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Abstract
As elastography of the brain finds increasing clinical applications, fundamental questions remain
about baseline viscoelastic properties of the brain in vivo. Furthermore, the underlyingmechanisms of
how andwhy elastographicmeasures can change over time are still not well understood. To study
these issues, reverberant shear wave elastography using an optical coherence tomography scanner is
implemented on amousemodel, both under awake conditions and in a sleep state where there are
known changes in the glymphaticfluid flow system in the brain.We find that shearwave speed, a
measure of stiffness, changes by approximately 12%between the two states, sleep versus awake, in the
entire cortical brain imaging volume.Ourmicrochannel flowmodel of biphasic (fluid plus solid)
tissue provides a plausible rheologicalmodel based on the fractal branching vascular and perivascular
system, plus a second parallel system representing the finer scale glymphatic fluidmicrochannels. By
adjusting the glymphatic systemfluid volume proportional to the known sleep/wake changes, we are
able to approximately predict themeasured shear wave speeds and their changewith the state of the
glymphatic system. The advantages of thismodel are that itsmain parameters are derived from
anatomicalmeasures and are linked to othermajor derivations of branching fluid structures including
Murray’s Law. The implications for clinical studies are that elastography of the brain is strongly
influenced by the regulation or dysregulation of the vascular, perivascular, and glymphatic systems.

1. Introduction

Elastography of the brain is a relatively new and exciting technology that promises to provide sensitive
biomarkers related to the viscoelastic properties of the brain (Hiscox et al 2016, 2018, Bigot et al 2018, Gerischer
et al 2018,Munder et al 2018, Guo et al 2019,Murphy et al 2019, Arani et al 2021). At this early stage of study, we
know that there are changes in brain viscoelastic properties with age, injury, and disease, but the basic
understanding ofwhy these changes occur and how they are linked to the tightly regulated brain vascular,
perivascular, and glymphatic fluid systems, requires careful investigations.

We are now able to integrate recentmajor advances in our understanding of the intricate systems offluid
flow in the brain, their key role in health and the progression of disease, and their strong influence on
biomechanics and elastography biomarkers. Thefirst key fact is that the neurovascular unit (NVU) and
glymphatic system are strongly regulated in the healthy brain. Progressive dysregulation can occurwith aging
andAlzheimer’s disease. Secondly, a recent discovery is that there aremajor changes in theflowof extracellular
fluids throughout the glymphatic system,within the normal sleep/wake cycle (figure 1) and in aging and disease.
For example, flow increases during sleep or anesthetized states, which increases the rate and clearance of beta-
amyloid protein, a neurotoxin associatedwithAlzheimer’s disease (Xie et al 2013, Rasmussen et al 2022).
Impairedflowhas dire consequences for the brain over the long term.Our third conceptual point is that in
complex biomaterials like the brain, changes in the size or distribution of pores and fluid channels will create a
major change in stress–strain responses, which are readily assessed by elastography techniques. In other words,
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wehypothesize that as channel or pore size increase, hydraulic resistance decreases, (fluid canflowmore freely)
and, correspondingly, elastographymeasures of stiffness will decrease. This causal link has been supported in
theory (Parker 2014, 2017a) and in experiments in a number of tissues (Parker 2015, Parker et al 2016, Poul et al
2020), and in this study of animalmodels during sleep/wake cycles using optical coherence tomography (OCT)
elastography. These novel results are presented herein and the theoretical basis for interpreting the changes in
tissue stiffness, asmeasured by shearwave elastography, is themajor subject of this paper. Among themany
rheological frameworks formodeling the brain (Audette et al 2007, Klatt et al 2007, Budday et al 2017, Testu et al
2017, Comellas et al 2020), our approach has a number of advantages in that its parameters are tied to anatomical
measures, it is biphasic and can account for changes influid channels, and it is based on power laws. The power
law framework, related to fractal branching vascular and othermultiscale channels, has awell-established set of
interconnected parameters such as flow resistancewhich are also relevant to the overall biomechanical and
functional assessment of the brain. This paper is organized to provide an overview of the theoretical approach
employing themicrochannel flowmodel, then describing experimental results of sleep versus wake elastography
in an in vivomouseOCTprotocol.Model predictions aremade using reasonable parameters thatmatch the
observed changes in shear wave speeds (SWSs) in the cortex obtained in this study. Finally, the appendices
further detail the derivation and anatomical link of the key parameters, and their changewith dilation or
constriction.

2. Theory

2.1. Structure and function
The larger goal is to identify the key determinants of viscoelasticity in the brain, alongwithmajor cofactors,
trends, species, and regional variations. In this study our experimental results are comparedwith the
microchannel flowmodel, which captures the biphasic (fluid, solid)nature of the brain (Parker 2014, 2017a).
Briefly, themicrochannel flowmodel accounts for themovement offluidswithin channels in soft tissues,
forming a biphasic rheologicalmodel that can predict how shearwaves (and elastographymeasures)will change
asfluid channels dilate or constrict. Themodel also has some resemblance to a generalizedMaxwellmodel and
theKelvin–Voigt fractional derivativemodel, however ourmodel accounts explicitly for the distribution offluid
channels within the parenchymalmatrix. Figure 2 shows themajor components captured in themicrochannel
flowmodel, including the vascular, perivascular, and the interstitialmicrochannels. Each of these are highly
regulated in the healthy brainwith rigid constraints onfluid volumewithin the skull, and these factors are

Figure 1.Glymphatic activity and cerebrospinal fluid (CSF) egress in the nocturnalmouse during active phase (upper left, under
darker surroundings), and during sleep (upper right). The glymphatic system is active during deep sleep, when brain clearancemore
than doubles comparedwithwakefulness. This is due to an increase in extracellular volume fraction, which in rats is∼14%during
wakefulness but increases to 23% in a process dependent on the loss of noradrenergic signaling from the locus coeruleus (Xie
et al 2013). This could occur by amechanismwhereby perivascular space access is shut off during periods of high noradrenergic tonus,
but then opens up forfluid influx during the lownoradrenergic tonus of sleep. The rate of CSF egress from the subarachnoid space
shows an inverse relationshipwith glymphatic activity, thus increasing duringwakefulness and decreasing during sleep (Ma
et al 2019). Top row: the relationship between sleep and glymphatic activity. Bottom row: the critical importance of the extracellular
volume fraction on glymphaticflow in the active state (left) and during inactivity [non-REM (NREM) sleep, right]. Reproducedwith
permission fromRasmussen et al 2022. Copyright © 2022 theAmerican Physiological Society.
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necessary ingredients in a predictivemodel (Parker 2017a). Themicrochannel flowmodel is, to our knowledge,
themost succinct rheologicalmodel capable of accounting for all threefluid networks shown infigure 2
(vascular, perivascular, interstitial)with careful accounting for the relative proportions of thesewithin the fixed
volume of the skull, and the fractal nature of the vasculature (Parker 2017a). Refining the key parameters tofit
themeasured shearmoduli will be helpful to the basic science of elastography of the brain alongwith its
implications for clinical assessments.

2.2. Review ofmicrochannel flow theory of stress–strain in vascularized tissues
Themicrochannel flowmodel (Parker 2014) can be formulatedwith an elastic block of tissue, containing one
vessel of radius r and supported at the base and subjected to uniaxial loading. An example of uniaxial strain or
alternatively shear is shown infigures 3(a) and (b), respectively.

When thefluidwithin amicrovessel of length L and radius r is exposed to a pressure gradient due to applied
stress ,xs then under Poiseuille’s Law, a volumetric flow rateQwill result (Sutera 1993):

Figure 2. (a) Illustration of details within brain tissue. Arterioles and venules penetrate the tissue, each surrounded by perivascular
space (PVS). The blood-vessel wall forms the inner barrier of the PVS, note the tight junctions between cells. Astrocytic endfeet form
the outer barrier of the PVS, with looser gaps between cells allowing transport into the interstitium. The interstitium is crowdedwith
cells where bothfluid and solutesmove along a tortuous path in a restricted extracellular liquid volume that comprises approximately
20%of the total volume (see insert). Green arrows indicatefluid transport, by advection and diffusion. In the glymphatic hypothesis,
fluidmoves along the periarterial space into the interstitium and out along the perivenous space. Purple indicates interstitial solutes;
solutes exit the interstitial space through gaps in the astrocytic endfeet to the perivenous space, where they are cleared to primary
perivenous pathways or the CSF. (b)A cerebral penetrating artery and veinwith perivascular space. Fluid (green arrows)moves into
the brain along periarterial space, branching into arteriole PVS. Characteristic length for periarterial transport is the entire path from
penetrating artery to terminating arteriole (drawing not to scale). Fromperiarterial space, fluid enters the interstitium andmoves to
perivenous space. Reproduced fromRay andHeys 2019. CCBY 4.0.

Figure 3.Elastic element with a single vessel undergoing (a) uniaxial stress or (b) shear stress. The fluid-filledmicrochannel will
experience flow to the free surface (right) thus contributing to the relaxation response. Reproduced fromParker 2017b.© 2017
Institute of Physics and Engineering inMedicine. All rights reserved.
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whereC is a constant, and h is the viscosity of thefluid. Combining both the elastic and fluid outflow strains as
additive leads to thewell-knownMaxwellmodel of a series spring and dashpot, therefore the stress relaxation
(SR) curve is a simple exponential decay. If we apply a step strain andmeasure the stress relaxation, then
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where E is the Young’smodulus of the elastic block of tissue and the time constant t is:
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The inverse relationship of t to radius to the fourth power indicates that stress relaxation is sensitive to changes
in vessel radius. In appendix A this derivation ismodified for the case ofmany small vessels with a number
densityN(r) that is a power law function of radius, as illustrated infigure 4(b).

Accordingly, in amacroscopic block of tissuewe assume there are n multiplemicrochannels of unequal
radius rn and a range offlow ratesQn. Assuming each contributes to the overall stress relaxationwith an
individual time constant ,nt then the simplestmodel for this looks like a parallel set ofMaxwell elements shown
figure 4(c). This also resembles the generalizedMaxwell–Weichertmodel (Ferry 1970, Fung 1981). In the limit,
wemodel a continuous distribution of time constants ,t where A t( ) is the relaxation spectrum (Fung 1981).
Given amaterial’s A ,t( ) we then have:
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In some tissues wefind a power law distribution:

A A b; 1 2, 5b
0t t= < <-( ) ( )

which is naturally occurring inmany natural structures including normal and pathological circulatory systems
(West et al 1997, Risser et al 2007), andwhich is justified in appendix Abased on anatomicalmeasures.
Substituting equation (5) into equation (4) and solving yields the stress relaxation behavior:
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where G [ ] is theGamma function. The stress relaxation response produces a t1 b 1-/ decay for t>0 as
illustrated infigure 4(f). For values of 1<b<2, this tends to have a sharp initial drop and then a slow
asymptomatic decay and produces a straight line on log–log plots. In this case the frequency dependence of the
complexmodulus is given by an increasing power law:
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where a=b−1.
Itmay bemore realistic to place limits on the range of t for amaterial, where the longest and shortest time

constraints correspond directly to the smallest to largest vessels andmicrochannels, as illustrated infigures 4(a)–
(d). In this case, the integration of equation (4) has limits mint and maxt and

t A de , 8t
SR

min

max

òs t t=
t

t
t-( ) ( ) ( )

and assuming the power law formof equation (5), then
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where a t, tG[ ( )]/ is the incompleteGamma function (upper-tailed). This produces a four-parametermodel
since maxt and mint are vessel-specific parameters (determined from anatomy studies) in addition to a andA0.
The complexmodulus E w∣ ( )∣ for thematerial of equation (9) is derived fromLaplace transform relationships
and solved usingMathematica (version 13.1.0 for Linux x86,Wolfram, Champaign, IL, USA).With w
representing radial frequency, and I the imaginary unit index, wefind the complex solution to be:

E A I I a I a, 1 , 0 , 1 , 0 , 100 min maxb bw w wt wt= - - - - - -( ) ( )( [( ) ( ) ] [( ) ( ) ]) ( )
whereβ[] is the incomplete beta function (Abramowitz and Stegun 1964). Basically, this function approaches a
simple power law of equation (7), but only in between lower and higher frequencies defined by 1 maxt/ and
1 ,mint/ and assuming these arewidely separated in amultiscale structure.
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In summary, if a tissue has a power law distribution offluid vessels and channels, and a relaxation spectrum
A A ,b

0t t= -( ) then the stress relaxation response behavior is A t A t .SR
b a

0
1

0s @ =- / The tissue stress–strain
transfer function, or complexmodulus, in the frequency domain resembles E A ,a

0w w@∣ ( )∣ and the shear wave
phase velocity c .ph

a 2w wµ( ) Wehave found that 0<a<(1/4) formany normal soft vascularized tissues
(Zhang et al 2007, Parker 2014,Ormachea et al 2016).

2.3. Specific components of the brainmicrochannelflowmodel
As shown infigure 2, a fullmodel of the brain fluid channels would include at least the followingfive
components: the arterial, periarterial, venous, perivenous, and interstitial (glymphatic) channels within the
brain parenchyma. These aremodeled herein as two interconnected but separate fractal systems: the larger
comprised of the parallel vascular and perivascular branching structures over a scale of approximately 1 mm to 4
microns in radius, and then the smaller fractal structure within the tortuous interstitial space, covering a scale
from about 1micron (gaps in the astrocytic endfeet locations) to approximately3 angstroms (AQP4 pore size), as

Figure 4.The conceptual framework of themicrochannel flowmodel, with inter-relationships between key elements and their
behaviors. (a) Fractal branching vasculature from a vascular cast, imagedwithmicro-CT (Parker 2022). This fractal branching
structure ranges from a larger set of vessels to a smallest set. In the following figures, circle L and S refer to regions that are particularly
influenced by the largest and smallestfluid channels within the ensemble. (b)Power law relationship between element diameter and
quantity in pulmonary arteries, extracted fromdata inHuang et al (1996) and veins. Power lawfit d=−2.7±0.1. (c)The
microchannel flowmodel of perfused soft tissue beginswith parallel elements (Parker 2014). Each dashpot corresponds to a fluid-
filled vessel or channel, with the smallestmicrochannel yielding the longest time constant, via Poiseuille’s Law. In the continuous
limit, the aggregate sumover the fractal size distribution yields themicrochannelflowmodel. (d)The relaxation spectrum is formed
by the power law distribution of vessels and the time constants extend from less than one second (due to larger vessels) to very long
(due to small capillaries and extracellular fluid channels). (e) In simplest form, the combination of these elements reduces to a simple
rheologicalmodel: the spring-potmodel (a simplifiedKVFDmodel)which can be described succinctly through a fractional derivative
model. The fractional order is explicitly linked to the power law distribution of the fluid channels shown in (b). (f) Stress relaxation
results from two liver samples. Vertical axis:measured stress. Horizontal axis: time in seconds after stress compression, on a log–log
scale. The behavior is consistent with a power law relaxation. Reprinted fromLiu andBilston (2000). (g)Complexmodulus versus
frequency for a nominally soft vascularized and unconfined tissue over a range of frequencies from 2π·15 to 2π·1500 Hz, plotted on a
log–log scale. Themodel indicates an increase (or decrease) in the complexmodulus and SWSwhen the branching fluid channels are
constricted or dilated, respectively.
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indicated infigure 2. Both systems are tightly regulated in the brain in normal individuals; theNVU regional
control is assessed in functionalmagnetic resonance imaging scans, angiography, and other tests, while the
glymphatic regulation under sleep/wake cycles is amore recent discovery and themain focus of thismodel. The
vasculature and perivasculature are naturally described as fractal systems (Risser et al 2007, Parker 2017a),
however the interstitial/glymphatic networks require additional justification. First, followingMurray’s law of
fluid transport, a greatmany biological systems employ a scale invariant, power law, or fractal organization as an
optimumconfiguration (Sherman 1981,Hughes 2015). Secondly, in optical studies of other organs, power law
behaviors are seen down to a scale on the order of 10 nanometers (Schmitt andKumar 1996). Thirdly, the
multiscale organization of the interstitial space is suggestive of a power lawmodel (Nicholson 2022).We
therefore assume a two compartment blend of themicrochannel flowmodel of equation (9): a larger scale
version representing the vascular and perivascular branching structures and a smaller scale version representing
the interstitial spaces:
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whereA1 represents the vascular and perivascular fractal branching structures andA2 the smaller scale
interstitial/glymphatic structures. The time constants will be set by the largest and smallest channels expected
within each of these. The parameters are conditioned by anatomicalmeasures and are discussed inmore detail in
the appendix A, although the parameters formouse and humanbrain regions require refinement. The complex
modulus as a function of frequencywill then be given by the sumof two corresponding groups of beta functions
given by equation (10), and the SWS as a function of frequency (the phase velocity and dispersion) can be
calculated from this quantity. As a practicalmatter, the pores and channels in the glymphatic system are very
small, extending towell below 1micron. Correspondingly, the time constants for the glymphatic system are
proportionally long, and so the influence of these long time constants at typical elastography frequencies
(roughly 40–100 Hz in adult humanmagnetic resonance elastography) approaches an asymptotic limit. Thus, in
elastography, the glymphatic compartment term approximates an additive constant in equation (10) of

A a1 a
min 2 2

2t( )( ) for a 02 > and for frequencies1 .mint Consequently, our simplifiedmodel for the complex
modulus in the frequency domain for the brain, accounting for both the neurovascular and the glymphatic
systems,may be expressed as:

E A I I a I a A a, 1 , 0 , 1 , 0 1 12a
1 min max 2 min 2

2b bw w wt wt t= - - - - - - +( ) ( )( [( ) ( ) ] [( ) ( ) ]) ( )( ) ( )

for a>0 and  1 .minw t Dilation or constriction of either of the two compartments can be treated simply
with scale factors shifting both themagnitude and the time constants, as described in appendix B.

3.Methods

3.1. Animal preparation
Fivewild-typemice (C57BL/6,mean 9.21±0.13months of age, 3 female/2male)were scannedwithOCT
elastography in both awake and anesthetized (mimicking sleep) states.Micewere habituated to the scanning
apparatus and prior to scanning, cranial window surgeries were performed inwhich a 5 mmdiameter circular
region of center skull was replacedwith a glass window. The duramater was left intact, and 1.1% agarose gel was
used to adhere the glass window to the brain. A rectangular head plate andmounting stationwas used to secure
themouse head and body during both awake and anesthetized states. After the cranial window surgery, the
mousewas allotted at least 30 min towake before scanning. Upon completion of the awake scan, themouse was
injectedwith ketamine–xylazine and allotted at least 15 min before scanning the sleep scan.Mice experiments
were performed under protocols approved by theUniversity of Rochester Committee onAnimal Resources.
Figure 5 shows the experimental setupwith respect to themouse.

3.2.Optical coherence tomography
A customphase-sensitiveOCT andmechanical piezo-electric systemwas used to scan themice and perform
reverberant shear wave (RSW) elastography. TheOCT system source is a swept-source laser (HSL-2100-HW,
Santec, Aichi, Japan)with a center wavelength of 1310 nmand a bandwidth of 140 nm. The lateral resolution is
approximately 20μmand the axial resolution is approximately 6μm in air. Thefield of view for these
experiments was 5×5 mm. TheOCT system is controlled using LabVIEW (version 14,National Instruments,
Austin, Texas, USA).
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3.3. Reverberant shearwave elastography
RSWelastography is implementedwith amechanical excitation system that operates in conjunctionwith the
OCT scanning system. Themain piezo-electric controlled component is a custom10 mmdiameter 3D-printed
ringwith 8 concentric points of contact that generatesmultiple shear waves inside the brain region of interest
(ROI). The rings’ tips are in physical contact with the agarose gel that supports the cranial windowbut are not in
physical contact with the brain. The function generator used for the piezo-electric actuatorwas operated at a
frequency of 2 kHz. TheMBmode acquisition approach acquires 4Ddata (3D space and time) in a synchronized
fashion, with 100A-lines by 100 frames by 100M-modeswith an axial depth of 2000 points. For each individual
point in time inwhich a fully developed 3DRSWpattern is present, 2D local spatial autocorrelations (in x–y
plane) are performed inwindow sizes of 1×1 mmwithwindow intervals of 0.5×0.5 mmalong each point in
depth. From this, a 3Dmap of local wavenumbers is obtained, which can then be converted to local SWS.
Subsequently, the estimated 3D elastograms from each timepoint in the acquired data are averaged together to
generate thefinal elastogram.More details on theOCT andmechanical excitation system can be found in
previous studies usingOCT elastography to evaluate corneas (Zvietcovich et al 2019, Ge et al 2022).

3.4. Statistical analysis
From the 3D elastograms, homogeneous ROIs are selected to obtainmean SWS results. In the awake scans,
mouse ROIs included are the brain parenchyma (BP) and the perivascular (PV) regions, where the boundary is
distinct. In the sleep scans, the boundary between BP andPV can be less distinct, and pre-calculations indicated
therewere no statistical differences between the two regions (using a t-test), and so a single sleep SWS is reported
for the entire homogeneous ROI.With thesemultiple groups ofmice scan types, a one-wayANOVA test is
performedwith a subsequent Bonferroni-correctedmultiple comparisons test. Statistical significances are
assigned as follows: no significance (NS) for p>0.05, * for p<0.05, ** for p<0.01, *** for p<0.001, and
**** for p<0.0001.

4. Results

Application of 2 kHz shearwaves to the craniumwithmultiple contact points creates a randomized pattern of
shear waves that we classify as a RSW field, with a characteristic ‘boiling’ pattern shown infigures 6(b) and (e).
Estimators then assess the local value of SWS (Parker et al 2017,Ormachea and Parker 2021)which are displayed
in colors within the 3D scanned volume as shown infigure 6. In the cranial window,major vessels can be
resolved and the proximal region surrounding themmay appear softer than themore distal parenchyma, see
figure 6(c). Repeatably, the brain in the sleep state (mean of 2.17±0.05 m s−1) is softer than in the awake state
(mean of 2.46±0.04m s−1 in brain parenchyma), as indicated infigures 6(f) and 7. SWS in the awake state for
the cortical region drops nearly 12% in the sleep state. The SWSof the perivascular region in the awake state
(mean 2.16±0.05 m s−1 in perivascular region)was statistically similar to the SWS of the sleep state (mean of
2.17±0.05 m s−1).

Using equation (12), a correspondingmodel of the complexmodulus was generated and is plotted infigure 8
on a log–log scale over a range of shear wave frequencies from1 to 3 kHz. The dashed lines indicate the level of

Figure 5.Experimental setupwithmouse scans (not to scale). The top right corner depicts the dimensions of the cranial window
(blue)with respect to the custom ring (black) and region of interest analyzed (red).
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complexmodulus expected given themeasurements shown infigures 6 and 7 for both awake and sleep states at
2 kHz. Themodelfits for both the awake and sleep states demonstrate amonotonic increase throughout the
frequency range, indicating dispersion associatedwith viscoelastic losses, and tends toflatten near the upper

Figure 6.OCEofmouse brain in vivo. (a) 3DB-mode scan in awake state. (b) Sample transverse plane (at z=0.57 mm) ofmeasured
2 kHz shear wave pattern. (c)Reconstructed 3D elastogram showing regional stiffness variation between perivascular regions
(y>2 mm) and surrounding brain parenchyma (y<2 mm). (d) 3DB-mode scan in anesthetized state (with ketamine–xylazine). (e)
Sample transverse frame (at z=0.57 mm) ofmeasured 2 kHz shear wave pattern. (f)Reconstructed 3D elastogram showing stiffness
homogenization after anesthesia with KX to simulate sleep state.We hypothesize that this softening is directly related to the change in
glymphatic systemmorphology andCSF egress, as depicted infigures 1 and 2. Elastogram shear wave speed values are reported in
meters/seconds asmean±standard deviation in 3DROI. Units of color bars in (a) and (d) are in arbitrary grayscale values; units of
color bars in (c) and (f) are inm s−1.

Figure 7.Measured shear wave speeds (SWS) in the cortical brain at 2 kHz for groups of wild-typemice in sleep and awake conditions.
The 3D regions are denoted in figure 6 andBP=the brain parenchyma or cortex, PV=perivascular region surrounding a resolved
vessel.Wefind a statistically significant drop in shear wave speed of approximately 12% from awake to sleep, hypothesized to be
influenced by changes in the glymphatic system.
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range of frequencies (3 kHz) as this extends beyond the fastest time constants in themodel. In reality, other loss
mechanisms not included in themodel, including viscous terms in the parenchymal constituents and scattering
of the shear waves, could become significant at higher frequencies and thereby continue the dispersion.
Accounting for additional lossmechanisms remains for future studies. Table 1 provides the estimated values
employed in themodel of equation (12) andfigure 8, andwe note that no attempt has beenmade to derive a
maximum likelihood estimate of themodel parameters; that remains for future research.

5.Discussion

Wehavemeasured subtle sleep/wake changes in the stiffness of the cortical region of themouse brain using
OCTwith RSWfield elastography. The simplest rheologicalmodel of this is the biphasicmodel offluid in a
cellular parenchyma, themicrochannel flowmodel which is compartmentalized in equation (11) into theNUV
and the glymphatic or extracellular system. Itmay appear atfirst glance that this equation requires the precise
assessment of eight unknown parameters, A a, , ,max mint t[ ] for each of the neurovascular and glymphatic

Figure 8.Theoretical values of complexmodulus (vertical axis)magnitude versus shear wave frequency (horizontal axis). Dotted lines
represent the approximate bounds ofmeasured values at 2 kHz, based on the results offigure 7. Solid lines represent themodel results
with awake (top curve blue) and sleep (lower curve, yellow).A1 for the vascular system is taken as 0.38 Pa, power law exponent a is
0.15. For the glymphatic compartment,A2 is higher thanA1 (2×higher density offluid channels) and a is 0.05, corresponding to a
higher branching exponent of b than the vascular system, approaching b=2.95 and close toMurray’s Lawwhere bwould approach 3.
The dilation (lower curve) is a factor of 1.28 increase in radius throughout the glymphatic fluid channels, corresponding to an overall
increase in glymphaticfluid percent volume (23%/14%attributed to increases in radius squared across the entire range of
microchannels in the glymphatic system) depicted in figure 1 during sleep cycles as comparedwith awake cycles.

Table 1.Baseline parameters used in themicrochannel flowmodel of the brain incorporating the terms in equation (12) and their
constituent elements.

Parameter Value Units Comments

E0 1 kPa unitary, also very soft tissue

b a, ( ) 1.05–1.25, (0.05–0.25) dimensionless power power law from anatomy

A1 0.38 Pa·sa related toN(r) of vasculature and perivasculature
A2 0.76 Pa·sa related toN(r) of glymphatic system

1mint 0.0005 s related to largest radius or free fluid interface

1maxt 23 s set by capillary size

2mint 190 s set by glymphatic space openings

2maxt 108 s set by AQP4 pore radius, and assumed to approach infinity in

equations (11), (12)
c 1.28 ratio dilation of glymphatic system

h 1.5×10−3 Pa·s plasma and extracellular fluid viscosity
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compartments. However, this is reduced by recognizing the asymptotic formof the glymphatic system’s
contribution for typical elastography frequencies in equation (12). Furthermore, as detailed in appendix A, the
parameters a, ,maxt and mint are bounded byMurray’s law and continuity arguments and can be determined by
anatomical imaging studies that quantify themultiscale distribution of vessels and fluid channels within the
brain. These require painstaking efforts with high resolution 3D imaging systems, andmore comprehensive
studies and results are needed to refine these parameters in normal and disease conditions.

It can be noted that themicrochannel flowmodel for the brain components has the advantages of both a
simplicity and a framework that relates immediately to the extensive literature on the properties of fractal
branching structures. In particular, there are inter-related power law exponents for a number of physiological
variables includingflow,flow resistance, pressure, fluid volume, and others that can be calculated usingmany of
the anatomical parameters discussed in ourmodel (Kassab 2006, Kamiya andTakahashi 2007,Mut et al 2014,
Razavi et al 2018). Themodel thereby provides a close interconnection between elastography and the
hemodynamics and glymphatic flow in the brain. For completion, it should be noted that there are other
classicalmodels that could be applied to the rheology of the glymphatic system. These include the poroelastic
models based onBiot’s approach (Biot 1941, 1962, Konofagou et al 2001). Furthermore, a range of composite
materialmodels has been formulated for determining the effectivemodulus of amaterial comprised of two or
several components, including the strain energy analysis of Christensen (1969). Compositematerial properties
are described and compared in detail in Lakes (1999), includingVoigt andReuss bounds on the properties of the
compositemodels. In our case, using theChristensenmodel for nearly incompressible tissue (see equations (1),
(2) inOrmachea and Parker (2022))with the shearmodulus offluid areas set to zero, we can estimate a sleep/
wake change in the composite glymphatic tissuewhere volume percentV offluid changes from23% to 14%as
shown infigure 1. The result is a predicted increase in shearmodulus of 24%, higher than the experimental
change of 12% shown infigure 7. Let us note that the glymphatic system is only one component of the brain, so
further researchwill be required to elucidate the competitive advantages of different approaches to an accurate
rheologicalmodel.

Some of the limitations of this study include the limited number ofmice studied, and the need forwider
range of frequencies used for shear wave excitation. Another important limitation of themodel itself, alongwith
the need formore precision in key parameters and exponents, is that themodelmay be oversimplified in a
number of respects. For example, a single value for viscosity has been used, however the apparent viscosity of
plasma is thought to be a function of vessel diameter in themicron range (Kamiya andTakahashi 2007). Another
example is the length to radius relationship of vessels, which is likely to vary between smaller and larger fluid
channels, and alsomay vary by regionwithin the cortical structures (Cassot et al 2006). Also, themodel does not
explicitly consider anisotropic alignment of structures and nonlinear behavior. In these cases, further
refinements can bemade but at the expense of additional complexity. For now, themodel presented
incorporates single values of parameters over these possible variations, utilizing estimates from tables 1 andA1.

Another limitation of this study is the use of ketamine–xylazine anesthesia to induce sleep. This particular
protocol is known to produce changes in the glymphatic system commensurate with sleep (Rasmussen et al
2022). However, as shownbyTurner et al (2020), natural REMand non-REM sleep states inmice demonstrate
major changes in cerebral blood volume, and increased arterial diameters alongwith increased neuronal
activation. In our case, the contact with piezo-electric shear wave actuatorsmakes natural sleep difficult. These
conditions remain for further study in terms of their effects on elastographymeasures and themicrochannel
flowmodel.

We also note that rapid 10% changes in the shearmodulus in themouse thalamus regionwere reported by
Patz et al (2019), during activation by sensory stimulation. The underlyingmechanism of these changes were
thought to be related to several effects including the blood oxygenation changes during stimulation and calcium
ion transport. Some calculations pertinent to change in the underlying tissue properties, captured in the
parenchymal E0, have been considered previously in Parker (2017a), alongwith changes in the vascular and
perivascular structures in a strictly confined space. All these effects are potentially able to alter the SWS in
elastographymeasurements. It remains to be seen if a combination of these is present and influential in human
brain elastography, however themicrochannel flowmodel canmodel these individually or in combination.

6. Conclusion

The sleep/wake cycle of the brain is found to influence the elastographymeasure of SWS in themouse brain.
Specifically, in the cortical brain parenchyma andwith RSWs at 2 kHz, wefind a softening of the brain by an
approximately 12%drop in SWSduring anesthesia-induced sleep as comparedwith awake status. This can be
plausibly accounted for by employing themicrochannel flowmodel alongwith recently discovered changes in
the glymphatic extracellularfluid channels during the sleep/wake cycle. These results suggest that the fluid
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systems of the brain including the vascular, perivascular, and glymphatic systems, play amajor role in setting the
viscoelastic properties of regions of the brain. The implications for clinicalmedicine are that regulation and
dysregulation of the neurovascular system and the glymphatic systemwill influence the parametersmeasured
during elastography scans, which are increasingly available inmagnetic resonance, ultrasound, and optical
scanning systems. In humans, these elastographymeasures are typically conductedwith shear wave frequencies
closer to the 50–100 Hz band, and the trends shown infigure 8 imply that proportional changes in SWS
measured at 2 kHzwill also be present at lower frequencies.More research is required to refine the parameters
required for accuratemodeling, and for quantifying the effect of other cofactors whichmay include changes in
the parenchymal constituents and abnormal variations in vascular and cerebral spinal fluid pressures.With
improvement ofmodels and experimental procedures, the stiffness changes observed here between sleep and
awake states can be applied to basic neuroscience questions regarding sleep/wake biomechanics in bothmice
and humans. The link between elastographymeasurements and the regulation (or dysregulation) of the vascular
and glymphatic compartments creates a uniquemeans to noninvasively assess these in clinical studies.
Furthermore, with advances inMR elastography, some important clinical problems in both diagnostics and
prognostics can be addressed bymeasuring these values, for example differentiating normal aging from
pathological diseases such as Alzheimer’s disease, or surveying the effects of therapy.
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AppendixA. The relaxation spectrumbased on anatomicalmeasures

Akey concept in themicrochannel flowmodel is the causal relationship between the fractal branching
vasculature andfluid channels, and the relaxation spectrum A t( ) that characterizes the rheological response. In
this appendix A, we derive an explicit dependence based onmeasures available from anatomical studies.We
beginwith an applied force F on an elastic element producing a uniaxial stress xs withN cylindrical fluid
channels of radius r open to a free surface shown infigure A1. Following the derivations in section 2 and applying
Poiseuille’s law, each channel has an outputflowQ of approximately Q r L8n x n n

4s p h@ / where r is the radius of
themicrovessel, h is the viscosity of the fluid, Ln is the length of the vessel segment, and Ln<L0, the length of the
elastic element.

The loss offluid volume during an incremental stress relaxation test is approximatelyN ·Q and outflowwill
diminish the height of the block under compression. Assuming negligible change in cross sectionA, the volume
change from the loss offluid from the samplemust be accounted for by a decrease in the x-dimension, or strain
.e Thus,

d

dt

N Q Nr

LVol 8 Vol
13x x
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h

= =
· ( )

or
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whereVol is the volume of the cube infigure A1, and this stress–strain relationship resembles the simple dashpot
where simple viscosity is replaced by the combination of factors in equation (14). By adding the elastic and fluid
outflow strains we obtain the classicalMaxwellmodel comprised of a series spring and dashpot, therefore the
stress relaxation (SR) curve is a simple exponential decay. If r U t ,0e e=( ) ( ) whereU(t) is the unit step function,
then

t E te for 0, 15SR
t

0 s e= t-( ) ( )

where the time constant t is:
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We rewrite the time constant t as:
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where in a fractal branching network L andN are power law functions of r. Specifically, L r r( )/ represents the
ratio of length to radius of vessels and N r Vol( )/ is the number density of vessels as a function of radius, and
these are power laws that can be determined from anatomical studies. The tabulated data ofHuang et al (1996)
and several others are listed in table A1.

Using this data as a guideline for the brain parameters, we assume that:

N r N

rVol
, 180

2.5
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( ) ( )

ormore generally,

N r N

rVol
, 19

d
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( ) ( )

where d is the power law exponent from anatomical studies.
One additional adjustmentmust bemade to N r Vol,( )/ however, in the stress relaxation configuration of

figure A1. FlowQ can only be output at the free surface, and for small vessels andmicrochannels, only a fraction
f<1 of thesewill be intersectingwith a free surface. Considering uniform distribution over the volume, the
probability of a randomly positioned cylinder intersecting a free outer surface scales with length, f L L ,max@ ( )/

where Lmax is the largest vessel in the ensemble. Thus, collecting all anatomical power laws in equation (17), we
have
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when d is taken at 2.5. This sets the relationship between time constants t and vessel radii rwithin the ensemble,
and replaces the earlier consideration of r−4 based on a single element and simply applying Poiseuille’s Law
(Parker 2014). To define the relaxation spectrum A t( )we proceed in a similarmanner.We postulate that the
relaxation spectrum is defined by the arrangement and number density of channels as shown infigures 4(a)–(d)
multiplied by the cross-sectional area offluid channels incident on the free surface offigure A1. Thus, wewrite:

A A r r N r
r N

r

N

r
, 21

d d
2

2
0 0

2
t µ µ µ µ

-
( ) ( ) ( · ( )) ( )

Figure A1.An elastic solidwithmultiple fluid-filled vessels subjected to uniaxial stress. This biphasicmodel has characteristic time
constants dependent on the number and radii of the vessels.
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and again applying the transformation rule:
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With reference to table A1 again, and assuming d=2.5, then
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or b=1.33, a=0.33. This power law relaxation function sets E 0.3w w@( ) ∣ ∣ and C 0.15w w@( ) ∣ ∣ from the
dispersion relations, commensurate with frequency-dependent parametersmeasured in soft tissues (Zhang et al
2007, Parker et al 2019).

Finally, as a first order approximation, we assume the following parameters for themodel of the brain: E=1
kPa (soft tissue range for the ‘elastic’ parenchyma), blood and extracellularfluid h=1.5×10−3 Pa-s, and
power laws shown infigures 4(b) andA2 extracted from the painstaking study of pulmonary vasculature of
(Huang et al 1996), wherewe assume that Vol of thewhole lungwas 3 l or 3×106mm3. Inserting these
particular values into the derivation of t produces an estimate of t=0.006/r1.5 in units of seconds and r
measured inmm. Thus, in ourmodel of the brain, vessels of radius 1 mmwould contribute to the relaxation
spectrumA(r) in the range of 0.006 s, or rather quickly on the scale of typical stress relaxation experiments. On
the other hand, capillaries approximately 4microns in radius would contribute to the relaxation spectrum in the
range of 24 s, and the AQP4 pores at 3 nmwould contribute in the range of over 108 s. The latter effect is
experienced in stress relaxation experiments as an essentially constant baseline over shortmeasurement periods,
similar to an elastic response. Thus, even the smallest scale ofmicrochannels has an influence on the overall
stiffness of tissues and is subject to the changes fromdilation/constrictionmechanisms as indicated in
equations (26)–(32).

Appendix B.Mapping changes from r to t to A t( ) to tSRs ( )under dilation or constriction
of channels in the unconfined space

Given the framework of equations (4)–(10), we derive the new relaxation spectrum A2 2t( ) if all the vessel radii
are increased or decreased by a factor of r r2 c= where 1c > represents dilation and 1c < constriction. To
derive the altered relaxation spectrum functionwe employ the transformation rule of distributions
(Papoulis 1987). Given amonotonic distribution A r( ) and a transformation C r ,2

1.5 1.5t c t c= =( )/ / then the
transformed density function A2 2t( ) is given by:

Figure A2.Power law relationship between element diameter and length in pulmonary arteries. Power law fit d=0.7±0.07. Data
are extracted from tabulations reported inHuang et al (1996).
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and this relationship conserves the total area under the relaxation spectrum:
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Finally, we examine the simple case of dilation (or constriction)within an unconfined tissue such that the
extra blood volume associatedwith enlarged blood vessels is simply added to the organ volume. Although the
skull presents afixed outer boundary and therefore theremust be some reallocation betweenfluid
compartments, themost direct rheological consequence of dilation is examined below.

Wefirst assume a baseline power law distribution of vessels between rmin and rmax consistent with the stress
relaxation spectrum shown infigure 4(d):
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andwhere the resulting stress relaxation function is given by equation (9). Next, consider that all vessel radii are
altered proportionally by ,c where 1c = represents the baseline case and after dilation or constriction:
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Again, applying the transformation rule, the new stress relaxation spectrum is defined as A2 2t( )where
C r C r 1 ,2 2

1.5 1.5 1.5t c c t= = =( ) ( ) ( ) so d d 1 ,2
1.5t t c= ( ) and applying equations (25) and (26)wefind:
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where 2max
t and 2min

t are given by equation (28). Thus, equations (28) and (31)provide the transformation of
elastic properties as a function of vascular changes proportional to ,c in an unconfined space. Inmany cases, the
leading termof 1 a1.5c/ is the dominant factor, showing a strong effect where small amounts of dilation create a
softening of the tissue. This termdirectly affects the complexmodulus, where after dilation of only the
glymphatic system, equation (12) becomes:

E A I I a I a A a, 1 , 0 , 1 , 0 1

32

a a
1 min max 2 min

1.5
2

2b bw w wt wt t c= - - - - - - +( ) ( )( [( ) ( ) ] [( ) ( ) ]) ( ( ))( )
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andwhere the t time constants have beenmodified by equation (28). Conversely, small amounts of constriction
will generate a hardening of the tissue, as demonstrated in Parker et al (2016).

TableA1.Anatomical power laws.N(r)=number density, L(r)=vessel length as a function of r.

Parameter Power law exponent Tissue References

N(r) −2.7 pulmonary Huang et al (1996)
N(r) −2.5 brain arterial Mut et al (2014)
N(r) −1.3 cortex terminal arterial Cassot et al (2006)
N(r) −3.0 Murray’s Law Sherman (1981)
L(r) +0.7 pulmonary Huang et al (1996)
L(r) +1.3 cortex terminal arterial Cassot et al (2006)
L(r) +0.75 to+1.2 fractal tree structures Hughes (2015)

Takahashi (2014)
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As an example, figure 4(g) shows a nominal case where the vessels changewith 20%dilation 1.2c =( ) and
then 20%constriction 0.8 ,c =( ) and using baseline parameters found in table 1 of Parker (2017a). Thesemodel
parameters are representative of other soft vascularized tissues, and a 20%vasodilation is consistent with cortical
laserDoppler flowmetry during sensory stimulation (Malonek et al 1997).
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