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ABSTRACT

A recent theoretical framework using power-law functions was proposed to model scattering from biological tis-
sues in ultrasound and optical coherence tomography. Multi-scale scattering sites such as the fractal branching
vasculature will then contribute to power-law based probability distributions of speckle statistics. These distri-
butions are the Burr type XII distribution, the Lomax distribution, and the generalized logistic distribution for
speckle amplitude, intensity, and log amplitude, respectively. Previous experiments with ultrasound and optical
coherence tomography demonstrate that these distributions are better fits to image histogram data of various
biological tissues when compared with classical models (e.g., Rayleigh, K, and gamma distributions). Of critical
importance is that this framework provides novel parameters, most notably the power-law exponent parameter,
for characterizing the physics of scattering from soft tissue. The typical range for the exponent parameter in
other normal tissues is approximately 3 to 6. The aim is for this parameter to be used as a new biomarker
for diagnostic imaging, sensitive to changes in tissue structures. Here, we demonstrate a specific application to
mouse brain tissue, in which the exponent parameter is used to characterize mouse cortical brain under various
conditions including ex vivo and in vivo using optical coherence tomography.
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1. INTRODUCTION

Speckle, the granular texture seen in images generated by interfering waves, and its amplitude statistics have been
studied with numerous probability distribution functions (PDFs).> 10 Classically, these include the Rayleigh and
the K distributions, among others.!! 23 Recently, Parker et al. provided a new view of tissue scattering, i.e.,
multi-scale scattering sites such as fractal branching blood vessels lead to a power law distribution of scatterers,
and they derived that the resulting speckle statistics would thus follow power-law based distributions.?4 2%
The power-law based PDFs are the Burr type XII distribution for speckle amplitude, the Lomax distribution
for speckle intensity, and the generalized logistic distribution for the log of amplitude, all of which have two
parameters (a power-law exponent parameter and a scaling parameter).28

Since then, it has been shown that these new distributions provide good fits to the speckle statistics seen in
ultrasound and optical coherence tomography (OCT) scans.?® 30 In particular for OCT, Ge et al. showed that
these newly proposed PDFs not only fit better to the speckle statistics of various tissue scans (skin, brain, liver,
etc.) when compared with the Rayleigh and K PDFs, and also showed that the new PDFs provided a power-law
or exponent parameter that can potentially characterize the sample tissue.?? The resulting estimated power-law
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parameter ranged from approximately 3 to 6, which is within the expected range from theory and numerical
simulations. Subsequently, Niemczyk et al. confirmed that the Burr distribution offered the best goodness-of-fit
among other one- and two-parameter distributions analyzed in their study.?’ In addition, they found that out
of multiple parametric PDFs tested, the Burr distribution offered the highest correlation between its parameters
and the intraocular pressure (IOP) of in vivo human corneas scanned with OCT.

In this manuscript, we utilize this novel framework to further demonstrate that it may be used to characterize
mouse cortical brain tissue scanned with OCT in various conditions including ex vivo, in vivo, and with and
without dura mater after cranial window surgery. While more samples and studies are needed to confirm pre-
existing results, this study further supports the potential of the power-law based parameters in characterizing
tissue. Finally, the importance of investigations regarding exactly which multi-scale structures would lead to
power-law based speckle statistics are discussed.

2. RELEVANT EQUATIONS

In this study, we will focus on speckle amplitude statistics of OCT scans. Thus, the two PDFs that will be used
for fitting speckle amplitude include the Burr type XII distribution and the Rayleigh distribution. The specific
two-parameter Burr distribution is given by

2A(b — 1)

p(A;d,b) = W

(1)

where A is the amplitude, d is a scale factor, and b is the power-law or exponent parameter. In ultrasound,
optics, and radar literature, it is conventional to normalize A by dividing by the root mean square (i.e., replace

A with A/y/(A)? in Eq. 1).22

The Rayleigh PDF is given by

3. METHODS
3.1 Tissue samples

Two wild-type (C57BL6) mice underwent a craniotomy where a 5mm diameter region of skull was replaced
with a special glass window to allow for OCT imaging. This surgery was performed under an acute procedure
protocol. Agarose gel was applied under and around the glass window. A custom mount was used to hold
the mouse in a stable position for imaging during both in vivo and ex vivo studies. The dura mater was left
intact for the first mouse and removed for the second mouse. For the second mouse, the cranial window was
installed on the right hemisphere to avoid excessive bleeding. Fx vivo scans were acquired post euthanasia via
anesthesia overdose. All mouse studies were performed in accordance with protocols approved by the University
of Rochester Committee on Animal Resources.

3.2 Experimental setup

A custom-built phase-sensitive swept-source OCT system was used to obtain 2D B-mode scans. The system
was implemented with a swept-source laser (HSL-2100-HW, Santec, Aichi, Japan) with a center wavelength of
1310 nm and a bandwidth of 140 nm. The lateral resolution was approximately 20 um, and the axial resolution
was approximately 6 pm in air. The maximum sensitivity of the system was approximately 110 dB. The imaging
depth was 5 mm in air. The OCT system was controlled with LabVIEW (Version 14, National Instruments,
Austin, Texas, USA). Single frames with 1000 A-lines were obtained. Regions of interest (ROIs) were selected
and speckle amplitude histograms were generated from these regions.
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3.3 Data processing and analysis
ROIs were selected for uniform average intensity with avoidance of shadows and other artifacts in the OCT

scans of mouse brain. The speckle amplitude histograms were fitted to the Burr distribution using maximum

likelihood estimation (MLE) in addition to the Rayleigh distribution. The estimated Burr parameter b is the
power-law or exponent parameter of interest. Detailed data and image processing is further described in a
previous publication.?? The estimated b is then used to compare scans of the brain under different conditions.

4. RESULTS

Figs. 1 and 2 demonstrate OCT scans of the mouse “A” with the associated speckle analysis. ROIs are highlighted
in green and both Burr and Rayleigh PDFs are plotted. The estimated Burr power-law parameter bis reported
along with the 95% confidence interval, as given by the MLE method. Figs. 3 and 4 demonstrate OCT scans of
mouse “B” brain with dura mater removed. For both sets of scans, ex vivo scans were taken immediately post

euthanasia.
0 1-
R e Raw DAata A
~ Burr: d = 1.87, b = 5.48
TR - - =Rayleigh
0.1 0.8+ ’ \\
‘ \
[ A}
I AY
1 AY
’ \
—~ _ ! ¥
g 0.2 <06 K \
é :l:/ ! ‘\
L Al
= ~ l’ \
o <t ¥ \
) N L
A 0.3 = 0.4 f ‘\
1 \
1 ‘\
{ Ay
d A}
0.4 0.2+ o
0.5 0 1 i bt
0 0.5 1 1.5 2 2.5 3
Lateral axis (mm) A/\/(A?)
(b)

(a)
Figure 1. In vivo mouse “A” brain OCT scan with dura mater preserved. Cranial window was placed centrally, occupying
both hemispheres. (a) 2D B-mode image with ROI highlighted in green. (b) Burr and Rayleigh PDFs fitted to the raw

speckle amplitude data. The 95% confidence interval for b is [5.28,6.29].

5. CONCLUSION AND DISCUSSION

From Figs. 1 and 2, while there is a small increase in the estimated power-law parameter b when the mouse is
euthanized, the effect is not significant due to overlap of the confidence intervals. However, when the dura mater
is removed, as shown in Figs. 3 and 4, this increase becomes significant. While there is currently not enough
data to ascertain the exact mechanism for this increase, we offer a speculative hypothesis. Post euthanasia,
the mouse brain is no longer regulated physiologically, and cell death will cause leakage of cerebrospinal fluid
throughout the brain.?! Cerebral edema and swelling may follow, which further augments this process. Thus, the
multi-scale scatterers in the brain shift from power-law based distributions to that producing Rayleigh statistics.
As the power-law parameter b increases, the Burr distribution converges to the Rayleigh distribution. When
the protective dura mater is removed, the post-mortem effect is even more significant since the initial in vivo
scans can be considered baseline scans. Without the dura mater, the brain is more susceptible to physiological
dysregulation. However, this would also suggest that the two mice had different baselines for the power-law
parameter. More samples would be needed to confirm these trends. Future studies are necessary to confirm
these results and to determine the sensitivity of the Burr parameter b to subtle changes in brain structures

during aging and the onset of diseases.
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Figure 2. Ez vivo mouse brain “A” OCT scan with dura mater preserved (same mouse as in Fig. 1, post euthanasia).
Cranial window was placed centrally, occupying both hemispheres. (a) 2D B-mode image with ROI highlighted in green.
(b) Burr and Rayleigh PDF's fitted to the raw speckle amplitude data. The 95% confidence interval for b is [5.57,6.28].
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Figure 3. In vivo mouse “B” brain OCT scan with dura mater removed. Cranial window was placed on the right
hemisphere. (a) 2D B-mode image with ROI highlighted in green. (b) Burr and Rayleigh PDFs fitted to the raw speckle

amplitude data. The 95% confidence interval for b is [4.26,4.58].
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Figure 4. Ez vivo mouse “B” brain OCT scan with dura mater removed (same mouse as in Fig. 3, post euthanasia).
Cranial window was placed on the right hemisphere. (a) 2D B-mode image with ROI highlighted in green. (b) Burr and
Rayleigh PDF's fitted to the raw speckle amplitude data. The 95% confidence interval for b is [6.10,6.86].
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