However, when multiple vessels are present 
within the interrogating pulse, then more complex treat-
ment is required.

Increasing Power Law b  with Complex 
Summation

Let us assume that the interrogated sample volume in an 
imaging system is large enough to encompass two or sev-
eral discrete cylindrical scatterers simultaneously. Because 
of the RF modulation of the pulse, their echo amplitudes 
will be complex. Because of the fractal distribution, the 
probability distribution of each individual reflected echo 
amplitude has already been given as a Burr distribution. 

Note that historically, the Rayleigh distribution was derived 
by considering a complex summation of many independent 
point scatterers, then by invoking the central limit theorem 
a Gaussian distribution is generated from the sum of many 
identical and independent random variables.48-52 In marked 
contrast in our case, we have cylindrical scatterers from a 
power law probability distribution over a wide range of 
radii, and we do not anticipate having so many vessels 
within a sample volume that we can invoke the central limit 
theorem. Furthermore, power law distributions (long tail 
distributions) have slow convergence to the central limit, 
and so it is instructive to look at the complex sum of two or 
few scatterers. The statistics literature has derived the sum 
of random variables of these distributions but the solutions 
generally involve complicated generalized functions or  
series.47,48,53-57 To simplify this, we examine a complex 
Burr summation.

With reference to Figure 2, using standard notation we 
can write the amplitude of the complex sum of two phasors 
A  and B  as:

C A B A BA B A B= +( ) + +( )cos cos sin sin ,θ θ θ θ
2 2   (16)

where A  and B  are independent Burr-distributed ampli-
tudes (sampled from the echoes returning from the fractal 
branching network), and θA B,  are independent and uni-
formly distributed over 0 2≤ <θ π .

The new random variable A Acosθ  is given by the prod-
uct distribution law44,54 involving an integral over the PDFs 
for both A  and cos .θA  By the transformation rule we can 
easily show that if p θ π( ) =1 2  where 0 2≤ ≤θ π ,  then 

p y y=( ) = −( )cosθ π1 2 1 2  where − < <1 1y .  Then, if 

A A y = ⋅ ,  the product distribution yields:

Figure 2.  The vector sum of two independent phasors, 
pertaining to the real and imaginary parts of a complex addition 
as is commonly found in models of scattering.
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for b >1  and λ =1,  where Γ  is the gamma function and 

thus p A( )  is a double-sided Pearson PDF with E A

 = 0.

Next we need the PDF for A BA Bcos cos .θ θ+  The sum 
of independent and identically distributed (IID) variables is 
given by the convolution formula.44 We found closed form 
solutions as ratios of polynomials for convolutions of 
Equation (17) only for integer orders of b −1 2;  it is instruc-
tive to look at one practical example. Let Z Z ZC A B= +  with 
a PDF of ZA B,  given by Equation (17), and let b = 2 5. .  Then 
we find:
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The latter form emphasizes the important term with numera-
tor 20, which dominates for ZC

2 20<  and in this example has 

denominator power of 3 (or more generally b +1 2 ) Thus, 
the PDF of the sum of two Burr phasors’ real parts is domi-
nated by an increased power law of b +1 2.  In other words, 
the dominant power law term in the PDFs increases from 2.5 
to 3. As more phasors are added, by induction this leading 
term increases. Specifically, a third phasor ZC  leads to 
another convolution of the IID PDFs, raising the denomina-
tor power to 4 (or b + 3 2 ). The final PDF of C  in Equation 
(16) requires further calculations and becomes complicated, 
however the trend toward increasing b  with increasing num-
ber of cylinders is revealed by the examination of the real 
part of the phasor addition as given above. These PDFs are 
summarized in Table 1.

Methods

Simulations

In this study, to make a simple model of the liver parenchyma 
having vessels with fractal branching nature, a 3D block 
including multiscale cylindrical branches was generated to 
simulate the wave propagation and obtain the statistics of 
speckles. The block dimensions are 15 mm × 13 mm × 3 mm 
in the axial x( ) ,  lateral y( ) ,  and transverse z( )  directions, 
respectively, with the uniform grid element size of 69.4 µm  
approximately in all directions. The distribution of the cylin-
drical branches as scatterers with different radii obeys the 
power law behavior of Equation (7) with b = 2 5. .  The cylin-
drical scatterers’ radii ranged from 1 to 6 grid elements, and 
are randomly distributed in the background with no overlap 
among any two generated branches.

Table 1.  Summary of Soft Tissue Speckle PDFs.
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The k-Wave toolbox in MATLAB (The Mathworks, Inc., 
Natick, MA, USA) is employed to simulate the propagation 
of compressional waves in the time domain. This open-
source toolbox uses the k-space pseudospectral approach to 
solve the acoustic wave equations.58

Using a virtual linear array transducer defined as the 
source and sensor in the k-Wave toolbox, an excitation signal 
is applied in the form of two transient toneburst cycles with a 
frequency of 4 MHz. This frequency is selected to lie in the 
common frequency range used for adult human abdominal 
scanning. For the material properties assignment, the speed of 
sound is set to 1540 m/s and 1500 m/s for the background and 
scatterers, respectively, and a uniform density of 1000 kg/m2 
is assumed for the entire medium with a small absorption 
coefficient. Moreover, in order to avoid the reflection effect 

from the boundary, the 3D domain is surrounded by an 
absorbing boundary layer, known in the k-Wave toolbox as a 
perfectly matched layer, which absorbs acoustic waves at the 
boundaries and minimizes reflection back to the domain.

A larger study focused on the effect of the number of 
scatterers per unit volume from these simulations was 
recently completed59 across a range of parameters includ-
ing 2 3< <b  and further details of the simulation can be 
found therein.

Liver Scans

Separately, experimental results were obtained from liver 
experiments. Rat experiments were reviewed and approved 
by the Institutional Animal Care and Use Committee of 

Figure 3.  (a) 3D orientation of the transducer and random cylindrical scatterers in the simulation domain. Only a few cylindrical 
branches are shown here to clarify their orientation as perpendicular to the axial propagation of the interrogating pulse, (b) One 
realization of a random distribution of weak cylindrical scatterers of various diameters following a power law (fractal) function, and (c) 
Resulting 4 MHz B-scan demonstrating speckle pattern.

Figure 4.  Histogram curve fitting from speckle in Figure 3: (a) Burr b = 3 357. ,  λ = 2247.  Goodness of fit: SSE = 9.879, R2 = 0.995, 
(b) Lomax b = 3 616. ,  λ = +5 14 06. .e  Goodness of fit: SSE = 0.009627, R2 = 0.9962, and (c) Logistic b = 3 765. ,  λ = 2494,  
Goodness of fit: SSE = 0.1784, R2 = 0.9949.
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Pfizer, Inc., Groton, CT, USA, where the ultrasound RF data 
were acquired using a Vevo 2100 (VisualSonics, Toronto, 
ON, Canada) scanner and a 21 MHz center frequency trans-
ducer (data provided courtesy of Terry Swanson). For the pur-
pose of examining speckle PDFs, two scans (one normal and 
one fibrotic) were selected for having good quality B-scan 
images with adequate liver ROIs. The focal depth was set to 
11 mm and positioned to the lower half of the liver in the sag-
ittal plane. In analyzing the results from simulations and liver 
scans, parameter estimation was performed using MATLAB 
nonlinear least squares minimization of error, for two-param-
eter fits of the Burr distribution to the data.

Results

An example from the simulation results are given in Figure 3. 
Figure 3(a) shows a 3D orientation of the transducer and ran-
dom cylindrical scatterers in the domain. Only a few branches 

are shown here to clarify their orientation as perpendicular to 
the axial propagation of the interrogating pulse. Figure 3(b) 
illustrates one realization of a random distribution of weak 
cylindrical scatterers of various diameters following a power 
law (fractal) function with b = 2 5.  and N0 250= .  Figure 3(c) 
shows the resulting 4 MHz B-scan formed from the reflected 
echoes showing a characteristic speckle pattern.

Figure 4 contains the histograms from left to right of the 
amplitudes (Burr), intensity (Lomax), and log amplitude 
(logistic) distributions. In each case, the estimated b  param-
eters are near 3.5, higher than the simulated b = 2 5. .  This is 
expected since in this simulation the estimated number of 
cylindrical cross sections per sample volume of the interro-
gating pulse is near 2.5, so the complex addition of Burr pha-
sors acts to increase the power law above its reference value.

Next, rat livers are examined and ROIs selected within the 
liver at a depth centered around the transmit focus at 11 mm. 
Figure 5 provides the B-scan of a normal liver, and Figure 6 
illustrates the Burr, Lomax, and logistic fits to the associated 
histograms. In these cases, the power law parameters are all 
estimated to be around 3.8. In comparison, a rat liver from 
the same study but treated with CCl4 so as to create fibrosis, 
is shown in Figure 7. The corresponding histograms and the-
oretical curve fits are shown in Figure 8, and in this case the 
estimated b  parameters are not identical but range from 4.5 
(Burr) to 4.9 (logistic) with the Lomax estimate intermediate 
at 4.7. All these b  estimates are higher than those from nor-
mal livers and from the simulations, presumably due to the 
addition of fibrotic patches into the scattering structures of 
the liver.

Discussion and Conclusion

There are several key assumptions in the derivation of the 
PDFs that may limit the applicability of the relationships 
defined in Table 1. First, the convolution model is only an 

Figure 5.  Normal liver B-scan.

Figure 6.  Normal liver histograms from speckle in Figure 5. (a) Burr b = 3 828. ,  λ = 396 8. .  Goodness of fit: SSE = 5.749, R2 = 
0.9927, (b) Lomax b = 3 77. ,  λ = +1 36 05. .e  Goodness of fit: SSE = 13.22, R2 = 0.9927, and (c) Logistic b = 3 82. ,  λ = 395 7. ,  
Goodness of fit: SSE = 0.4592, R2 = 0.9874.
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approximation of the complicated wave propagation, but rea-
sonably so for higher f-number focused beams.33 Furthermore, 
the fractal model implicitly assumes normal, soft, isotropic 
tissue with a simple mapping from cylinders of radius a  to 
echo amplitude A ; the relationship is linear in intensity and 
single-valued over a certain range of radius compared to 
wavelength. This is a gross approximation, the precise details 
depend on the exact nature of the bandpass ultrasound pulse, 
but the simplified function allows straightforward transfor-
mation of probabilities. This raises the possibility that more 
general forms of the Burr distribution (significantly the 
three-parameter form of the PDF) may be useful and should 
be investigated further. Also, fractal models are self-similar 
across a wide range of scales, however any organ will have 
limits on the largest and smallest vessels. These limits may 
influence the statistics of speckle depending on the wave-
length of the ultrasound pulse employed, and will require 
additional consideration. Another limitation is that the model 

implicitly assumes independent cylindrical scatterers, 
whereas in reality the branching vasculature is arranged in an 
orderly manner where each generation originates in a previ-
ous generation of vessels. The effect of this on statistics 
requires further analysis.

The issue of the relative merits of the three main PDFs 
(Burr, Lomax, and logistic) is a rich area for discussion. 
Since these have extensive use in the statistics literature, 
their behaviors are well known in terms of moments, charac-
teristic functions, and estimators of parameters, and a lengthy 
catalog of these is beyond the scope of the current discus-
sion. However, the long tail inherent in these distributions 
places them all in a speckle signal-to-noise ratio of less than 
the Rayleigh 1.91 theoretical mean to standard deviation.9 In 
our investigations, using a minimum mean squared error 
two-parameter curve fit of different data to each of these, we 
note that the Lomax distribution for intensity was sometimes 
the outlier with an elevated b  estimate compared to others or 
compared to the baseline value used in simulations. This may 
be due to the pronounced concentration of the Lomax histo-
gram near the smallest values of intensity (see Figures 4, 6, 
and 8, middle panel), creating relative insensitivity in the 
curve fit to the tail of the distribution.

There is an interesting historical twist to these PDFs in 
that they were originally explored without any reference to 
ultrasound pulse echo physics. Instead, most of these are 
associated with economics, income distribution, and com-
plex system lifetimes. The tie between these fields originates 
with the power law distribution, one of the most ubiquitous 
laws in natural and human phenomenon.60 For example in 
the study of income distribution, a typical country would 
find many poor people and few rich people. In our ultrasound 
model, we have many small vessel branches and few large 
branches. Power law mathematics runs through the core for-
mulas in both fields and then propagates through derived 
PDFs. Thus, we benefit from the significant work done since 

Figure 8.  Fibrotic liver histograms from speckle in Figure 7. (a) Burr b = 4 467. ,  λ =1059.  Goodness of fit: SSE = 4.15, R2 = 0.9801, 
(b) Lomax b = 4 741. ,  λ = +1 161 06. .e  Goodness of fit: SSE = 1.204, R2 = 0.9946, and (c) Logistic b = 4 955. ,  λ =1148,  Goodness 
of fit: SSE = 0.4751, R2 = 0.9881.

Figure 7.  Fibrotic liver B-scan.
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the 1940s in fields unrelated to ultrasound. The application 
of these PDFs to scans from a variety of normal and diseased 
tissues remains for further investigations.
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