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Abstract

Reverberant shear wave fields are produced when multiple sources and multiple reflections establish a
complex three-dimensional wave field within an organ. The expected values are assumed to be
isotropic across all directions and the autocorrelation functions for velocity are expressed in terms of
spherical Bessel functions. These results provide the basis for adroit implementations of elastography
from imaging systems that can map out the internal velocity or displacement of tissues during
reverberant field excitations. By examining the phase distribution of the reverberant field, additional
estimators can be derived. In particular, we demonstrate that the reverberant phase gradient is shown
to be proportional to the local value of wavenumber. This phase estimator is less sensitive to
imperfections in the reverberant field distribution and requires a smaller support window, relative to
earlier estimators based on autocorrelation. Applications are shown in simulations, phantoms, and
in vivo liver.

1. Introduction

The field of elastography has progressed vigorously over the last 30 years in terms of techniques and clinical
applications (Ormachea and Parker 2020b). Within the wide range of techniques available for imaging the elastic
properties of soft tissues are several different approaches that can be classified by the type of excitation applied.
Major categories in elastography include transient excitation, slow compression, and sinusoidal steady state
‘harmonic’ shear wave propagation applied to tissues and organs (Doyley 2012). Within the broad class of
harmonic shear wave techniques lie several strategies, including most magnetic resonance elastography
techniques (Muthupillai et al 1995, Plewes et al 1995, Sinkus et al 2000, Weaver et al 2001). For example, the
multi-frequency dual elastovisco inversion technique derives the shear modulus and a viscous component, by a
least squares error solution based on the Helmholtz equation (Hirsch et al 2014, Hetzer et al 2019). Furthermore,
in ultrasound inversion techniques, vibro-elastography is a multi-frequency shear wave strategy whereby an
external source is applied to the tissue and a model is fit to the resulting steady state tissue motion (Turgay et al
2006, Eskandari et al 2008, Abeysekera et al 2015, Honarvar et al 2015). In addition, other harmonic shear wave
approaches have unique features. For example, Wu et al (2004) proposed interference patterns, termed crawling
waves, generated from two opposing vibration sources. Chen et al (2009) employed a ‘push’ transducer that
transmits a modulated ultrasound beam to produce harmonic vibrations within tissue. The resulting shear
waves were monitored using another ultrasound beam. Tzschatzsch et al (2016) devised 2D time-harmonic
elastography using external harmonic stimulation at multiple frequencies to estimate shear wave speed (SWS)
maps. More recently, reverberant shear waves (RSW) (Parker et al 2017, Ormachea et al 2018, 2019b, Ormachea
and Zvietcovich 2021) have been formulated as a distinct approach to elastography. In a reverberant field, a
profusion of shear waves along different directions is generated, aided by all the reflections that naturally occur
from boundaries and inhomogeneities. Ultrasound imaging techniques can be used to estimate the shear wave
amplitude and phase across the region of interest (ROI). Then, the mathematics of a fully three-dimensional
(3D) distribution of shear waves enables simple autocorrelation estimators of SWS as a surrogate for stiffness.
However, these estimators require an autocorrelation window which can limit the spatial resolution of the SWS
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Figure 1. Schematic for the orientation of the imaging transducer (left, which could be ultrasound, magnetic resonance, or optical
coherence tomography), and the body that has an isotropic random distribution of shear waves propagating through the interior,
consistent with the theory of reverberant fields. The x-axis of the coordinate system is aligned with the axial direction of the imaging
transducer, and it is assumed that the imaging system detects motion in the x-direction. The n, are the random propagation direction
vectors of the g individual plane waves that are distributed throughout the reverberant interior. ng are the perpendicular particle

velocity vectors parallel to the plane (yellowish disk), formed by basis vectors § and ¢, with a particle velocity random amplitude Vgl-

map. Also, there are conditions where the shear wave field may not be reverberant, for example in locations close
to astrong source where one wave direction is prominent, and in these situations the descriptive mathematics of
reverberant fields may not provide an accurate model. These limitations motivate the search for additional
estimators of RSW fields that have high resolution and robust behavior in cases of non-ideal distributions of
shear waves.

In this paper, we begin with the establishment of a RSW field, where a set of shear waves in a particular tissue
or organ of interest have been established by vibration sources. These vibration sources along with naturally
occurring reflections produce multiple shear wave directions propagating within the organ of interest, and
multiple frequencies can be established simultaneously. By re-examining the mathematical properties of the
RSW field, we derive an improved, efficient, and robust estimator for the tissue viscoelastic properties,
specifically the SWS, which can be used to create images of the tissue stiffness and is useful for diagnosing
diseases and localizing and classifying lesions. The theory and details of the approach are given in the next
sections, then results on phantoms and human livers are presented.

2. Theory

In a fully developed reverberant field depicted in figure 1, the complex pressure and velocity fields at a position €
within the interior can represented as the superposition of plane waves incident from all directions (Pierce 1981,

Parker and Maye 1984).
In that case, the vector velocity v can be written as a function of time tand position €:
v(t, €) = > _nguge konge=wot) (1)
!

and where the x component of the velocity is:

U (t, €) = éx -v(t, €) = anlxvqlei(konq.€7WOt)’ )
!

Mg, = Ngp + [ (3

where the index g represents direction, n, are unit vectors uniformly distributed around 4 solid angle, n; are
the perpendicular particle velocity vectors in the 27 angle within the disk formed by basis vectors # and 1, Yy is
an independent, identically distributed random variable describing the magnitude of particle velocity within a
realization of g, and ko and wy are the wavenumber and radial frequency of the plane waves, respectively. Taking
asnapshot at some fixed reference time ), and recognizing that n,_ v, are independent of position, we examine
an ersatz representation of the field:




10P Publishing

Phys. Med. Biol. 66 (2021) 175001 J Ormachea and K J Parker

u(E) = 1he” @, ®

where Vj is related to the root mean square amplitude of the field and ¢ () is the spatially varying phase. From
Parseval’s theorem and the derivative properties of Fourier transforms, following Papoulis (1987) we may equate
the second moment of the power spectrum to the derivative of phase. These steps are as follows. Let P (k) be the
one-dimensional spatial Fourier transform of v, (¢) and where k is the spatial frequency. The power spectrum

| P (k) |? of this function is already known from the ensemble-averaged autocorrelation function

(. (&) (e + Ag))derived previously (Parker et al 2017, Zvietcovich et al 2019, Aleman-Castafieda et al 2021),
which can be expressed in terms of spherical Bessel functions. This function depends on the angle 6§, between the
imaging system’s axis (the direction of detection of motion, the x-axis in figure 1) and the direction of Ae
chosen for the autocorrelation function. For an isotropic medium the autocorrelation function Bjg, is:

— . in26,| . (ko Ae) Ji(koAe)
Bi(Ac, At) = VZeiwodt JSI O g Agy - INROTEI ) | oe20, 00022 L 5
(Ae, At) = Vye { 5 Jo(koAe) Py cos PV (5)

where j (-) represents the spherical Bessel functions of order 1, and 6, is the angle between Ae and é,.
Next we examine the derivative of one realization of the field and the corresponding Fourier transform of
that function. Denoting:

T {u(®)} = WPk, (6)
J {ivx(a) } = ikVy P (k). (7)
de

Now, by taking the magnitude square and equating the two domains using Parseval’s theorem, we have, with
substitution from equation (4):

d c Ve, 5
f’ o) | de = Efl(zk)P(kﬂ dk
d P V2
; _ ip(e _’0
f 1Vo(d5¢(5))e | de = —Msz |P (k) Pdk
d S BN URR 5
f‘ 0 | d = [ 1Ptk ®

The right side is also recognized as the second moment 1?2 of the power spectrum of the RSW field, which has
been derived previously (Parker et al 2017, Zvietcovich et al 2019, Aleman-Castaneda et al 2021) and is strictly
bandlimited to £ko. Specifically for the transverse case (0 = 7 /2):

E(ké +k)
IPERP = S5 for [k] < ko
0

To determine the second moment, using s for the spatial frequency variable of integration and considering the
orthogonal direction to the measurement axis, we find:

©)

T 2 2
k - (kO + N ) \/8_
2 PN ) T2
my = (s) ds = k (10)
j:ko 4k} 15 "
for transverse direction of the displacement with respect to the imaging system’s axis. Then, interpreting the left-
hand side of equation (8) as an ensemble average:
2
> , €3))

ki=C < a9
de
where the brackets indicate the average value over some homogeneous region and Cis a scale constant which
depends on 6, (the orientation in equation (5)) and can also be set in practice by comparison to an independent
measurement in a reference material.

This analysis can also be extended to two-dimensional estimates. It can be shown that the key relationships
including Parseval’s theorem (and the related Rayleigh integral theorem), the derivative theorem, and the second
moment theorem all have direct extensions to two-dimensional Fourier transforms (Bracewell 1995). Thus,
using phase unwrapping, we estimate the phase information across a reverberant field in two transverse
dimensions approximately as

d(x, 2) 2 kex + k;z + co, (12)
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Figure 2. Simulation analysis. (a) Representation of the inclusion and homogeneous media. The SWS for the inclusion and the
background are 3.0 and 2.0 m s, respectively. (b) Illustration of different regions where shear waves behave as a dominant
unidirectional wave (zones 1-3) and as a reverberant shear wave field (zone 4). (c) Phase map of the propagating shear waves, showing
that for regions 1-3, planes waves are propagating in different directions. For region 4, a clear reverberation field is observed. The red
dashed circle illustrates the inclusion location. (d) Final SWS image applying the phase gradient method. The black dashed circle
illustrates the location of the inclusion.

and the wavenumber estimation is formed from the two-dimensional information using
d

K~cC @

de

In a final step, the phase velocity or SWS can be determined by

2
> = C(k? + k). (13)

2nf

Cs P (14)
where f is the corresponding vibration frequency, and this sequence can be called the ‘phase gradient method’.
In other cases where the two axes of an image plane are oriented as transverse and axial with respect to the
detection of velocity, then the k, and k, will require different scale factors, since the autocorrelation function
depends on orientation as given in equation (5). Finally, we note that if the magnitude of v, (¢) in equation (4) is
taken to be a function of position, the general approach still holds with an additional derivative term in
equation (8). The details of this follow the analysis of signal duration and ripple in section 4.4 of Papoulis (1987).

3. Methods

3.1. Materials
3.1.1. Simulations based on a Monte Carlo analysis
Similar to Ormachea et al (2019a) and Zvietcovich et al (2019),a40 x 40 x 40 mm’ field (0.3 mm sampling
resolution) was generated in MATLAB (The MathWorks, Inc. Natick, MA, USA) to simulate a RSW field in an
linear-elastic medium to validate the SWS estimator. The medium, illustrated in figure 2(a), shows the field
containing a harder inclusion (¢,= 3.0 m s~ ') surrounded by a softer background (c,= 2.0 ms ™).

The reverberant field was created with a total of 1000 realizations of random variables: ng; is defined by the

angles of the basis vectors ¢ and 6 (see figure 1), both covering a range of [0, 27] radians; the scalar V1 coversa
range of [—1, 1] m s~ representing the particle velocity amplitude. The random realizations generate a spatial
and complex valued particle velocity field V () = V (¢)e !, where wy = 27f, with f = 900 Hzand

k = ¢;/wo. Inaddition, a hybrid regional model was made of imperfect reverberant fields comprised of three

4
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Figure 3. Summary process to obtain the 2D SWS maps for their corresponding vibration frequency. The arrows indicated the process
flow starting at procedure (P0) to the final step (P5) displaying the shear wave speed image.

dominant shear waves propagating at different directions through the entire field. Then, four different binary
masks with smooth edges were created. Each of them was designed with a particular shape, as can be observed in
figure 2(b), and applied. Regions 1-3 were designated for each of the individual plane shear waves simulations
and region 4 was selected for the reverberant simulation. After multiplication of each simulation with its
corresponding mask, all the results were superimposed to replicate a ROI containing three unidirectional shear
waves and one reverberant field. This simulates the presence of various dominant unidirectional shear waves
propagating in some regions (areas 1-3 in figure 3(b)) of the field, where there is not a sufficient number of waves
over all directions to produce a RSW field or in proximity to a strong external source. Thus, the simulation also

evaluates if the phase gradient method could measure the corresponding SWS in aless ideal or ‘pre-reverberant’
condition.

3.1.2. CIRS phantom and in vivo liver scans

Two calibrated phantoms were used in this study. The first was a CIRS breast phantom (Model 059,
Computerized Imaging Reference Systems, Norfolk, VA, USA) with background (20 kPa nominal Young’s
modulus) and inclusion regions (at least two times stiffer than the background region per the manufacturer’s
datasheet). The other phantom was a custom-made CIRS (Serial No. 2095.1-1, Computerized Imaging
Reference Systems) homogeneous viscoelastic phantom (6 kPa nominal Young’s modulus). Additionally, one
liver tissue from a volunteer was scanned on the custom bed. The scan was conducted under the requirements of
informed consent of the University of Rochester Research Subjects Review Board.
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3.2. Shear wave elastography methods

3.2.1. RSW phase gradient elastography

Figure 3 summarizes the process to obtain the 2D SWS maps for their corresponding vibration frequency using
the phase gradient method in a reverberant shear wave elastography (R-SWE) field. ‘PO’ estimates the particle
displacements, in the axial direction, using a Loupas estimator. ‘P1’ shows some snapshots of a typical R-SWE
field using a 1 kHz vibration frequency. ‘P2’ illustrates the particle displacement in time and its corresponding
frequency spectrum showing the maximum peak at 1 kHz. Then, the signal to noise ratio (SNR) of the particle
displacement signals were measured by:

SNR = IOIng(E), (15)
b,
where P;and P, are the average signal power of the particle displacement signal and the power of background
noise, respectively. The regions with SNR < 10 dB were neglected and were not used for later steps. After taking
the magnitude and phase at the peak, ‘P3’ applies an additional 2D bandpass spatial filter to remove extremely
low frequency compressional waves and reduce high frequency noise in all directions as in (Ormachea et al

2018, 2019b). The cutoff spatial frequencies, related to the wavenumber k of the filter were set at k; = 27f/ ¢, and
kn = 27f/q, respectively, where ¢ and ¢, are a chosen low and high SWS, respectively. ¢ was 0.5 m s~ forall
experiments, whereas ¢, was 5 m s~ for the breast phantom and 3 m s~ for the viscoelastic phantom and i vivo
human liver. ‘P4’ applies the phase gradient method to obtain the correspondent wavenumber by taking a small
ROI(1.34 x 1.34 mm?at 1 kHz, with 1 pixel/0.14 mm) of the unwrapped phase values. The unwrapped phase,
obtained using the MATLAB’s unwrap function, which we applied to the lateral dimension, is repeated along
sequential lines so as to form a plane in 2D which is then fitted to equation (12) using the MATLAB curve-fitting
toolkit based on a robust linear least square minimization method. From equation (12), the wavenumber is
calculated using equation (13). The 2D wavenumber map is obtained by repeating ‘P4’ at different pixel
locations. Then, the SWS is obtained using equation (14). Finally, ‘P5’ smooths the ‘raw’ SWS map by applying a
weighted averaging filter mask of 7 x 7 pixel size as in Jou (2012) and also eliminates the edges.

3.2.2. Shear wave elastography based on acoustic radiation force impulse (ARFI) for comparison purposes

A Samsung ultrasound system (Model RS85, Samsung Medison Co. Ltd, Seoul, South Korea) was used in order
to obtain elastography images for comparison purposes for the CIRS phantoms. Displacement waveforms were
tracked over time and the phase velocity was obtained by calculating the 2D Fourier transform from the particle
velocity signals and finding the maximum amplitude at spatial frequency k(w) for each discrete temporal
frequency (Nenadic et al 2013, Nightingale et al 2015). The specific data acquisition and post-processing details
to obtain the phase velocity information are described by Ormachea and Parker (2020a). Then, a linear
dispersion slope over a specific frequency range was calculated using:

2
&(f) = %f (16)
and
dc
p(fH)=co+—1| f (17)
df 5

where ¢ is the intercept at zero frequency, f is frequency, and Z—; is the linear dispersion slope evaluated at a

0
particular frequency band around f;. In addition, the power law coefficient was measured from the phase

velocity information using
W) = a(w)’, (18)

where ¢ is the phase velocity measured at a reference point, for exampleat w = 1rads™ ', and ais the power law
coefficient. The minimum and maximum frequency values for the frequency range correspond to the mean
frequency peak and the —6 dB criteria of the spectrum, respectively. The specific data acquisition and post-
processing details to obtain the phase velocity information are described by Ormachea and Parker (2020a).

3.3. Experimental setup for RSW phase gradient elastography

3.3.1. Scanner and data acquisition

A Verasonics system (Vantage-128TM, Verasonics, Kirkland, WA, USA) connected to a convex ultrasound
probe (model C4-2, ATL, Bothell, WA, USA) or a linear ultrasound probe (model L7-4, ATL, Bothell, WA, USA)
was applied. This system was used to track the induced displacements using a Loupas estimator (Loupas et al
1995). The linear probe was used for the breast phantom, whereas the convex probe was used for scanning
deeper into the viscoelastic phantom and liver tissue. The center frequencies were 2.98 MHz and 5.21 MHz for

6
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Figure 4. [llustration of shear waves propagating in different direction creating a reverberant field and dominant unidirectional waves
ina ‘pre-reverberant’ field. As illustrated in the simulations, the phase gradient method is able to estimate the SWS for both conditions.
(Left) B-mode image of the CIRS breast phantom showing the harder inclusion. (Center) phase map of the propagating shear wave at
900 Hz. (Right) final SWS image showing the harder inclusion and the background. The black dashed circle illustrates the location of
the inclusion.
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Figure 5. Elastography images corresponding to the CIRS breast phantom showing a stiffer inclusion, its B-mode image, and the
dispersion curve. The SWS image obtained with ARFI using the Samsung system is shown on the top left corner. The SWS images
obtained with the phase gradient method are shown on the top and bottom rows corresponding to different vibration frequencies:

200 Hz,400 Hz, 600 Hz, 900 Hz, and 1 kHz. The bottom right corner shows the dispersion curve including phase velocity values
(mean =+ standard deviation (SD)) for the Samsung data and the results obtained in this study. The mean and SD were extracted for a
ROl in each image. The ROI position is illustrated as a red dashed rectangle in the B-mode image. For this case, phase velocity values
almost remain the same for different frequencies, indicating that the material is almost purely elastic. The dispersion curve represents
adirect comparison between the Samsung system and the phase gradient method. In addition, the blue dashed line denotes a linear
fitting, and the red dashed line denotes a power law fitting. The orange shaded region represents the —6 dB frequency range criteria for
the ARFI-based signals. More detail about this criterion can be found in Ormachea and Parker (2020a).

the convex and linear probes, respectively. The sampling frequencies were 12 MHz and 20 MHz for the convex
and linear probes, respectively. The frame rate was set to 3600 Hz and 5000 Hz for the convex and linear probes,
respectively. A 0° steering angle was used to insonify the medium and the total acquisition time was 0.25 s.

7
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Figure 6. Elastography images corresponding to the CIRS viscoelastic phantom, its B-mode image, and the dispersion curve. The SWS
image obtained with ARFI using the Samsung system is shown on the top left corner. The SWS images obtained with the phase
gradient method are shown on the top and bottom rows corresponding to different vibration frequencies: 100 Hz, 150 Hz, and

200 Hz. The bottom right corner shows the dispersion curve including phase velocity values (mean £ SD) for the Samsung data and
the results obtained in this study. The mean and SD were extracted for a ROI at each image. The ROI position is illustrated as a red
dashed rectangle in the B-mode image. For this case, phase velocity values increase as a function of frequency, indicating that the
material has viscoelastic properties. The dispersion curve represents a direct comparison between the Samsung system and the phase
gradient method. In addition, the blue dashed line denotes a linear fitting, and the red dashed line denotes a power law fitting. The
orange shaded region represents the —6 dB frequency range criteria for the ARFI-based signals. More detail about this criterion can be
found in Ormachea and Parker (2020a).

3.3.2. Vibration sources and vibration frequency range

A custom-made portable trifold futon (70 x 60 x 10 cm®) with multiple embedded vibration sources (Quad
Resonator Model E1718™, Elastance Imaging LLC, Columbus, OH, USA) was mounted to a clinical bed to
generate the RSW field. The precise details of the active source configuration are proprietary to Elastance
Imaging LLC. Vibration frequencies between 100 and 1000 Hz were used for the breast CIRS phantom, whereas
frequencies between 100 and 400 Hz were used for the viscoelastic and in vivo liver experiments.

4, Results

Figure 2 shows the simulated media illustrating ‘pre-reverberant’ and RSW fields. Figure 2(c) shows the shear
wave phase map and shows the unidirectional propagation in regions 1-3 (figure 2(b)) and the RSW field in
region 4 (figure 2(b)). Figure 2(d) shows the final SWS image applying the phase gradient method. The mean and
standard deviations for the inclusion and background at 900 Hzare 2.96 + 0.08 ms™',and 2.10 + 0.07 ms™ ",
respectively, showing good agreement with the SWS values used for the simulation for the inclusion (¢, = 3.0 m
sV and the background (¢;= 2.0 m s7h.

Figure 4 shows (from left to right) the B-mode, shear wave phase map, and the SWS image for the CIRS
breast phantom vibrating at 900 Hz. As illustrated in the simulated case in figure 2, a ‘pre-reverberant’ zone and
more ideal RSW regions can be observed within the entire ROI. The final SWS image using the phase gradient
method shows good performance in estimating a consistent SWS for both shear wave fields. The mean SWS and
the standard deviations for the inclusion and the background are 3.43 4 0.24 m sl and2.27 + 0.19ms |,
respectively. The CIRS datasheet for this phantom indicates that the background Young’s modulus is 20 kPa
(~2.58 ms ")andatleast2 x harder (40 kPa, ~3.65ms ") for the inclusions.

Figure 5 shows a comparison of SWS results for the CIRS breast phantom using a commercial system
(Samsung RS85, Samsung Medison Co. Ltd, South Korea) and the phase gradient method for different vibration
frequencies. Since the commercial elastography image is based on ARFI, the measured SWS is a group velocity
value, whereas the phase gradient method measures the phase velocity. For that reason, the dispersion curve, for
abackground region, was obtained for both methods to perform a direct comparison in terms of phase velocity.
As observed, a good agreement between both methods was obtained. For example, the phase velocity at 600 Hz,
is2.14 £ 0.09and 2.2 £ 0.13 for the Samsung system and the phase gradient method, respectively. The

8
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Figure 7. Elastography images corresponding to in vivo liver tissue. The SWS images obtained with the phase gradient method are
shown in the top rows, corresponding to two vibration frequencies: 100 and 300 Hz. Each of them has its corresponding B-mode
image and a snapshot of the reverberant shear wave field to the left. Some regions do not show SWS information because the

Lateral [cm]

corresponding particle displacement was neglected due to its low SNR, as explained in section 3.2.1. The bottom left corner shows two
particle displacement examples located at specific lateral and axial positions (x, z) with their corresponding spectrum to illustrate that
the maximum peak corresponds to the applied vibration frequency. The bottom right corner shows the dispersion curve including

ROI’s position is illustrated as a red dashed rectangle in the B-mode image. For this case, phase velocity values increase as a function of
frequency, indicating that liver tissue has viscoelastic properties. In addition, the blue dashed line denotes a linear fitting, and the red
dashed line denotes a power law fitting. The orange shaded region represents the frequency range used to estimate the linear and
power law fittings.

phase velocity values (mean + SD) for the results obtained in this study. The mean and SD were extracted for a ROI at each image. The

estimated linear dispersion slope and the power law coefficient are 0.06 m s~ ' kHz ' and 0.038, respectively. I
this case the dispersion curve remains almost constant since the phantom is an almost purely elastic phantom.
Figure 6 shows a comparison of SWS results for the custom-made CIRS viscoelastic phantom using a

commercial system (Samsung RS85) and the phase gradient method for different vibration frequencies. Similar

to the CIRS breast phantom case, the dispersion curve was obtained for both methods to perform a direct
comparison in terms of phase velocity. As shown, a good agreement between both methods was obtained. For
example, the phase velocity at 150 Hzis2.21 &+ 0.18and 1.90 £ 0.25 for the Samsung system and the phase
gradient method, respectively. The estimated linear dispersion slope and the power law coefficient are

2.10ms ' kHz 'and 0.198, respectively. It can also be noticed that the phase velocity increases as a function of

frequency since the phantom is a viscoelastic material.
Figure 7 shows SWS images for an in vivo liver tissue result applying different vibration frequencies. RSW

n

fields were obtained for the total field of view and complete SWS images were obtained for the liver that is located

between 3.5 and 9 cm depth. A dispersion curve was obtained using the mean SWS (phase gradient) values from

the ROL The estimated linear dispersion slope and the power law coefficients are 4.47 ms~ ' kHz ' and 0.07,
respectively.
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Figure 8. Comparison of SWS images using the approaches based on the autocorrelation (a) and (b) and phase gradient () in the CIRS
breast phantom at 900 Hz. Both methods require alocal window to estimate the wavenumber k (window size is shown above each
SWSimage). Case (a) is not able to reconstruct the elastography image properly and reports overestimated values of SWS since it does
not have enough points, due the small window size, to approximate the theoretical curve. On the other hand, case (b) shows a better
result, based on the autocorrelation method, when the window size is increased. Case (c) uses same window size as case (a) and shows
an improvement for the SWS. This indicates that the phase estimator is less sensitive to imperfections in the reverberant field
distribution and requires a smaller region of support than case (b).

5. Discussion

This approach represents a departure from previous work on RSW fields, which focused on determining the
spatial autocorrelation function from which the key parameters k and c could be estimated. In the current
method, the raw complex velocity field v, (¢) from within the ROI is examined and the key metric is the rate of
change of phase. Computationally, both approaches (autocorrelation versus unwrapped phase derivative)
require a region of support and an ensemble average in order to provide an estimate of wavenumber k. Figure 8
explores and compares, for illustration purposes, the two approaches to estimate the SWS in the CIRS breast
phantom. It is observed that the phase gradient is able to measure the SWS using smaller regions than the
autocorrelation method. This is important since a smaller window may improve the spatial resolution and its
computational cost to process the entire field of view. As illustrated in figure 8, another advantage of the phase
method is that it appears to be robust under a variety of wave types. For example, in ‘pre-reverberant’ fields
where there is not a sufficient number of waves over all directions to produce a close match to equation (5), we
find that the rate of change of phase still approaches a stable estimate related to k and sensitive to local contrast, as
demonstrated in the simulation and phantom experiments represented in figures 2 and 4. Moreover, figure 8
shows that the autocorrelation method estimates have more variation with respect to the orientation of the
dominant field direction. It is interesting to note that the ultrasound time-harmonic elastography methods of
Tzschatzsch et al (2016) make use of a finite difference (spatial derivative) of phase of shear waves in tissue. These
are resolved after the application of directional filters, and then the directional phase derivatives are combined as
aweighted average according to the relative energy in each directional component. In comparison, the
reverberant field approach assumes a fully developed 3D field which is then sampled in any 2D plane or any line
within. Directional filters are not required since the assumption is that wave fields from all directions are present
and combining in a lawful manner which can be characterized by analytic expressions. A detailed comparison of
these different approaches remains for further research.

Finally, we note that a limitation of this work is that the derivations pertain only to a linear-elastic material.
Thus, some important rheological complexities of tissue, including viscoelastic loss, and the effects of
anisotropy, have not yet been included in this framework. The reverberant field in anisotropic media has
recently been analyzed with respect to the key autocorrelation functions along and across the principle axis of
anisotropy (Aleman-Castaneda et al 2021), presumably the phase gradient would exhibit similar trends but this
remains for future research. Attenuation of shear waves introduces a spatially varying term into the equations
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and practically speaking, the field will be strongest near the external sources and weakest at the most remote
interior region. This requires additional analysis.

6. Conclusion

We have derived a system of determining SWS and dispersion within tissues by carefully examining the spatial
progression of phase within a reverberant field. Specifically, the phase derivative obtained from the unwrapped
phase is shown to be a robust and accurate measure of k, the wavenumber. Since reverberant fields can be
created simultaneously at multiple frequencies and separated by transform operations, the wavenumber and
phase velocity obtained at multiple frequencies produce dispersion curves that are also useful measures of
viscoelasticity. The phase gradient estimators are relatively insensitive to dominant directional waves that can
occur in close proximity to external sources and require smaller support regions than do earlier autocorrelation
estimators. These results enable rapid, wideband examination of large regions of interest and deep tissue for
elastography.
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