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Abstract— To uniquely identify diseases utilizing the H-

scan analysis, we proposed a new imaging method called 

disease-specific imaging (DSI). As a supervised learning 

method, it requires training with medical images and 

corresponding tag labels. In this study, we trained our DSI 

using ultrasound liver images and their pathological 

confirmation, including fibrosis, steatosis, and pancreatic 

ductal adenocarcinoma (PDAC) metastasis. From the 

ultrasound data, we extracted three features of H-scan % 

blue, attenuation coefficient, and B-scan intensity. These were 

assigned as inputs for the DSI training. First, support vector 

machine (SVM) training constructed decision planes to 

identify liver conditions. Second, disease axes were defined by 

calculating a linear fit line from each disease cluster. The 

trained DSI can discriminate between distinct liver conditions 

and visualize the severity of each disease using color images 

overlaid on B-scan images.   

The SVM training achieved 100% classification accuracy 

and is capable of differentiating normal, early, and late stages 

of each disease. The scans were obtained from three different 

animal models and ultrasound scanners, but our uniform 

approach efficiently unified the multiparametric analysis. The 

H-scan trajectories and DSI can be useful to both diagnose 

and track the progression of liver disease. 

Keywords—H-scan ultrasound, Tissue classification, 

Support vector machine, Disease-specific imaging 

I. INTRODUCTION 

The scope of quantitative ultrasound measurements has 
increased, enabling better assessment of pathological tissue 
changes. Specifically, the H-scan analysis has derived 
parameters which can contribute to tissue classifications of 
inflammation, fibrosis, steatosis, and tumor in liver [1-4]. In 
addition to classification, tracking the steady progression of 
diseases or their response to therapy requires more accurate 
measurements. The H-scan analysis has also demonstrated 
trajectories of multiparametric features over time [5].  

By utilizing quantitative measurements extracted from 
medical images, the support vector machine (SVM) is one 
of the widely used machine learning methods for 
classification [6-8]. Since SVM training uses data points 
near class boundaries, which are support vectors, it can have 
an advantage when collecting a large number of data sets is 
challenging, as in the field of medical imaging [9, 10]. 
Moreover, the lack of data, which may cause overfitted 
results, can be compensated for by optimizing the 
parameters of SVM to obtain smooth and robust 
hyperplanes [4]. However, the classification results, 
including hyperplanes, are only shown in parameter space 

separated from the original medical images. To understand 
the meaning of hyperplanes with multiple parameters, 
background knowledge about the parameters is required. 
Also, SVM classification does not provide degrees of 
closeness to the hyperplanes, which can be related to 
diseases progression.  

To address the limitations, we proposed disease-specific 
imaging (DSI) which incorporates the SVM and inner-
product. The DSI approach can classify liver diseases and 
show a simple visual display of disease progression. The 
proposed method was applied to in vivo studies. This 
framework is capable of monitoring the progression of 
different liver diseases including steatosis, fibrosis, and 
tumor metastasis. 

II. MATERIALS AND METHODS 

A. Feature extraction 

We extracted three features from the ultrasound signals: 
H-scan percent blue (% blue), attenuation coefficient, and 
B-scan intensity.  

a)  H-scan analysis: The H-scan is a matched filter 

analysis to characterize scattering signatures from tissues, 

resulting in color-coded images [11]. Our H-scan approach 

is extended to estimate spectral shifts of reflected echoes at 

high spatial resolution, and the frequency estimates were 

mapped into color levels varying from 1 to 256, which 

corresponds to colors gradually changing from red to blue 

[12]. Thus, the color can represent relative sizes of 

scatterers, where more red and blue colors indicate 

relatively larger and smaller scatterers, respectively. The 

color display is quantified by % blue: (number of blue 

pixels)/(total number of pixels)×100% where the pixels 

with color levels of 1-128 and 129-256 are red and blue 

pixels, respectively. The % blue parameter was normalized 

by setting % blue = 50% for normal livers.  

b) Attenuation estimation: Ultrasound propagation 

through media causes attenuation along the depth direction, 

which leads to a frequency downshift over depth. The H-

scan approach is capable of measuring the downshift, 

enabling estimation of the attenuation coefficient � 

(dB/MHz/cm) [4]. 

c) B-scan: B-scan intensity was calculated in log-

compressed scale ( ��� ). Since B-scan intensity 

measurement varies depending on the ultrasound scanner 
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used, this parameter was also normalized by setting 

intensity at -15 dB for normal livers.   

B. Disease-specific imaging 

DSI procedures are summarized in Fig. 1. DSI requires 
training, and the trained DSI predicts liver conditions. 
Training consists of two main steps: (1) SVM training 
which constructs decision planes to identify liver diseases, 
and (2) disease axis specification, where multiparametric 
analysis defines disease axes by calculating each cluster’s 
linear fit line. Once the DSI is trained, it can predict disease 
conditions for any new ultrasound scans. For the prediction, 
DSI first extracts features from the ultrasound signal: (% 
blue, � , ��� ). The trained SVM classifies liver states, 
resulting in CLASS; in this study, the states can be tumor, 
fibrosis, steatosis, or normal liver. According to the CLASS, 
one disease axis is selected among the four disease axes, 
where the disease axes have unit vectors ( �̂� , �̂	 , �̂
 , �̂� ). 
Then, the unit vector of the selected axis can be written by 
�̂�
��� . Lastly, the inner product between the measured 
features and the unit vector of the selected disease axis is 
calculated: �̂�
��� ∙ �% blue, � , ��� ). The inner product 
result becomes the color intensity of each pixel. Normal to 
early stages have lower intensity, whereas late or severe 
stages have higher intensity; the colors corresponding to the 
intensities are provided with color bars in Fig. 3. Based on 
CLASS, DSI selects a color, and we set red, green, and 
yellow colors for tumor, fibrosis, and steatosis. For the 
pixels classified as normal tissues, the inner product results 
in 0 since the unit vector is �̂� � �0,0,0�, and therefore the 
pixels show only B-scan gray scale intensity without color 
overlay.  

C. Animal study 

In vivo mouse studies were performed independently to 
induce (1) pancreatic ductal adenocarcinoma (PDAC) 

metastasis by injecting pancreatic tumor cells (KCKO-luc) 
[13], (2) fibrosis by exposure to carbon tetrachloride [4], and 
(3) steatosis by feeding a methionine and choline deficient 
diet [1]. 32 animals were enrolled: 9 C57BL/6J mice for 
PDAC study; 7 Sprague-Dawley and 4 TAC NIHRNU for 
fibrosis; 12 Sprague-Dawley for steatosis. Disease 
progression was monitored once or twice per week using 
ultrasound. Final disease stages were confirmed with 
pathology.  

D. Ultrasound data acquisition 

To acquire ultrasound data from the three disease 
models of PDAC metastasis, fibrosis, and steatosis, we used 
three ultrasound scanners; Vantage 256 (Verasonics, Inc., 

 

Fig. 1. DSI flow chart.  

 

 

Fig. 2. SVM training resulted in 100% accuracy. 
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Kirkland, WA, USA) equipped with an L11-5v transducer 
(10 MHz center frequency) for the tumor model; Vevo 2100 
(FUJIFILM VisualSonics, Toronto, ON, Canada) with a MS 
250 linear probe (21 MHz center frequency) for fibrosis; 
and Vevo 3100 (FUJIFILM VisualSonics, Toronto, ON, 
Canada) utilizing a MX 201 linear probe (15 MHz center 
frequency) for steatosis. The Verasonics system transmitted 
plane wave with 25 angles from -6 to 6 degrees, generating 
IQ data. The VisualSonics machines transmitted focused 
beam and provided RF data.  

Ultrasound scans were performed once or twice per 
week to monitor disease progression, and a total of 2778 
frames were acquired for DSI training.  

III. RESULTS AND DISCUSSION 

 The three features (% blue, � , ��� ) were measured, 
which formed clusters in multiparametric space as shown in 
Fig. 2. Early time points before inducing the diseases 
formed a cluster of normal liver. Late time points, that were 
confirmed as severe stages of diseases by histology, resulted 
in the three clusters of steatosis, fibrosis, and PDAC 
metastasis. These four groups were input tags for SVM 
training. The training achieved 100% classification 
accuracy and constructed hyperplanes as shown in Fig. 2.  

  For DSI, the features were classified by SVM, and 
feature changes over time were quantified with each disease 
axis using the inner product. The classification resulted in 
the colors of yellow, green, and red for steatosis, fibrosis, 
and tumor, respectively, as shown in Fig. 3. The 
quantification determines color levels, inferring the severity 
of each disease. The color levels are visualized using the 
provided color bars, where the darker color on the left side 
and the brighter color on the right side represent 
normal/early and severe/late stages, respectively.  Since the 
first column shows images of normal or early-stage disease, 
there is no overlaid color. From left to right, the diseases 
progressed; therefore the color overlaid area increased, and 
the overlaid colors became more vivid.        

We investigated the color images obtained by the trained 
DSI and demonstrated that the color images changed as the 
diseases progressed, thus DSI can monitor the disease 
progression of fibrosis, steatosis, and PDAC metastasis. 
However, quantitative evaluation of the imaging results 
remains for further investigation. For example, disease 
segmentation by DSI may be compared with other gold 
standard measurements, such as diseased area defined in 
histology slides. This will permit an assessment of the 
accuracy of DSI over a range of different pathologies. 

IV. CONCLUSION 

We proposed the DSI approach based on H-scan 
trajectories, which enables a visualization of both diagnosis 
and disease progression.  This approach differentiated 
normal, early, and late stages of fibrosis, steatosis, and 
PDAC metastasis. The three diseases were investigated with 
three different animal models and ultrasound scanners, but 
our uniform approach efficiently unified the 
multiparametric analysis. Furthermore, we anticipate 
clinical use of the DSI utilizing ultrasound images or other 
imaging modalities that can extract multiple parameters.  
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