
Acta Biomaterialia 146 (2022) 259–273 

Contents lists available at ScienceDirect 

Acta Biomaterialia 

journal homepage: www.elsevier.com/locate/actbio 

Full length article 

Comprehensive experimental assessments of rheological models’ 

performance in elastography of soft tissues 

Sedigheh S. Poul a , Juvenal Ormachea 

b , Gary R. Ge 

c , Kevin J. Parker b , ∗

a Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA 
b Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, USA 
c Institute of Optics, University of Rochester, Rochester, NY 14627, USA 

a r t i c l e i n f o 

Article history: 

Received 8 February 2022 

Revised 26 April 2022 

Accepted 28 April 2022 

Available online 5 May 2022 

Keywords: 

Elastography 

Rheological model 

Shear wave speed dispersion 

Stress relaxation 

Viscoelastic soft tissues 

a b s t r a c t 

Elastography researchers have utilized several rheological models to characterize soft tissue viscoelasticity 

over the past thirty years. Due to the frequency-dependent behavior of viscoelastic parameters as well as 

the different techniques and frequencies employed in various studies of soft tissues, rheological models 

have value in standardizing disparate techniques via explicit mathematical representations. However, the 

important question remains: which of the several available models should be considered for widespread 

adoption within a theoretical framework? We address this by evaluating the performance of three well 

established rheological models to characterize ex vivo bovine liver tissues: the Kelvin-Voigt (KV) model 

as a 2-parameter model, and the standard linear solid (SLS) and Kelvin-Voigt fractional derivative (KVFD) 

models as 3-parameter models. The assessments were based on the analysis of time domain behavior 

(using stress relaxation tests) and frequency domain behavior (by measuring shear wave speed (SWS) 

dispersion). SWS was measured over a wide range of frequency from 1 Hz to 1 kHz using three dif- 

ferent tests: (i) harmonic shear tests using a rheometer, (ii) reverberant shear wave (RSW) ultrasound 

elastography scans, and (iii) RSW optical coherence elastography scans, with each test targeting a distinct 

frequency range. Our results demonstrated that the KVFD model produces the only mutually consistent 

rendering of time and frequency domain data for liver. Furthermore, it reduces to a 2-parameter model 

for liver (correspondingly to a 2-parameter “spring-pot” or power-law model for SWS dispersion) and 

provides the most accurate predictions of the material viscoelastic behavior in time ( > 98% accuracy) and 

frequency ( > 96% accuracy) domains. 

Statement of Significance 

Rheological models are applied in quantifying tissues viscoelastic properties. This study is unique in pre- 

senting comprehensive assessments of rheological models: 

• We employed experimental data in both the frequency domain (shear wave speed (SWS) vs. fre- 

quency) and time domain (stress relaxation) to assess rheological models’ performances. 

• SWS were acquired over a wide frequency range, 1 Hz to 1 kHz, by three independent techniques. 

• Using the frequency domain analysis, we evaluated how well each model can predict measured time 

domain behaviors (and vice versa). 

• This presents wide-ranging experimental proofs as the most comprehensive study of its type in terms 

of the number of experiments, frequency range, and conjoined assessments of time and frequency 

domains behaviors, demonstrating the most appropriate rheological model for soft tissues. 

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Shear wave elastography (SWE) enables quantitative measure- 

ents of mechanical properties of tissues which may serve as 

iomarkers for characterizing normal vs. diseased tissue. With the 

obust evolution of the field of elastography [ 1 , 2 ], the capability

o measure viscoelastic properties of tissues are expanding. These 

roperties include shear wave speed (SWS), shear wave attenua- 

ion (SWA), shear wave dispersion (SWD), elasticity, and viscosity. 

hese parameters have been widely measured by several groups 

sing a variety of techniques to characterize viscoelastic soft tis- 

ues such as liver [3–9] , breast [ 10 , 11 ], prostate [12] , kidney [ 13 , 14 ],

rain [ 15 , 16 ], aortic tissues [ 17 , 18 ], etc. or to characterize tissue-

imicking phantoms [19–22] or for characterization of models of 

issues by employing numerical methods [23–25] . 

Today more research and clinical groups can extract measure- 

ents from wider classes of tissues than ever before. Therefore, 

heological models have renewed attention for predicting tissue 

ehavior over a wide frequency/time range in the form of explicit 

athematical representations and providing a common framework 

etween different measurement techniques. However, this raises 

ver more urgently the question: can soft tissue viscoelastic mea- 

ures be placed within a common rheological model, and if so 

hich of the several models should be considered for widespread 

doption? In a previous publication [26] , this question was ex- 

lored with a general review of available data from soft tissues in 

he literature over specific time and frequency ranges. These were 

xamined in light of the most common linear and fractional mod- 

ls. Combined with a philosophical view related to Occam’s razor 

where the simplest solution is preferred), and Akaike’s principle 

f parsimony [27] , this survey recommended the abandonment of 

he widely used Kelvin-Voigt single relaxation time constant model 

n favor of a simple fractional derivative model. 

Given the importance of a common theoretical framework for 

omparison of results between different studies and techniques, 

he subject of a consensus (or lack thereof) deserves further at- 

ention. Specifically, in this paper the most common types of time 

nd frequency domain experiments are compared for compatibil- 

ty with well-known rheological models. Any model that can ac- 

urately describe a variety of important experimental results, and 

an do so with only a few parameters, is objectively a strong can- 

idate for consensus adoption. Conversely, any model that fails to 

escribe the most common types of responses or that requires a 

arger number of parameters should be abandoned. 

In this study, we investigated the performance of three most 

ommon and well-known rheological models from a comprehen- 

ive practical and experimental view. We employed three indepen- 

ent and experimental tests to obtain frequency domain data re- 

ated to the dispersion of phase velocity, and an independent test 

n the time domain related to stress relaxation. The frequency do- 

ain dispersion behavior is studied over a wider frequency range 

1 Hz – 1 kHz) than has been previously evaluated to the best 

f our knowledge. We also demonstrated the success or failure 

f models’ best parameter fits from two directions: will the pa- 

ameters obtained from fitting the frequency domain (phase ve- 

ocity dispersion) data predict the time domain (stress relaxation) 

esults? Alternatively, will parameters obtained from fitting the 

ime domain data accurately predict the frequency domain results? 

hese twin approaches are illustrated in Fig. 1 . 

These questions are important because it is common to curve- 

t a few frequency domain measurements (over a limited band- 

idth) to multiple models, without regard to the implication of 

hese models for prediction of simple stress relaxation results. We 

elieve this study is the most comprehensive study of its type in 

erms of the number of independent experimental techniques ap- 
260 
lied, the wide frequency range of tests, and the critical assess- 

ent of joint time and frequency domains behaviors. 

. Theory 

.1. Viscoelastic media 

Viscoelasticity manifests itself in the material properties of a 

edium as being (i) complex (having real and imaginary com- 

onents) and (ii) frequency-dependent, as opposed to an elastic 

edium in which the material properties are real and do not 

hange over a frequency range. The viscous component introduces 

 dissipative (imaginary) behavior which is responsible for disper- 

ion. Quantification of these properties in vivo could result in ob- 

aining a biomarker to assess the tissue characteristics in normal 

nd diseased states. 

For a viscoelastic medium, shear wave propagation and the un- 

erlying complex wavenumber ˆ k (ω) could relate to its complex 

hear modulus ˆ G (ω) according to Eq. (1) in which ω and ρ are the 

adial frequency and the density, respectively. The complex shear 

odulus is related to complex Young’s modulus ˆ E (ω) by the Pois- 

on’s ratio ν according to Eq. (2) . For soft tissues, ν is approxi- 

ated as nearly incompressible ( ν ∼ 0 . 5 ), and the equation is sim- 

lified [26] : 

ˆ 
 ( ω ) = 

ω √ 

ˆ G ( ω ) 
ρ

(1) 

ˆ 
 (ω) = 

ˆ E (ω) 

2( 1 + ν) 

( ν ∼ 0 . 5 ) ⇒ 

ˆ G ( ω) = 

ˆ E ( ω) 

3 

(2) 

Furthermore, the complex wavenumber incorporates informa- 

ion regarding SWS, c ph (ω) , (as a measure of stiffness) as well as 

hear wave attenuation α(ω) (as a measure of loss) of the medium 

s shown in Eq. (3) : 

ˆ 
 ( ω ) = 

ω 

c ph ( ω ) 
− jα( ω ) (3) 

Using equations (1) - (3), SWS as a function of frequency is ob- 

ained from the complex modulus ( ̂  E (ω) = 

ˆ E stor + j ̂  E loss ) : 

 ph ( ω ) = 

√ 

2 

3 ρ

ˆ E ( ω ) √ ∣∣ ˆ E ( ω ) 
∣∣ + 

ˆ E stor 

= 

√ √ √ √ 

2 

3 ρ

ˆ E 2 stor + 

ˆ E 2 
loss √ 

ˆ E 2 stor + 

ˆ E 2 
loss 

+ 

ˆ E stor 

(4) 

In which 

ˆ E stor and 

ˆ E loss are the storage and loss Young’s moduli, 

espectively. 

Another important characteristic of viscoelastic media is their 

tress relaxation (SR) behavior, which originates from their time- 

ependent behavior. 

The stress relaxation behavior of a viscoelastic medium is 

haracterized as a time-dependent decrease in stress when the 

edium is exposed to an ideal (sudden) step strain function. In 

ractical experiments on the viscoelastic materials, applying this 

deal strain cannot be physically implemented and a step strain is 

pplied in two successive steps as shown in Eq. (5) : first, a short 

inear ramp strain is applied until the desired strain level ε 0 is 

chieved during [0- T 0 ] time period. This is followed by the appli- 

ation of a constant strain ε 0 for the rest of the experiment. The 

atter is associated with the stress relaxation period in time [28] . 

amp − and − hold strain : ε ( t ) = 

{ ε 0 
T 0 

t t < T 0 

ε 0 t ≥T 0 

(5) 
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Fig. 1. The flowchart showing the summary of the two approaches for analyzing the three rheological models: Approach A: frequency domain analysis; Approach B: time 

domain analysis. 

Fig. 2. Diagrams of rheological models: (a) KV model, (b) SLS model, (c) KVFD model, and (d) spring-pot model which is the KVFD model with a negligible spring constant 
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.2. Rheological models 

In the next three sections, we provide equations describing both 

ime and frequency domain behaviors of the three well established 

heological models employed in this study, which clarifies the eval- 

ation of their performances in later sections. The building blocks 

f these rheological models are shown in Fig. 2 . 

.2.1. Kelvin-Voigt model 

The Kelvin-Voigt (KV) model is one of the simplest models 

sed to describe viscoelasticity in a material as a 2-parameter 

odel consisting of a spring with Young’s modulus E 1 and a dash- 

ot element with viscosity η connected in parallel as depicted in 

ig. 2 (a) . The KV constitutive equation describing the stress-strain 

elationship of a material in the time domain is: 

( t ) = E 1 ε ( t ) + η
dε ( t ) 

dt 
(6) 
261 
From the constitutive equation, the stress relaxation response 

SR (t) to a ramp-and-hold strain application ( Eq. (5) ) is: 

SR ( t ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

E 1 

(
ε 0 
T 0 

)
t + η

(
ε 0 
T 0 

)
t < T 0 

E 1 ε 0 t ≥ T 0 

(7) 

The behavior of a viscoelastic medium in the frequency domain 

nder the KV model is obtained by taking the Fourier transform of 

he constitutive model ( Eq. (8) ) which gives the complex Young’s 

odulus ( Eq. (9) ). 

ˆ ( ω ) = E 1 ̂  ε ( ω ) + η( jω ) ̂  ε ( ω ) (8) 

ˆ 
 ( ω ) = 

ˆ σ ( ω ) 

ˆ ε ( ω ) 
= E 1 + η( jω ) (9) 



S.S. Poul, J. Ormachea, G.R. Ge et al. Acta Biomaterialia 146 (2022) 259–273 

T

s

c

p

t

r

i

E

t

o

v

a

i  

s

2

m

a  

t

σ

t

s

Y

a  

U

σ

E

c
 1 + E

2 + 

(

2

p

a

e  

o

p  

a

i

e

d

σ

 

m  

K

i

f

σ

E

w

s  

t

s  

t

c

r

s

c

w

q

T

3

3

t

b

a

i

l

i

c

a

4

f

t

c

s

p

c

t

l

e

s

t

a

F

he SWS predicted by the KV model c s,KV (ω) is then obtained by 

ubstituting Eq. (9) into Eq. (4) : 

 s,KV ( ω ) = 

√ 

2 

3 ρ

E 2 
1 

+ η2 ω 

2 √ 

E 2 
1 

+ η2 ω 

2 + E 1 
(10) 

In the ideal stress relaxation test under the KV model, the ap- 

lication of an ideal step strain requires an infinitely large force at 

he instance when strain (displacement) is applied, which is not 

ealistic. When the ideal step strain is substituted by a more real- 

stic ramp-and-hold strain, the KV model response as described by 

q. (7) shows some drawbacks. First, after the ramp period t > T 0 , 

he model predicts that the material holds a constant stress level 

ver time. However, this rules out one major characteristic of a 

iscoelastic material, which is the time-dependent decrease (relax- 

tion) of stress under constant strain. Second, the stress at t = 0 

s not zero, σ ( t = 0 ) = η( 
ε 0 
T 0 

) , based on the KV stress derivation as

hown in Eq. (7) , and σ ( t = T ) is discontinuous. 

.2.2. Zener (standard linear solid) model 

The Zener, or standard linear solid (SLS) model is a 3-parameter 

odel with two spring elements (with Young’s moduli E 1 and E 2 ) 

nd one dashpot ( η), as shown in Fig. 2 (b) . The constitutive equa-

ion of the SLS model is: 

( t ) + 

η

E 2 

dσ ( t ) 

dt 
= E 1 ε ( t ) + 

η( E 1 + E 2 ) 

E 2 

dε ( t ) 

dt 
(11) 

Similar to the derivations obtained from constitutive equa- 

ion for the KV model in Section 2.2.1, the stress relaxation re- 

ponse to a ramp-and-hold strain application σSR (t) , the complex 

oung’s modulus ˆ E (ω) , and the SWS for the SLS model c s, SLS (ω) 

re described by Eqs. (12) , (13) and (14) , respectively. In Eq. (12) ,

 Hea v iSide (t) is the unit step function. 

SR ( t ) = 

ε 0 
T 0 

{ (
1 − e −

E 2 t 

η

)
η + E 1 t + 

((
e −

E 2 ( t−T 0 ) 
η

)
η

−( η + E 1 ( t − T 0 ) ) 

)
U Hea v iSide ( t − T 0 ) 

} 

(12) 

ˆ 
 ( ω ) = 

ˆ σ ( ω ) 

ˆ ε ( ω ) 
= 

E 1 + 

η( E 1 + E 2 ) 
E 2 

( jω ) 

1 + 

η
E 2 

( jω ) 
(13) 

 s, SLS ( ω ) = 

√ √ √ √ √ √ 

2 

3 ρ

(
ηω E 2 

2 

)2 + 

(
E 1 E 

2 
2 

+ η2 ω 

2 ( E(
E 2 

2 
+ η2 ω 

2 
)(

E 1 E 
2 
2 

+ η2 ω 

2 ( E 1 + E 2 ) + 

√ (
ηω E 2 

2 

)

.2.3. Kelvin-Voigt fractional derivative model 

The Kelvin-Voigt fractional derivative (KVFD) model is a 3- 

arameter model comprised of a spring with Young’s modulus E 0 
nd a spring-pot (fractional dashpot) characterized by two param- 

ters of ξ and a as shown in Fig. 2 (c) . This model has been devel-

ped and applied to a range of soft tissue behaviors [29–35] . 

The parameter a quantifies the fractional order of the spring- 

ot element: when a = 0 , the spring-pot acts as a spring and for

 = 1 it behaves as a dashpot element. The second parameter ξ
s the dashpot viscosity with the unit of Pa · s a . The constitutive 

quation for the KVFD model is described by Eq. (15) in which D 

a 

enotes the fractional derivation. 

( t ) = E 0 ε ( t ) + ξD 

a [ ε ( t ) ] (15) 

It is noted that when a = 1 , the KVFD model reduces to a KV

odel, as Eqs. (6) and (9) . Similar to the KV and SLS models, the
262 
 2 ) 
)2 

E 1 E 
2 
2 

+ η2 ω 

2 ( E 1 + E 2 ) 
)2 

) (14) 

VFD stress relaxation response σSR (t) to a ramp-and-hold strain 

s obtained from Eq. (16) and the complex Young’s modulus as a 

unction of frequency is: 

SR ( t ) = 

E 0 ε 0 
T 0 

( t U Hea v iSide ( t ) − ( t − T 0 ) U Hea v iSide ( t − T 0 ) ) 

+ ξ
ε 0 


( 2 − a ) T 0 

(
U Hea v iSide ( t ) t 

1 −a 

−U Hea v iSide ( t − T 0 ) ( t − T 0 ) 
1 −a 

)
(16) 

ˆ 
 ( ω ) = 

ˆ σ ( ω ) 

ˆ ε ( ω ) 
= E 0 + ξ ( jω ) 

a 
(17) 

here in Eq. (16) 
 refers to the gamma function. When E 0 is very 

mall and thus negligible as shown by [ 12 , 36 ], for soft viscoelas-

ic media, the KVFD model reduces to a 2-parameter model (the 

pring-pot model shown in Fig. 2 (d) ) for which the SWS as a func-

ion of frequency is modeled by: 

 s, KVFD ( ω ) = 

√ 

2 

3 ρ

ξ[
1 + cos 

(
aπ
2 

)]ω 

a 
2 (18) 

In Eq. (18) , SWS is shown to follow a 2-parameter power-law 

elationship with the frequency under the KVFD model which is 

implified as Eq. (19) considering that ω = 2 π f . 

 s, KVFD ( f ) = C 0 f 
a 
2 (19) 

here C 0 is a reference speed at 1 Hz . The time domain and fre- 

uency domain relationships of these models are summarized in 

able 1 . 

. Methods 

.1. Sample preparation 

Ex vivo bovine liver tissues were used in this work to study the 

ime and frequency domain behavior of soft tissue. Whole fresh 

ovine liver was acquired from a slaughterhouse right after the 

nimal was sacrificed and the liver was surrounded entirely by 

ce during delivery to our laboratory. The whole ex vivo bovine 

iver weighed approximately 6 kg. The liver was immediately 

mmersed in normal isotonic saline solution (with 0.9% of sodium 

hloride dissolved in degassed water) to prevent tissue degener- 

tion and dehydration and placed in a refrigerator overnight at 

 

◦C . Using 0.9%-isotonic saline solution is a very common method 

or preserving the tissue samples over relatively short periods of 

ime ( < 24 h) in different studies involving tissue samples in- 

luding some pathological experiments [37] . Therefore, it is con- 

idered a valid method for minimizing degradation in tissue sam- 

les in this study. On the following day, different samples were 

ut from the bovine liver for each of the four tests and allowed 

o reach room temperature ( ∼20 °C) while immersed in saline so- 

ution. Since small specimens dehydrate quickly and stiffen when 

xposed to air, each sample was kept immersed in normal saline 

olution until just prior to testing to avoid any possible dehydra- 

ion of the samples, which could affect the measurements of stress 

nd SWS. The whole bovine liver used in this study is shown in 

ig. 3 (a) . 
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Table 1 

Comparison of time domain and frequency domain relationships of the rheological models. 

Model Time domain behavior Frequency domain behavior 

2-parameter KV σ (t) = Eε(t) + η dε(t) 
dt 

ˆ E (ω) = E 1 + η( jω ) 

3-parameter SLS σ (t) + 

η
E 2 

dσ (t) 
dt 

= E 1 ε(t) + 

η( E 1 + E 2 ) 
E 2 

dε(t) 
dt 

ˆ E (ω) = 

E 1 + η( E 1 + E 2 ) 
E 2 

( jω ) 

1+ ηE 2 ( jω ) 

3-parameter KVFD σ (t) = E 0 ε(t) + ξD a [ ε(t) ] ˆ E (ω) = E 0 + ξ ( jω ) a 

2-parameter Spring-pot σ (t) = ξD a [ ε(t) ] ˆ E (ω) = ξ ( jω ) a 

Fig. 3. (a) Whole fresh bovine liver, (b ) experimental test setup of the rheometer for harmonic rotational shear test with a cylindrical liver sample, (c) ultrasound exper- 

imental setup using the Verasonics ultrasound system and transducer in place with two miniature vibrator sources located at different positions and in contact with the 

liver sample tissue as RSW sources, (d) OCE setup using a custom-built phase sensitive swept-source optical coherence tomography system (e) experimental setup for stress 

relaxation test with a liver sample in place. 
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.2. Experimental studies 

Four independent tests were employed to provide a compre- 

ensive range to assess the rheological models’ performance in 

he frequency and time domains. To investigate the dispersion be- 

avior of liver tissue samples at discrete frequencies from 1 Hz 

o 1 kHz, three independent experimental tests were performed: 

i) harmonic shear test, (ii) reverberant shear wave (RSW) ultra- 

ound (US) scans, and (iii) optical coherence elastography (OCE) 

cans based on RSW. The test set-ups for these three experiments 

re shown in Fig. 3 (b), (c) and (d) . The harmonic shear test was

mployed in assessing the speed dispersion behavior at low fre- 

uency ranges, i.e., 1 Hz to 15 Hz. The RSW-US approach provided 

he speed dispersion at mid-range frequencies of 200 Hz to 400 

z. The RSW-OCE approach was used to quantify the speed dis- 

ersion behavior at 1 kHz, which is outside the scope of the RSW- 

S test due to high noise and attenuation, and outside the scope of 

he rheometer test due to the low-frequency limitations of that ap- 

roach. To study the time domain behavior of ex vivo bovine liver 

issues, stress relaxation test was done on small liver samples; its 

xperimental setup is shown in Fig. 3 (e) . All four tests were done
263 
n the same day while the samples were at approximately 20 ◦C 

nd at similar hydration conditions in order to make the results 

rom all four approaches as consistent as possible. The room tem- 

erature was maintained during all testing periods using a wall- 

ounted digital thermostat, and the temperature of the samples 

as frequently measured using a digital infrared laser thermome- 

er (Model LASERGRIP 1080, Etekcity brand, Vesync Inc., Anaheim, 

A, USA) while the samples were resting in saline solution un- 

il they reached room temperature. Each of the three tests in the 

requency domain were tailored to target their optimal frequency 

ange. A minimum of three liver samples, free of ligaments and 

ajor arteries, were used for each test. In the case of RSW-US, scan 

lanes of 4 cm × 5.5 cm were analyzed for shear wave speed. The 

etail for each measurement is presented in the following four sec- 

ions. 

.2.1. Harmonic frequency sweep shear test 

The frequency sweep rotational shear test enables the charac- 

erization of the viscoelastic bovine liver within a range of fre- 

uencies. For performing this test, a hybrid rheometer (Discovery 

eries HR-2, TA Instrument Inc., New Castle, Delaware, USA) was 
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mployed with a 20 mm diameter flat platen geometry. The di- 

meter of liver sample cuts for the test were also 20 mm. To de- 

ermine the linear viscoelastic region (LVER) over the strain am- 

litude in the shear test, first the amplitude sweep test was done 

n the liver tissue at the frequency of 5 Hz, which is explained in

etail in the Appendix A . Based on that, the strain amplitude of 

 . 7% was chosen within the LVER as the amplitude for perform- 

ng the frequency sweep test, in which the storage and loss shear 

oduli were the experimental outputs for the frequency range of 

 Hz to 15 Hz. The SWS as a function of frequency is then obtained

rom the measured shear moduli using Eq. (4) which is model- 

ndependent (Young’s modulus and shear modulus are related by 

q. (2) ). 

.2.2. RSW ultrasound approach 

SW vibration sources. Two small identical vibration sources 

Model DAEX320-8, 8 Ohm, 20 W, Dayton Audio, Ohio, USA) were 

ut in contact with the ex vivo liver tissue as shown in Fig. 3 (c) ;

hese generated the RSW within the tissue for the ultrasound 

can. To create an effective contact surface between each vibra- 

ion source and the tissue, a conical knob was attached and fixed 

n each source as shown in the figure. These vibrator sources 

ere connected to a power amplifier (BKA10 0 0-4A, ButtKicker, 

esterville, OH, USA) driven by a dual-channel function genera- 

or (AFG3022B, Tektronix, Beaverton, OR, USA) which provided in- 

ut signals to the vibration sources. Vibration frequency ranges be- 

ween 200 – 400 Hz were used for the ex vivo liver experiment. 

ltrasound scanner and data acquisition. A Verasonics ultrasound 

canner (V-1, Verasonics, Kirkland, WA, USA) connected to a linear 

ltrasound probe (model L7-4, ATL, Bothell, WA, USA) was used to 

rack the induced displacements using a Loupas estimator [38] . The 

enter frequency and the sampling frequency were 5.21 MHz and 

0 MHz, respectively. The frame rate was set to 50 0 0 Hz and the

otal acquisition time was 0.25 s. 

The SWS was measured by examining the phase distribution of 

he reverberant field. Recently, Ormachea and Parker [39] demon- 

trated that the reverberant phase gradient was proportional to the 

ocal wavenumber. This phase estimator is less sensitive to imper- 

ections in the reverberant field distribution and requires a smaller 

upport window compared to earlier estimators based on autocor- 

elation. The specific details of the phase velocity estimator are de- 

cribed in [39] . 

.2.3. Optical coherence elastography (OCE) 

CE scanner set-up and excitation sources. A swept-source optical 

oherence tomography (SS-OCT) system was used in conjunction 

ith a mechanical excitation system to form the entire custom- 

uilt OCE system. The SS-OCT system was implemented with a 

wept-source laser (HSL-2100-HW, Santec, Aichi, Japan) with a cen- 

er wavelength of 1310 nm and a bandwidth of 140 nm. The lateral 

esolution was approximately 20 μm and the axial resolution was 

pproximately 6 μm in air. The SS-OCT system and the mechani- 

al excitation system were both controlled using LabVIEW software 

Version 14, National Instruments, Austin, Texas, USA). The sam- 

le dimensions for the OCE scans were approximately 3 cm × 3 

m × 4 cm. 

The mechanical excitation system consists of the following: a 

unction generator (AFG320, Tektronix, Beaverton, Oregon, USA) 

hat provides the 1 kHz continuous sinusoidal excitation signal, an 

mplifier (PDu150, PiezoDrive, Callaghan, NSW, Australia), a piezo- 

lectric actuator (BA4510, PiezoDrive, Callaghan, NSW, Australia), 

nd a custom circular ring with 8 points of contact to induce rever- 

erant shear waves. The field of view was a 5 × 5 mm area used 

o scan a homogeneous region of liver tissue. 
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CE data acquisition and processing. The MB-mode acquisition ap- 

roach was used to acquire 3D reverberant OCE data [40] . One 

undred (100) A-lines by 100 frames by 100 M-mode measure- 

ents were acquired. The estimated particle motions were ob- 

ained using the algorithm developed by Loupas et al. [38] . 

Two-dimensional (2D) spatial autocorrelations for each xy -plane 

ere calculated with a square window area of 1 mm 

2 . The lo- 

al wavenumber k was then estimated via curve fitting and, sub- 

equently, SWS could be calculated. This process was repeated at 

ach depth to construct the 3D SWS maps. The average SWS and 

tandard deviation (STD) in the cropped 3D region of interest (ROI) 

ere reported. All data processing was performed using MATLAB 

020b (Mathworks, Inc., Natick, MA, USA). 

.2.4. Stress relaxation test approach 

The SR test was implemented using a Q-Test/5 machine (MTS, 

den Prairie, MN, USA) similar to previous studies [ 28 , 36 ]. The test

as performed using a 5 N load cell with a compression rate of 

.5 mm/s. The strain applied was 10% strain ( mm 

mm 

× 100) which was 

xerted linearly from zero to a maximum of 10% over a short time 

 ∼ 3.5 s) and then the strain was kept constant during the relax- 

tion period for approximately 350 s. The output from the SR test 

as the variation of force recorded by the load cell over time for 

ach sample during the whole test period. 

The measured force is then converted to stress σ (t) by incor- 

orating the cross-sectional area of each sample and then the SR 

urves are fitted to each rheological model to assess how well each 

odel captures the time domain behavior of the liver tissue. 

The curve fitting was done using MATLAB 2020b (Mathworks, 

nc., Natick, MA, USA) using the least square method based on min- 

mization of errors between test data and the fitted curve, includ- 

ng the final fit of all frequency domain data to the different rheo- 

ogical models. 

. Results 

.1. Preloading effect 

The viscoelastic properties of liver tissues measured in an ex- 

eriment may change due to factors associated with the test con- 

itions. An important factor is the preloading effect due to the tis- 

ue weight in tall vertical cylindrical samples. Preloading is known 

o result in an increase in the shear modulus and therefore, mea- 

ured stiffness level [ 41 , 42 ]. As observed in Fig. 4 , the liver sample

ears a length reduction of over 20% due to its own weight in posi- 

ion (b) compared to (a) . According to the study by Tan et al. [43] ,

 strain of 20% results in stiffening of the modulus in bovine liver 

y a factor of 3/2, or a 50% increase. In this study, 20% preloading

s assumed in the stress relaxation, RSW-US, and OCE tests, which 

s compensated by the factor 2/3 for the shear modulus as a first- 

rder correction for the pre-strain. It is noted that the rheometer 

est is not adjusted as the samples employed for performing the 

armonic shear test had a comparatively smaller ratio of height to 

iameter and also minimal contact force by the test plate. 

.2. Rheometer shear test results 

Fig. 5 shows the results obtained from the harmonic shear test 

sing the rheometer on three bovine samples where (a) shows the 

torage and loss shear moduli for the samples measured by the 

heometer, and (b) indicates the SWS calculated from the moduli 

n (a) at low frequency range, ( 1 Hz ≤ f ≤ 15 Hz ). 

.3. RSW ultrasound approach 

Fig. 6 presents the results of the RSW-US approach for a sam- 

le frequency of 360 Hz. In this figure, (a) shows the gray scale 
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Fig. 4. Difference in height measurement of a liver sample for stress relaxation experiments in two different positions in (a) and (b). The vertical positioning of a tall cylinder 

for testing results in an over 20% reduction of height due to gravity acting on the compressible mass. 

Fig. 5. Rheometer shear test results on three liver samples: (a) storage (black curves) and loss (blue curves) shear moduli, (b) SWS obtained at the low frequency range 

using Eq. (4) . 

Fig. 6. (a) B-mode image of the liver, (b) particle velocity illustrating the shear wave propagation and the RSW field produced within the ROI, (c) final elastographic image 

using the phase gradient method in a reverberant field. 

265
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Fig. 7. (a) 3D B-mode image (0 to 255 grayscale) of homogeneous liver ROI. (b) Sample 3D frame showing reverberant shear wave pattern. (c) Estimated 3D shear wave 

speed map (d) 2D RSW field within the plane cut though middle of 3D RSW, (e) 2D SWS on a plane cut though middle of part (c). 
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-scan of the liver under experiment, (b) is the RSW field shown 

s the particle velocity produced within the domain by external 

echanical excitation, and (c) depicts the elastography images for 

ocal SWS overlaid on the B-scan image. 

.4. RSW optical coherence elastography approach 

The RSW-OCE results for SWS measurement at the frequency of 

 kHz is shown in Fig. 7 in which (a) is the 3D gray-scale B-scan

OI of a bovine liver sample, (b) shows a sample frame in time of 

he 3D RSW generated within the sample, and (c) is the estimated 

WS within the 3D sample obtained from the analysis of OCE data. 

t is noted that the RSW-OCE approach provides characterization 

f SWS within a 3D domain, not only along a 2D surface, but also 

long the axial (depth) direction. It is not solely based on surface 

ave propagation; it incorporates the propagation of random shear 

aves diffusing in different directions within the volume. To see 

ow the RSW field and SWS appear inside the domain, a 2D plane 

ut through the middle of the 3D domain along the x axis was se-

ected and the RSW and SWS are shown within this 2D plane in 

ig. 7 (d) and (e) , respectively. It is noted that Fig. 7 (d) demon-

trates how uniform the local SWS is within the 3D domain of the 

mall liver sample tested. The test is repeated for three different 

iver samples. The average value and the standard deviation of the 

D estimated SWS are reported. 

To summarize the frequency domain SWS measurements for ex 

ivo bovine liver tissue from the three experiments, Fig. 8 (a) visu- 

lizes the results from the rheometer shear test, the RSW-US scan, 

nd the RSW-OCE experiment with the standard deviation for SWS 

easurements at each frequency shown as errorbars. These cover 

he range of 1 Hz -1 kHz shear wave frequencies. There are gaps 

etween the three measurement techniques, however all rheolog- 

cal models considered would predict smooth transitions between 

he respective measurement bands. 

.5. Stress relaxation test results 

Fig. 8 (b) shows the experimental SR curves obtained from me- 

hanical tests over a relaxation time span of 350 s, representing 

he time domain behavior of ex vivo bovine liver tissues. 
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. Discussion 

Having obtained SWS measurements over a wide frequency 

ange and the time domain SR measurements using independent 

xperimental approaches, the key question before us is: which rhe- 

logical model will best predict the behavior in soft liver tissue, in 

oth frequency and time domains, consistently and with the fewest 

arameters? 

.1. Performance of rheological models 

In addressing the question raised above, we employed the 

wo different approaches (approach A and approach B) shown in 

ig. 1 to investigate the performance of the rheological models 

n predicting the ex vivo bovine liver tissue behavior in both fre- 

uency and time domains. 

.1.1. Approach A: Frequency domain data analysis 

For the first approach in evaluating the performance of three 

heological models, we fit the frequency domain SWS data ob- 

ained from our three experiments to dispersion relationships of 

he three models. The analyses are presented in Fig. 9 (a), (b), and 

c) for the KV, SLS and KVFD models, respectively, in log-log scale 

ith the SWS dispersion fitting parameters reported in Table 2 . 

As observed in these figures, all three models are capable of 

apturing the SWS dispersion within the middle range of frequen- 

ies, similar to observations in other studies [44] . However, the 

odels differ in how they behave at lower frequencies, i.e., f ≤
0 Hz and high frequencies ( f = 1 kHz ) . The KV model in Fig. 9 (a)

xhibits a constant SWS (negligible dispersion behavior) at the 

ower frequency end. However, the experimental SWS measure- 

ents obtained from the rheometer test as well as the SWS dis- 

ersion reported for human brain by Herthum et al . [15] show 

ighly dispersive behavior of soft tissues in this frequency range. It 

s also noted that the KV model, based on observations by Nightin- 

ale et al. [7] , shows large variations of its fitting parameters over 

imited frequency ranges, therefore, it is not well suited for char- 

cterizing highly dispersive media such as human liver. These are 

mportant limitations in employing the KV model for the frequency 

omain analysis. 
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Fig. 8. (a) Frequency domain SWS data obtained from the three different experimental techniques. (b) Time domain SR test results for three ex vivo bovine liver samples. 

Fig. 9. Results from Approach A . Top Row: SWS data from three independent tests on bovine liver samples fitted to the: (a) KV model, (b) SLS model, and (c) KVFD model. 

Bottom Row: stress relaxation curves predicted from SWS dispersion fitting results shown as purple curves for (d) KV model, (e) SLS model, and (f) KVFD model, compared 

with the actual experimental stress relaxation measurements. 

Table 2 

Fitting parameters obtained fitting the experimental SWS data of liver samples to KV, SLS, and 

KVFD models in Fig. 9 (a), (b), and (c), respectively. 

SWS dispersion fitting parameters Goodness of fit 

KV model E 1 = 1184 Pa η = 0 . 532 Pa . s R 2 = 0 . 60 

SLS Model E 1 = 1744 Pa E 2 = 5886 Pa η = 24 . 03 Pa . s R 2 = 0 . 86 

KVFD Model E 0 = 5 . 46 × 10 −6 Pa a = 0 . 245 ξ = 1097 Pa . s a R 2 = 0 . 96 
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The SLS model in Fig. 9 (b) performs well in describing the SWS 

ispersion behavior at low frequencies as also observed by Klatt 

t al. [45] , however for the higher range of frequencies provides 

ess accurate results. The SLS model incorporates one additional 

arameter in comparison to the KV model, however the SLS fitting 

ccuracy is still not accurate enough for SWS dispersion modeling. 

The KVFD model in Fig. 9 (c) provides an excellent fit to the ex- 

erimental SWS dispersion data with a value of E 0 being negligible, 

esulting in a 2-parameter SWS dispersion model with accurate re- 

ults. It performs well both in terms of goodness of fit over the 
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ide range of frequencies as well as employing the fewest number 

f significant fitting parameters. 

Let us go one step further in evaluating the performance of the 

hree rheological models using approach A to see how the parame- 

ers from frequency domain analysis project onto the time domain 

ehavior. To do so, we employed the fitting parameters obtained 

rom the analysis of SWS in Table 2 to predict the corresponding 

ime domain SR and then compared it with the actual experimen- 

al measurements of SR for bovine liver to see how prediction is 

lose to the real behavior. The resulting estimated SR curves are 
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Fig. 10. Results from Approach B . Top Row: stress relaxation data from bovine liver testing fitted to the: (a) KV model, (b) SLS model, and (c) KVFD model. (The results on 

three different liver samples indicate the reproducibility of the test.) Bottom Row: SWS dispersion predicted from SR test fitting parameters shown as purple curves for (d) 

KV model (the range of vertical axis for SWS is extended to 100 m/s to show the unusually large range of predicted SWS by the KV model), (e) SLS model, and (f) KVFD 

model, compared with the actual experimental SWS measurements. 
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hown in Fig. 9 (d), (e), and (f) for the three rheological models as

urple lines. 

Fig. 9 (d) and (e) for the KV model and SLS model, respec- 

ively, estimate a SR behavior dramatically departing from the ex- 

erimental data in terms of the shape by which stress relaxes over 

ime as well as the stress level . The KV model indicates a constant

R behavior originating from the nature of its SR formula in Eq. (7) .

n the other hand, the stress in the SLS model is dominated by 

he strong constant term such that its exponential decay term is 

elatively small, producing what appears to be an almost constant 

tress. The orders of magnitudes of the SLS parameters ( E 1 , E 2 , and

) obtained from SWS dispersion fitting causes this SR response. To 

lucidate this stress behavior of the SLS model, we obtain its single 

ime constant from SLS fitting results in Table 2 which is equal to 

= 

η
E 2 

= 

24 . 03 
5886 = 0 . 004 s. This characteristic time constant is very 

mall, corresponding to a fast decay time incorporated within the 

odel, resulting in failure of the SLS model in estimating the ap- 

ropriate SR behavior. For the KVFD model in Fig. 9 (f) , the SR

urve predicted from the SWS dispersion fitting parameters shows 

 reasonable SR response in terms of both the shape of the SR be-

avior and the magnitude of stress in comparison to the experi- 

ental SR data. 

.1.2 . Approach B: Time domain data analysis 

For the second approach, we start from analysis of time domain 

xperimental data measured in the SR test. Fig. 10 (top row) shows 

he experimental SR data of the ex vivo bovine liver tissues for 

hree different samples fitted to SR relationships of the three rhe- 

logical models: (a) KV model, (b) SLS model, and (c) KVFD model 

resented as red solid lines. All curve fitting was performed for the 

ntire ramp-and-hold strain period. The average fitting parameters 

ver three samples are reported in Table 3 for each model. 

Looking at the KV model fitting results in Fig. 10 (a) , the model

aptures the stress behavior of the experimental data during the 

amp strain application period ( 0 < t < T 0 ), but it fails to correctly

redict the SR behavior when constant strain is applied ( t > T ) .
0 
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pecifically, this model prescribes a constant stress value for the 

elaxation period ( t > T 0 ) , which is unrealistic. The SLS model in

ig. 10 (b) demonstrates an improvement over the KV model in 

erms of describing the SR behavior of the liver tissues, as it shows 

 decaying (rather than constant) stress for t > T 0 . However, the 

LS model is not able to capture the experimental relaxation be- 

avior of liver with any reasonable accuracy. The KVFD model in 

ig. 10 (c) predicts the viscoelastic relaxation behavior of ex vivo 

ovine liver tissue very well for the entire ramp-and-hold strain 

pplication period. The KVFD model incorporates a spectrum of 

he relaxation time constants, which results in capturing a range 

f time constants and therefore, provides more flexible and accu- 

ate fitting results than the SLS model with a single time constant. 

lso, it is notable that for the KVFD model SR fitting, the param- 

ter E 0 takes a negligible value which permits the reduction to a 

-parameter model with accurate results. 

In the Appendix B , the results from fitting the experimental SR 

ata to the three rheological models for shorter relaxation period 

 0 < t < 100 s) than Fig. 10 are presented. This analysis shows

imilar performances for the three models where the KV and SLS 

odels fail to reasonably fit the time domain behavior while the 

VFD model shows an excellent agreement with the SR data. 

To assess how the results obtained from time domain analy- 

is of experimental SR data would project onto the behavior in the 

requency domain under each rheological model, the fitting param- 

ters from SR fittings in Fig. 10 (a)–(c) and Table 3 are employed 

o estimate the corresponding SWS. Then, these SWS predictions 

rom all models are compared with the actual experimental mea- 

urements of SWS for bovine liver to see how close the predictions 

re to the actual measurements. The results are demonstrated in 

ig. 10 (d), (e), and (f) for the KV model, SLS model, and KVFD 

odel, respectively. 

Looking at the predicted SWS dispersion for the KV model in 

ig. 10 (d) , we observe an elevated order of magnitude of SWS 

alues in the plot compared to experimental SWS measurements. 

he range of SWS for soft tissues such as liver is 0.7 m/s to 2.0
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Table 3 

Fitting parameters obtained from fitting the experimental SR data of liver samples to KV, SLS, and 

KVFD models in Fig. 10 (a), (b) and (c), respectively. Results are averaged over three samples’ mea- 

surements with the STD reported in parentheses. 

SR averaged fitting parameters (STD) Goodness of fit 

KV model E 1 = 395 . 2 Pa 

(62.1) 

η = 676 . 2 Pa . s 

(365.5) 

R 2 = 0 . 47 

SLS Model E 1 = 342 . 9 Pa 

(61.7) 

E 2 = 657 . 1 Pa 

(116.0) 

η = 10239 Pa . s 

(1369.5) 

R 2 = 0 . 93 

KVFD Model E 0 = 

3 . 33 × 10 −5 Pa 

( 2 . 0 × 10 −7 ) 

a = 0 . 20 

(0.008) 

ξ = 1075 Pa . s a 

(163.7) 

R 2 = 0 . 98 
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/s over a wide frequency span, observed in this study as well as 

ther literature for human brain [15] and human liver [39] . There- 

ore, the time domain fitting parameters for KV models does not 

epresent a realistic frequency domain behavior. 

For the SLS model in Fig. 10 (e) , the estimated SWS response in

he frequency domain is not only far off compared with the actual 

WS measurements, but the SWS estimation produces a negligible 

WS dispersion (frequency-dependent) behavior. This is in conflict 

ith the fundamental dispersive behavior of viscoelastic soft tis- 

ues such as liver. Therefore, modeling the time domain SR data 

sing the SLS model does not map to an accurate frequency do- 

ain behavior. Going further in evaluation of the SLS model’s per- 

ormance, its single time constant from SR fitting parameters in 

able 3 is τ = 

η
E 2 

= 15 . 6 s. The time domain gives one relatively

arge (and therefore slow) time constant τ which in the frequency 

omain corresponds to a low frequency. 

Fig. 10 (f) shows the SWS for bovine liver tissue estimated by 

he KVFD model using the parameters from the SR time domain 

ehavior. The results appear reasonable in terms of the range of 

WS approximated for the liver tissues (0.7 m/s to 2.0 m/s) as well 

s the prediction of a non-zero SWS dispersion behavior. There- 

ore, for the KVFD model, the time domain behavior predicts the 

requency domain behavior reasonably well. 

It is noted that the general trend observed in the behavior of ex 

ivo bovine liver SWS measurements such as dispersive behavior 

nd the range of variation are consistent with other in vivo mea- 

urements of human liver [8] and human brain [15] . Therefore, KV 

nd SLS models are expected to show similar limitations in de- 

cribing the in vivo measurements for these soft tissues. Also, the 

VFD model has been applied to other soft tissues such as prostate 

12] and lung tissue [46] and therefore, the results of this study 

ay be applicable to other tissues, as well. 

.2. Which model is the most appropriate? 

The investigations into the performance of KV, SLS, and KVFD 

heological models from both the time domain and frequency do- 

ain perspectives showed that the KVFD model performs well in 

oth direct fitting to experimental SR data in the time domain 

nd also direct fitting to experimental SWS dispersion data in the 

requency domain. Moreover, this model was successful in consis- 

ently predicting (modeling) the material behavior in one domain 

time or frequency) from independent measurements in the other 

omain. The KV and SLS models were shown to be incapable of 

escribing elementary time domain (SR) behavior of liver tissues. 

lso, although their SWS dispersion behavior in the frequency do- 

ain can reasonably match the SWS experimental data within lim- 

ted frequency ranges, those results do not map to a correspond- 

ng reasonable behavior in the time domain. Therefore, the KVFD 

odel is demonstrated to be the only model to comprehensively 

escribe liver tissues properties in both time and frequency do- 

ains. It is noted that the KVFD model reduces to a 2-parameter 

odel in practice since the parameter E usually takes a negligible 
0 
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alue in both time and frequency domain analysis of viscoelastic 

issues such as liver as shown in other studies [ 12 , 36 ], and reduces

o a spring-pot model as shown in Fig. 2 (d) . It is worth high-

ighting that the 2-parameter KVFD model is a power-law model 

n line with the frequent occurrence of power-law phenomena in 

ature [ 47 , 48 ]. Thus, our study indicates that the KVFD model best

escribes the material’s behavior with the fewest number of pa- 

ameters. 

Moreover, comparing the performances of the three rheologi- 

al models from the Akaike information criterion (AIC) [27] , which 

ims at selecting the best model based on the joint analysis of 

odel’s complexity (number of parameters) and model’s ability 

o capture experimental measurements well, the KVFD model per- 

orms better than the KV and SLS models. The detailed results of 

hese comparisons based on the AIC are presented in Appendix C . 

It is worth noting that based on assessments of common rhe- 

logical models in nonlinear regimes from computational simula- 

ions [49] , the fractional derivative models are suggested to de- 

cribe more diverse simulating conditions than the classical mod- 

ls. This is aligned with the conclusion made in this study based 

n the analysis of a range of experimental measurements of vis- 

oelastic liver tissues in or near the linear, small strain regime. 

urthermore, a recent comparative study of three nonlinear mod- 

ls of liver under strains up to 50% found that a model with an 

xponential strain energy term and a fractional derivative term 

as superior to others [50] . Interestingly, their fractional derivative 

xponent was found to be a = 0.2 to 0.25 depending on which 

rror norm was used. This compares closely with our results in 

ables 2 and 3 where the KVFD exponent is a = 0.2 and 0.254 for

he different tests. 

We now turn to a potential point of objection concerning the 

pring-pot model for soft tissues. With its fractional derivative, it 

ight seem abstract and not connected to simple physical mecha- 

isms. However, the derivation of the spring-pot model from mul- 

iple parallel elements in a Maxwell model is actually simple and 

traightforward. This arrangement of multiple parallel elements 

nd an optional single spring element is the generalized Maxwell- 

eichert model [51] and has longstanding history as a useful 

ulti-scale, multi-time constant model. Now let us assume the dis- 

ribution of time constants in the generalized Maxwell model is a 

ower-law distribution characterized by parameter b where b > 1 

 A strong rationale for introducing a power-law function is that the 

ower-law distribution is frequently found to describe multi-scale 

ystems in nature and biology [ 52 , 53 ]. Incorporating the power-law 

ssumption within the generalized Maxwell model, shown in detail 

n the Appendix D , yields precisely the spring-pot model, with the 

ssociated time and frequency domain behavior similar to the form 

hown in Table 1 . In particular, the stress relaxation will be of the 

ower-law form proportional to 1 
t b−1 

for b > 1 , and the complex 

odulus ˆ E (ω) will be a power-law proportional to ω 

b−1 for b > 1 

 26 , 54 ]. 

Thus, the concept of the spring-pot may seem abstract for mod- 

ling soft tissues, but it actually results simply from the realistic 
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cknowledgement that the components of soft tissues are multi- 

cale both in size and in time constants. 

Limitations of this work include the need for higher frequency 

hear wave data (above 1 kHz) and the measurement of other soft 

ascularized tissues. Furthermore, there is a need to better under- 

tand how diseases and pathologies affect the viscoelastic proper- 

ies. This study also has not explicitly considered nonlinear models 

f tissue behavior. These have shown promise in describing behav- 

ors seen in situations with larger imposed strains [ 49 , 50 , 55–58 ].

inally, the extension of these results to in vivo tissue with blood 

ow and pressure requires further study. In vivo measurements of 

hear wave phase velocity and dispersion are now possible [59] , 

owever direct comparison of in vivo to ex vivo or post-mortem 

tudies are limited. 

. Conclusion 

The KVFD model was shown to perform consistently well in fit- 

ing to stress relaxation experimental data in the time domain as 

ell as fitting to SWS dispersion in the frequency domain for ex- 

erimental data measured from four independent techniques. This 

odel was also successful in predicting the material behavior in 

ne domain (time or frequency) from independent measurements 

n the other domain. On the other hand, the KV and SLS models 

ere shown to be grossly incapable of describing time domain be- 

avior of liver tissues under simple stress relaxation conditions. 

his difference originates from the fact that the KVFD model in- 

ludes a spectrum of relaxation time constants from small to large, 

hich allows this model to capture the liver relaxation behavior 

ell, while the SLS and KV models offer only one single relaxation 

ime constant, which results in unreasonable fitting results. When 

xamining SWS dispersion behavior in the frequency domain, the 

V and SLS models could partially fit the SWS experimental mea- 

urements within a limited frequency range, however those results 

id not map to a corresponding reasonable behavior in the time 

omain. Moreover, it is noted that the KVFD model can be reduced 

o a 2-parameter model in practice in both domains (a spring-pot 
Fig. A.1. Harmonic strain amplitude sweep 

270 
odel). Therefore, the KVFD model is found to be the most accu- 

ate model to comprehensively describe the material properties in 

oth the time and frequency domains while also more efficiently 

sing the fewest number of parameters. 
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ppendix A. Amplitude sweep test for linear viscoelastic region 

LVER) 

Before performing the oscillatory frequency sweep shear test to 

haracterize bovine liver behavior at low frequencies, first it is cru- 

ial to find the suitable range of shear strain amplitude to assure 

ot exceeding the LVER of the liver tissues. Within the LVER, the 

tress applied on the sample does not alter its internal structures 

nd therefore, does not change its rheological properties, such as 

torage modulus. 

To this end, the oscillatory strain amplitude sweep test was 

one on ex vivo bovine liver samples using a rheometer (Discov- 

ry Series HR-2, TA Instrument Inc., New Castle, Delaware, USA) to 

nsure selecting a suitable strain amplitude as a critical parameter 

or the subsequent frequency sweep test. The amplitude sweep test 

as performed at a constant frequency of 5 Hz for a strain ampli- 

ude range of 0.1% up to 6% and the storage and loss moduli were 

eported as a function of strain %. Fig. A.1 shows an example of 

he amplitude sweep test results on a bovine liver sample indicat- 

ng the LVER. Experiments on different samples demonstrated that 

he strain level of 0.7% lies within the LVER and is a reasonable 

train amplitude to apply in the frequency sweep test. 
test results on a bovine liver sample. 
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Fig. B.1. (a) KV, (b) SLS, and (c) KVFD models fit to the liver SR test data for only 100 s (short time interval). 

Table B.1 

Rheological models’ fitting parameters obtained from fitting SR test data for 100 s (short time in- 

terval). Results are averaged over three samples’ measurements with the STD reported. 

SR Averaged Fitting Parameters (STD) Goodness of fit 

KV model E 1 = 528 . 9 Pa 

(83.6) 

η = 502 . 0 Pa . s 

(380.7) 

R 2 = 0 . 56 

SLS Model E 1 = 423 . 5 Pa 

(72.9) 

E 2 = 637 . 4 Pa 

(112.1) 

η = 4869 . 5 Pa . s 

(755.3) 

R 2 = 0 . 96 

KVFD Model E 0 = 

5 . 77 × 10 −4 Pa 

( 1 . 6 × 10 −6 ) 

a = 0 . 195 

(0.006) 

ξ = 1050 Pa . s a 

(165) 

R 2 = 0 . 99 
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Table C.1 

The Akaike information criterion for the three rheological models in capturing 

the experimental SWS measurements. 

Rheological Model: AIC 

KV model -24.4 

SLS Model -36.0 

KVFD Model -48.1 
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ppendix B. Effect of relaxation period on SR fitting results 

Fig. B.1 presents the results of SR fitting to three rheological 

odels for shorter time periods (100 sec.) than Fig. 10 (a), (b) and 

c) . Physically, this corresponds to eliminating slower (larger) char- 

cteristic time scales from the liver SR behavior. It is observed that 

he performance of the SLS model improved to some degree com- 

ared to Fig. 10 (b) , however it is still not a reasonable fit. The

VFD model works best in describing the material behavior due 

o the nature of the model including a spectrum of characteris- 

ic time constants. The fitting parameters are also consistent (vary- 

ng slightly) with the values reported for longer fitting periods in 

able B.1 . 

ppendix C. Rheological models from Akaike criterion 

tandpoint 

To further expand the assessment of the rheological models’ 

erformance in describing the experimental measurements in this 

tudy, the Akaike information criterion (AIC) is also utilized for 

ach of three models. Mathematically speaking, increasing the 

umber of parameters within models allows more flexibility in 

apturing a given set of data, however it results in increasing the 

omplexity of the model and the possibility of overfitting the data. 

he AIC is a measure of comparing models’ performance in pre- 

icting a given series of measured data, i.e. SWS in this study, 

ointly in terms of a model’s predictive power as well as the num- 

er of associated parameters each model employs [27] . Therefore, 

here is a trade-off between the model’s complexity and its ability 

o capture data. The AIC parameter is calculated from equation C.1, 

sing the least squares fitting approach. 

IC = N · Ln 

(
RSS 

N 

)
+ 2 · K (C.1) 

In this equation, N is the number of measurements, K is the 

umber of parameters within each model plus 1 (to account for 

he error), and RSS is the residual sum of squares comparing the 

odel predictions against measurements. Evaluating the AIC pa- 

ameter for each of the three rheological models in this study, i.e. 
271 
he KV, SLS, and KVFD models, the model with the lowest value 

f AIC is the model representing the best trade-off. Table C.1 sum- 

aries the results of AICs for the three models. It is noted that 

he KVFD model has the lowest AIC (negative because of the natu- 

al log of a small argument) and therefore, is the most appropriate 

odel based on this criterion, consistent with the results obtained 

rom approach A and B. 

ppendix D. Insight into the spring-pot model for tissues 

We simply assume that a real macroscopic block of tissues 

s comprised of multiple components over different scales, from 

mall to large and with a range of individual time constants. In 

his case, if each component contributes to the stress relaxation at 

heir respective time constant τn where 1 ≤ n ≤ N, then the sim- 

lest model for this looks like a parallel set of Maxwell elements 

s shown in Fig. D.1 . 

This arrangement of multiple parallel elements and an optional 

ingle spring element is the generalized Maxwell-Weichert model 

51] and has longstanding history as a useful multi-scale, multi- 

ime constant model. We can write the stress relaxation solution 

or N Maxwell elements simply as a Prony series [60] 

SR ( t ) = 

N ∑ 

n =1 

E n e 
−t 
τn (D.1) 

here E n are the relative stiffness of the components with charac- 

eristic relaxation time constant τn = 

ηn 
E n 

. Next, if we allow a con- 

inuous distribution of time constants τ , the summation becomes 

n integral and A (τ ) is traditionally called the relaxation spectrum 
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Fig. D.1. (a) Parallel Maxwell elements. (b) 2-element spring-pot model. 
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51] . Given a material’s A (τ ) , we can write: 

SR ( t ) = 

∞ 

∫ 
0 

A ( τ ) e −
t 
τ dτ (D.2) 

Now let us assume the relaxation spectrum is a power-law dis- 

ribution characterized by parameter b where b > 1 .: 

 ( τ ) = A 0 τ
−b ; 1 < b < 2 (D.3) 

A strong rationale for introducing this function is that the 

ower law distribution is frequently found to describe multi-scale 

ystems in nature and biology [ 52 , 53 ]. For example, Carstensen 

ound that a relaxation function of approximately 1/frequency pro- 

ides the best fit to ultrasound absorption in protein solutions (see 

is Fig. 8 in Carstensen and Schwan [52] ). 

Substituting equation (D.2) into equation (D.3) yields precisely 

he spring-pot, with the associated time and frequency domain 

ehavior similar to the form shown in Table 1 . In particular, as- 

uming a simple change of variable for the power-law parameter 

s b = a + 1 , the stress relaxation will be proportional to 1 /t a for

 > 0 and t > 0 , and the complex modulus ˆ E (ω) will be a

ower-law of the form proportional to ω 

a where a > 0 . Further 

etails of this result can be found in [ 26 , 54 ]. In summary, the 2-

arameter spring pot is a natural consequence of having a multi- 

cale distribution of relaxation mechanisms which appear to be 

resent in tissues. 
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