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Abstract: The free space solution to the wave equation in spherical coordinates is well known as a
separable product of functions. Re-examination of these functions, particularly the sums of spherical
Bessel and harmonic functions, reveals behaviors which can produce a range of useful beampatterns
from radially symmetric sources. These functions can be modified by several key parameters which
can be adjusted to produce a wide-ranging family of beampatterns, from the axicon Bessel beam to a
variety of unique axial and lateral forms. We demonstrate that several special properties of the simple
sum over integer orders of spherical Bessel functions, and then the sum of their product with spherical
harmonic functions specifying the free space solution, lead to a family of useful beampatterns and a
unique framework for designing them. Examples from a simulation of a pure tone 5 MHz ultrasound
configuration demonstrate strong central axis concentration, and the ability to modulate or localize
the axial intensity with simple adjustment of the integer orders and other key parameters related to
the weights and arguments of the spherical Bessel functions.

Keywords: apodization; beampattern; diffraction; focus; harmonics; radial symmetry; spherical
harmonics; ultrasound

1. Introduction

In the design of coherent imaging systems using optical or ultrasound excitation,
there has been a longstanding interest in the behavior of beampatterns. One active area of
interest is the field of localized waves or weakly diffracting beams [1]. These include the
Bessel beam [2,3], the X-wave [4], and the needle pulse [5]. Ultrasound imaging systems
with phased array transducers traditionally rely on focusing and apodization strategies
to achieve high spatial resolution in the transverse direction [6,7] and in this context a
key consideration is the beamwidth as a function of depth, along with the minimization
of sidelobes [8,9]. A useful concept in designing beampatterns is the Fourier transform
relation that applies to the field on a source plane and at some farfield or focal depth [10,11].
This, combined with related approximations, enables the specification and selection of
beams from practical systems [12].

In this paper, an alternative framework is examined for specifying radially symmetric
beampatterns, by using interpretations of the free-space separable solution to the Helmholtz
equation. In particular, the sum over integer orders of the spherical Bessel and harmonic
(SBH) product terms has unique properties that produce a number of useful implementa-
tions. First, localized central axis beams can be produced, with a variety of axial profiles
linked directly to the selection of the integer orders. Second, some other key parameters
related to the weights and arguments of the functions, can be specified to create a family
of beampatterns ranging from the classical Bessel beam produced by an optical axicon
of limited aperture [2,3] to a range of axial and transverse patterns. These beampatterns
can be adjusted within the framework of the sums of SBH terms and without necessary
recourse to traditional treatments of focusing and Fourier transform operations. Examples
are provided from theoretical treatments of a 5 MHz flat radially symmetric transducer.
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2. Theory
2.1. General Solution

Let us reconsider the classic separable solution for monochromatic waves in a spherical
coordinate system, initially assuming a source surface that is conically shaped with pre-
scribed boundary conditions radiating into the interior free space within a cone (Figure 1).
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Figure 1. Geometry for expansion of spherical waves within a cone of polar angle θs, and with the
surface of the cone being an active source capable of generating spatial distributions in the form of
spherical Bessel functions and sums of spherical Bessel functions. The azimuthal angle is ϕ, the radial
coordinate rs lies on the active source, and z represents the zenith direction.

In spherical coordinates, the free space Helmholtz equation is known to be separa-
ble [13–16] and can be written as:

A(r, θ, ϕ) =
∞

∑
n=0

`

∑
m=−`

(anm jn(kr) + bnmyn(kr))Ym
n (θ, ϕ). (1)

Here, jι(kr) and yι(kr) are the spherical Bessel functions, Ym
ι (θ, ϕ) are the spherical

harmonics [17], and anm and bnm are the amplitudes assigned to each of the functions. In the
summation limits, n represents the integer orders of the spherical Bessel functions and m
represents the finite number of azimuthal angle orders. Note that this form provides general
solutions, and requires boundary conditions to be specified in any specific case [18,19].

Now to simplify these, let us restrict our examinations to the solutions that are finite
at r = 0, are symmetric about ϕ, and are comprised of a limited sum of integer orders up to
a maximum of N:

A(r, θ) =
N

∑
n=0

an jn(kr)Y0
n(θ). (2)

To visualize the different terms, Figure 2 shows the first few spherical Bessel functions
of increasing order, and Figure 3 displays several low order spherical harmonic functions Y
as a function of θ.

Now, consistent with the classical treatments of Green’s functions and the Rayleigh-
Sommerfield integral theorems [20,21], we may reinterpret Equations (1) and (2) as a design
specification on boundary conditions. If a single spherical Bessel function jn(kr) can be
excited as a source function across the surface of the cone shown in Figure 1, in steady
state, the corresponding product of that function with Yn(θ) will be uniquely generated in
the interior free space region. Furthermore, the principle of superposition applies directly
as indicated in Equation (2), meaning that if we can simultaneously establish the sum of
spherical Bessel functions on the surface of the cone, the resulting field as a function of θ
will be composed of the summation over all orders of corresponding Yn. Here, we are not
talking about summation over frequency ω (or wavenumber k), but instead summation
over integer orders of spherical Bessel functions of the same frequency. Thus, a closer
examination of summations is warranted.
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and 3 (orange line). 
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Figure 3. First four orders of the spherical harmonic functions Y0
n (θ) as a function of θ (abscissa). The

zero order is flat and successive orders are increasingly higher order in cosine terms. These are also
related to the Legendre polynomials. When θ = π/2, at the surface of a flat piston transducer, the
values of Y0

n (π/2) reduce to simple oscillations around ±0.318 as a function of increasing n with a
period of 4n. The colors correspond to integer orders 0 (blue line), 1 (yellow line), 2 (green line), and 3
(orange line).

2.2. Special Properties of Sums of Spherical Bessel Functions

Because of the asymptotic limit of jn(x) being equal to [17], effectively the long tails
of any group of four successive orders of equal amplitude and phase will trend towards
zero. Meanwhile the early maximum or peak of each order n is progressively delayed from
the origin and decreases as

√
n. Therefore, the summation series has properties that, in the

context of signal processing, appear to be useful as an interpolation function for a sampled,
bandlimited signal. Specifically:

jn(x)→ sin
(

x− 1
2

nπ

)
/x for x → ∞ (3)

N

∑
n=1

jn(x) ∼=
{√

π/2√
x 0 < x ≤ N

0 x > N
(4)

N

∑
n=1

√
njn(x) ∼=

{√
π/2 0 < x ≤ N
0 x > N

(5)

N

∑
n=1

f (n)
(√

njn(x)
) ∼= {(√π/2

)
f (x) 0 < x ≤ N

0 x > N
(6)
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Thus, any arbitrary (well-behaved, bandlimited) sampled function can be recon-
structed approximately as the sum of spherical Bessel functions. The sum described by
Equation (5) is shown in Figure 4, resembling a band limited window function over the
range of 0 < x < 200.
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Figure 4. The sum of the first 200 spherical Bessel functions of argument x, weighted as in Equation (5),
from x = {1,250}. This illustrates a general property of the sums resembling a bandlimited interpolation
function within a range where x ≤ N.

Additionally, the issues of apodization and truncation of a source can be recast by the
apodization and termination of the series. This representation is similar to the Neumann
series of Bessel functions [22], albeit with simpler interpretation of the coefficients. An
example is shown in Figure 5. The advantages of using the spherical Bessel functions as
interpolation functions in this way is that each order is matched to corresponding spherical
harmonic functions, enabling the full description of a wave field in three-dimensional free
space as a precise analytical expression. Furthermore, in the case of the active area of a
transducer surface, each integer order or group of orders define a radial region on the
transducer and in the wave produced in free space. These properties will be illustrated in
the subsequent sections.
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apodization functions can be included into the framework of the sum of spherical Bessel functions.

2.3. Modifications via Imaginary Shift in Coordinates

Alonso et al. considered a modification to the classical solution of spherical harmonic
functions in terms of an offset consisting of a purely imaginary constant [23]. Including a
simple offset in the argument of Equation (1) is also a valid solution to the wave equation,
thus z→ z + iq is substituted in all expressions, where i is the imaginary unit index and
q is an arbitrary constant. This imaginary parameter can be shown to remap the angular
spectrum in a geometrical transformation around the unit circle defined by θ. Practically
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speaking, this parameter q is then used as a parameter which can significantly alter the
beampattern and its angular spectrum.

2.4. Other Simple Modifications and Properties

In addition to the use of the an in Equation (2) for apodization as shown in Figure 5,
another tactic for implementation at the transducer surface is to prescribe the an as a
modulation with respect to the integer orders n. This effectively changes the angular
spectrum and the spatial location of the peak region of the beampattern in free space. In
the context of Equation (1), we note that both the jn and the Y0

n(θ = π/2) have a natural
oscillation, with values repeating or approximately repeating with ascending n, every
n = 4 integer orders. Thus, a modulation function such as:

an = cos
[

2π

(
n

Nmod

)
+ φ

]
(7)

will influence the summation, and when Nmod = 4, this imposed modulation of integer
orders matches the natural modulation of the jn and Y0

n .

3. Methods

Calculations of the free space fields were performed using Mathematica (Version 13.0.1,
Wolfram Research, Champaign, IL, USA) and using a working precision of 20 or more
decimal places in all calculations.

In all the following examples, we specify conditions related to a 5 MHz medical
ultrasound system, with wavelength approximately 0.3 mm and with the summation of
spherical Bessel integer orders n up to 200. This upper limit krmax = 200 corresponds to an
active high amplitude transducer radius of approximately 10 mm, with a residual decay
beyond that radius. We also assume a flat transducer so that the cone angle of Figure 1
is set to π/2; this models the use of a conventional piston transducer, albeit with active
control of the amplitude and phase of the excitation across the transducer.

4. Results

For the simple summation of Equation (2) up to n = 200, we examine the cases referred
to in Equations (4) and (5); the unweighted sum (an = 1) and the square root weighted sum
(an = n1/2). These display a strong central axis amplitude with oscillations in the radial
direction as shown in Figure 6.
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Transverse cuts of these two cases at 8 mm axial range are shown in Figure 8. Despite
the difference in axial amplitudes (above), both of the transverse beampatterns are a close
fit to the Bessel function of zero order: J0[kx], thus resembling the classical Bessel beam
described by Durnin as implemented within the framework of the optical axicon [2,3].

Acoustics 2022, 4 FOR PEER REVIEW  7 
 

 

 

Figure 8. Transverse wave amplitude (arbitrary units) as a function of lateral distance from the cen-
ter axis for the two cases shown in Figure 7. These are measured at 8 mm range from the transducer 
and are closely approximated by a Bessel function of zero order. 

Next, we turn to variation in the q parameter. With all other factors held the same as 
in Figure 6 (top), the imaginary offset is added to the z (axial) coordinate, q = 1/2 and 1, 
respectively within the arguments of Equation (2). It should be noted that the addition of 
the imaginary q offset does change the amplitudes and phases of the spherical Bessel func-
tions at the active transducer, introducing an enhanced source strength near the origin, as 
shown in Figure 9. 

 
Figure 9. Beampatterns with the same parameters as Figure 6 (top) with the addition of the z offset 
by imaginary number q = 1/2 (top) and 1 (bottom). The q factor produces stronger source amplitudes 
at radii greater than 9 mm (beyond the scale shown), which contribute to the emerging pattern at 
axial range greater than 10 mm. 

Next, we examine some alternative modifications. The localization property of the 
summation is illustrated in Figure 10 (top), where only the sum from integer orders 150 
to 250 are activated. This translates into a localized area of axial strength from 7 to 12 mm 
from the transducer surface. An oscillatory term is added to the coefficients and shown in 
Figure 10 (bottom) using Equation (7) with Nmod = 2.5. This modulates the amplitudes of 
the integer orders within the sum, and thereby serves as a rough equivalent to changing 
the angle of incidence in conical optical axicon configurations. 

 

Figure 8. Transverse wave amplitude (arbitrary units) as a function of lateral distance from the center
axis for the two cases shown in Figure 7. These are measured at 8 mm range from the transducer and
are closely approximated by a Bessel function of zero order.

Next, we turn to variation in the q parameter. With all other factors held the same as
in Figure 6 (top), the imaginary offset is added to the z (axial) coordinate, q = 1/2 and 1,
respectively within the arguments of Equation (2). It should be noted that the addition
of the imaginary q offset does change the amplitudes and phases of the spherical Bessel
functions at the active transducer, introducing an enhanced source strength near the origin,
as shown in Figure 9.
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Figure 9. Beampatterns with the same parameters as Figure 6 (top) with the addition of the z offset by
imaginary number q = 1/2 (top) and 1 (bottom). The q factor produces stronger source amplitudes at
radii greater than 9 mm (beyond the scale shown), which contribute to the emerging pattern at axial
range greater than 10 mm.

Next, we examine some alternative modifications. The localization property of the
summation is illustrated in Figure 10 (top), where only the sum from integer orders 150 to
250 are activated. This translates into a localized area of axial strength from 7 to 12 mm
from the transducer surface. An oscillatory term is added to the coefficients and shown in
Figure 10 (bottom) using Equation (7) with Nmod = 2.5. This modulates the amplitudes of
the integer orders within the sum, and thereby serves as a rough equivalent to changing
the angle of incidence in conical optical axicon configurations.
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Figure 10. Beampatterns for 5 MHz ultrasound examples with transducer surface on the left, illustrat-
ing (top) the localization property of limiting the range of N, and (bottom) the modulation property
of oscillations of an. Note that the axial range in Figure 10 (bottom) is extended to 30 mm.

Finally, a single integer order of 199 is shown in Figure 11, including the offset parame-
ter of q = 1/2. We note an extended centralized beampattern and this has some resemblance
to Figure 1 of Cizmár and Dholakia [24] which demonstrates their annular source axicon.
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5. Discussion and Conclusions

The free space sums of SBH functions in Equation (2) are of particular interest along the
central axis (θ = 0) and in the case of a flat piston source, along the source plane (θ = π/2).
Along the central axis, the spherical harmonic functions Yo

n(0) increase approximately
proportional to

√
n with increasing n. Thus, if in Equation (2), we set the an = 1, the

resulting terms resemble Equation (5), and then the central axis amplitude is uniform out
to the limit of kz = Nmax, as demonstrated in Figure 6 (lower) and Figure 7 (lower). The
flat piston source corresponds to θ = π/2, and is of practical interest for the specification
of the source excitation. As mentioned previously, and as can be seen at the extreme edges
of Figure 3, the Yo

n(π/2) will oscillate between positive, zero, negative, and zero values,
repeatedly with a period of 4n. This modulates the sum of product terms and generally
increases the relative weights of the source for kr > Nmax beyond those expected from
the examples of the sum of unweighted jn. In addition, the imaginary offset q tends to
produce at the source plane a significantly stronger amplitude for the outer region of
kr > Nmax. Practically, this means that the active source area needs an extended outer
region and additional apodization functions may be included to restrict the active source
region. Furthermore, consideration of the angular spectrum [23] and the asymptotic forms
of the SBH solutions [25] indicate that fields similar to that shown in Figure 11 will have non-
negligible propagation at angles near θ = π/2, which would require an unreasonably large
source radius to approximate. Utilizing a source angle slightly less than π/2, effectively a
cone surface at small angle with the z axis, will help to mitigate this. We also note that the
spherical Bessel functions are related to simple Bessel functions of half-integer order [22],
thus Equations (1)–(6) could be rewritten in an alternative form using this substitution.

Limitations of this study are that only steady state monochromatic examples are
considered. Transient behavior with broad band imaging pulses remains to be studied,
and are left for future work. Additionally, practical effects of transducer element size and
spacing in phased arrays will have an effect on the resulting beampatterns. These will also
require further research with specific parameters.

Overall, the SBH framework presents a number of useful options for the generation
of radially symmetric beampatterns, by recognizing the special properties of the sums of
spherical Bessel functions and their product with spherical harmonic functions at different
angles. This framework recasts some of the traditional treatments of apodization, focus-
ing, and design specifications around the summation properties including interpolation,
localization, and modulation.
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