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Abstract

As elastography of the brain finds increasing clinical applications, fundamental questions remain
about baseline viscoelastic properties of the brain in vivo. Furthermore, the underlying mechanisms of
how and why elastographic measures can change over time are still not well understood. To study
these issues, reverberant shear wave elastography using an optical coherence tomography scanner is
implemented on a mouse model, both under awake conditions and in a sleep state where there are
known changes in the glymphatic fluid flow system in the brain. We find that shear wave speed, a
measure of stiffness, changes by approximately 12% between the two states, sleep versus awake, in the
entire cortical brain imaging volume. Our microchannel flow model of biphasic (fluid plus solid)
tissue provides a plausible rheological model based on the fractal branching vascular and perivascular
system, plus a second parallel system representing the finer scale glymphatic fluid microchannels. By
adjusting the glymphatic system fluid volume proportional to the known sleep/wake changes, we are
able to approximately predict the measured shear wave speeds and their change with the state of the
glymphatic system. The advantages of this model are that its main parameters are derived from
anatomical measures and are linked to other major derivations of branching fluid structures including
Murray’s Law. The implications for clinical studies are that elastography of the brain is strongly
influenced by the regulation or dysregulation of the vascular, perivascular, and glymphatic systems.

1. Introduction

Elastography of the brain is a relatively new and exciting technology that promises to provide sensitive
biomarkers related to the viscoelastic properties of the brain (Hiscox et al 2016, 2018, Bigot et al 2018, Gerischer
etal 2018, Munder et al 2018, Guo et al 2019, Murphy et al 2019, Arani et al 2021). At this early stage of study, we
know that there are changes in brain viscoelastic properties with age, injury, and disease, but the basic
understanding of why these changes occur and how they are linked to the tightly regulated brain vascular,
perivascular, and glymphatic fluid systems, requires careful investigations.

We are now able to integrate recent major advances in our understanding of the intricate systems of fluid
flow in the brain, their key role in health and the progression of disease, and their strong influence on
biomechanics and elastography biomarkers. The first key fact is that the neurovascular unit (NVU) and
glymphatic system are strongly regulated in the healthy brain. Progressive dysregulation can occur with aging
and Alzheimer’s disease. Secondly, a recent discovery is that there are major changes in the flow of extracellular
fluids throughout the glymphatic system, within the normal sleep/wake cycle (figure 1) and in aging and disease.
For example, flow increases during sleep or anesthetized states, which increases the rate and clearance of beta-
amyloid protein, a neurotoxin associated with Alzheimer’s disease (Xie et al 2013, Rasmussen et al 2022).
Impaired flow has dire consequences for the brain over the long term. Our third conceptual point is that in
complex biomaterials like the brain, changes in the size or distribution of pores and fluid channels will create a
major change in stress—strain responses, which are readily assessed by elastography techniques. In other words,
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Figure 1. Glymphatic activity and cerebrospinal fluid (CSF) egress in the nocturnal mouse during active phase (upper left, under
darker surroundings), and during sleep (upper right). The glymphatic system is active during deep sleep, when brain clearance more
than doubles compared with wakefulness. This is due to an increase in extracellular volume fraction, which in rats is ~14% during
wakefulness but increases to 23% in a process dependent on the loss of noradrenergic signaling from the locus coeruleus (Xie

et al 2013). This could occur by a mechanism whereby perivascular space access is shut off during periods of high noradrenergic tonus,
but then opens up for fluid influx during the low noradrenergic tonus of sleep. The rate of CSF egress from the subarachnoid space
shows an inverse relationship with glymphatic activity, thus increasing during wakefulness and decreasing during sleep (Ma

etal 2019). Top row: the relationship between sleep and glymphatic activity. Bottom row: the critical importance of the extracellular
volume fraction on glymphatic flow in the active state (left) and during inactivity [non-REM (NREM) sleep, right]. Reproduced with

we hypothesize that as channel or pore size increase, hydraulic resistance decreases, (fluid can flow more freely)
and, correspondingly, elastography measures of stiffness will decrease. This causal link has been supported in
theory (Parker 2014, 2017a) and in experiments in a number of tissues (Parker 2015, Parker et al 2016, Poul et al

2020), and in this study of animal models during sleep/wake cycles using optical coherence tomography (OCT)
elastography. These novel results are presented herein and the theoretical basis for interpreting the changes in
tissue stiffness, as measured by shear wave elastography, is the major subject of this paper. Among the many
rheological frameworks for modeling the brain (Audette et al 2007, Klatt e al 2007, Budday et al 2017, Testu et al
2017, Comellas et al 2020), our approach has a number of advantages in that its parameters are tied to anatomical
measures, it is biphasic and can account for changes in fluid channels, and it is based on power laws. The power
law framework, related to fractal branching vascular and other multiscale channels, has a well-established set of
interconnected parameters such as flow resistance which are also relevant to the overall biomechanical and
functional assessment of the brain. This paper is organized to provide an overview of the theoretical approach
employing the microchannel flow model, then describing experimental results of sleep versus wake elastography
in an in vivo mouse OCT protocol. Model predictions are made using reasonable parameters that match the
observed changes in shear wave speeds (SWSs) in the cortex obtained in this study. Finally, the appendices
further detail the derivation and anatomical link of the key parameters, and their change with dilation or

constriction.

2. Theory

2.1. Structure and function

The larger goal is to identify the key determinants of viscoelasticity in the brain, along with major cofactors,
trends, species, and regional variations. In this study our experimental results are compared with the
microchannel flow model, which captures the biphasic (fluid, solid) nature of the brain (Parker 2014, 2017a).
Briefly, the microchannel flow model accounts for the movement of fluids within channels in soft tissues,

forming a biphasic rheological model that can predict how shear waves (and elastography measures) will change
as fluid channels dilate or constrict. The model also has some resemblance to a generalized Maxwell model and
the Kelvin—Voigt fractional derivative model, however our model accounts explicitly for the distribution of fluid
channels within the parenchymal matrix. Figure 2 shows the major components captured in the microchannel
flow model, including the vascular, perivascular, and the interstitial microchannels. Each of these are highly
regulated in the healthy brain with rigid constraints on fluid volume within the skull, and these factors are
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Figure 2. (a) Illustration of details within brain tissue. Arterioles and venules penetrate the tissue, each surrounded by perivascular
space (PVS). The blood-vessel wall forms the inner barrier of the PVS, note the tight junctions between cells. Astrocytic endfeet form
the outer barrier of the PVS, with looser gaps between cells allowing transport into the interstitium. The interstitium is crowded with
cells where both fluid and solutes move along a tortuous path in a restricted extracellular liquid volume that comprises approximately
20% of the total volume (see insert). Green arrows indicate fluid transport, by advection and diffusion. In the glymphatic hypothesis,
fluid moves along the periarterial space into the interstitium and out along the perivenous space. Purple indicates interstitial solutes;
solutes exit the interstitial space through gaps in the astrocytic endfeet to the perivenous space, where they are cleared to primary
perivenous pathways or the CSF. (b) A cerebral penetrating artery and vein with perivascular space. Fluid (green arrows) moves into
the brain along periarterial space, branching into arteriole PVS. Characteristic length for periarterial transport is the entire path from
penetrating artery to terminating arteriole (drawing not to scale). From periarterial space, fluid enters the interstitium and moves to
perivenous space. Reproduced from Ray and Heys 2019. CC BY 4.0.

(@) (b)

Figure 3. Elastic element with a single vessel undergoing (a) uniaxial stress or (b) shear stress. The fluid-filled microchannel will
experience flow to the free surface (right) thus contributing to the relaxation response. Reproduced from Parker 2017b. © 2017
Institute of Physics and Engineering in Medicine. All rights reserved.

necessary ingredients in a predictive model (Parker 2017a). The microchannel flow model is, to our knowledge,
the most succinct rheological model capable of accounting for all three fluid networks shown in figure 2
(vascular, perivascular, interstitial) with careful accounting for the relative proportions of these within the fixed
volume of the skull, and the fractal nature of the vasculature (Parker 2017a). Refining the key parameters to fit
the measured shear moduli will be helpful to the basic science of elastography of the brain along with its
implications for clinical assessments.

2.2. Review of microchannel flow theory of stress—strain in vascularized tissues
The microchannel flow model (Parker 2014) can be formulated with an elastic block of tissue, containing one
vessel of radius rand supported at the base and subjected to uniaxial loading. An example of uniaxial strain or
alternatively shear is shown in figures 3(a) and (b), respectively.

When the fluid within a microvessel of length L and radius r is exposed to a pressure gradient due to applied
stress oy, then under Poiseuille’s Law, a volumetric flow rate Q will result (Sutera 1993):
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where Cis a constant, and 7 is the viscosity of the fluid. Combining both the elastic and fluid outflow strains as
additive leads to the well-known Maxwell model of a series spring and dashpot, therefore the stress relaxation
(SR) curve is a simple exponential decay. If we apply a step strain and measure the stress relaxation, then

osr(t) = egEe /" fort > 0, 2)
where E is the Young’s modulus of the elastic block of tissue and the time constant T is:
nC
T=—" 3
Ert )

The inverse relationship of 7 to radius to the fourth power indicates that stress relaxation is sensitive to changes
in vessel radius. In appendix A this derivation is modified for the case of many small vessels with a number
density N(r) that is a power law function of radius, as illustrated in figure 4(b).

Accordingly, in a macroscopic block of tissue we assume there are # multiple microchannels of unequal
radius r,, and a range of flow rates Q,,. Assuming each contributes to the overall stress relaxation with an
individual time constant 7, then the simplest model for this looks like a parallel set of Maxwell elements shown
figure 4(c). This also resembles the generalized Maxwell-Weichert model (Ferry 1970, Fung 1981). In the limit,
we model a continuous distribution of time constants 7, where A (7) is the relaxation spectrum (Fung 1981).
Given a material’s A (7), we then have:

[o¢]
osw(t) = [ Ae/rar. @)
0
In some tissues we find a power law distribution:

ATy =AY 1<b<2, (5)

which is naturally occurring in many natural structures including normal and pathological circulatory systems
(Westetal 1997, Risser et al 2007), and which is justified in appendix A based on anatomical measures.
Substituting equation (5) into equation (4) and solving yields the stress relaxation behavior:

osr(t) = Ay - 17T[b — 1] forl <b< 2, t>0, 6)

where I [ ] is the Gamma function. The stress relaxation response producesa 1,/¢°~! decay for t > 0as
illustrated in figure 4(f). For values of 1 < b < 2, this tends to have a sharp initial drop and then a slow
asymptomatic decay and produces a straight line on log—log plots. In this case the frequency dependence of the
complex modulus is given by an increasing power law:

Ay

|E()| = Nir

[la]l'[1 — a] |w]*, @)

wherea = b—1.

It may be more realistic to place limits on the range of 7 for a material, where the longest and shortest time
constraints correspond directly to the smallest to largest vessels and microchannels, as illustrated in figures 4(a)—
(d). In this case, the integration of equation (4) has limits 7,,;, and 7., and

Tmax
osp(t) = A(r)e /7dr, (®)

T

min

and assuming the power law form of equation (5), then

p[a, ! ]_r[a, ! ]
Tmax Tmin

ta

osr(t) = Ap fora>0, t >0, and 0 < Tiin < Timaxs ©)]

where I'[a, (t/7)]istheincomplete Gamma function (upper-tailed). This produces a four-parameter model
since Tax and 7, are vessel-specific parameters (determined from anatomy studies) in addition to a and Ay.
The complex modulus | E (w)| for the material of equation (9) is derived from Laplace transform relationships
and solved using Mathematica (version 13.1.0 for Linux x86, Wolfram, Champaign, IL, USA). With w
representing radial frequency, and I the imaginary unit index, we find the complex solution to be:

E(w) = AO(_Iw)(/B[(_IWTmin)) (l - a): 0] - ﬂ[(_IWTmax)) (l - a): 0])) (10)

where 3[] is the incomplete beta function (Abramowitz and Stegun 1964). Basically, this function approaches a
simple power law of equation (7), but only in between lower and higher frequencies defined by 1 /7, and
1 / Tiin> and assuming these are widely separated in a multiscale structure.
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Figure 4. The conceptual framework of the microchannel flow model, with inter-relationships between key elements and their
behaviors. (a) Fractal branching vasculature from a vascular cast, imaged with micro-CT (Parker 2022). This fractal branching
structure ranges from a larger set of vessels to a smallest set. In the following figures, circle L and S refer to regions that are particularly
influenced by the largest and smallest fluid channels within the ensemble. (b) Power law relationship between element diameter and
quantity in pulmonary arteries, extracted from data in Huang et al (1996) and veins. Power law fitd = —2.7 + 0.1.(c) The
microchannel flow model of perfused soft tissue begins with parallel elements (Parker 2014). Each dashpot corresponds to a fluid-
filled vessel or channel, with the smallest microchannel yielding the longest time constant, via Poiseuille’s Law. In the continuous
limit, the aggregate sum over the fractal size distribution yields the microchannel flow model. (d) The relaxation spectrum is formed
by the power law distribution of vessels and the time constants extend from less than one second (due to larger vessels) to very long
(due to small capillaries and extracellular fluid channels). (e) In simplest form, the combination of these elements reduces to a simple
rheological model: the spring-pot model (a simplified KVFD model) which can be described succinctly through a fractional derivative
model. The fractional order is explicitly linked to the power law distribution of the fluid channels shown in (b). (f) Stress relaxation
results from two liver samples. Vertical axis: measured stress. Horizontal axis: time in seconds after stress compression, on alog—log
scale. The behavior is consistent with a power law relaxation. Reprinted from Liu and Bilston (2000). (g) Complex modulus versus
frequency for a nominally soft vascularized and unconfined tissue over a range of frequencies from 2715 to 27-1500 Hz, plotted ona
log—log scale. The model indicates an increase (or decrease) in the complex modulus and SWS when the branching fluid channels are
constricted or dilated, respectively.

In summary, if a tissue has a power law distribution of fluid vessels and channels, and a relaxation spectrum
A(T) = Ay7?, then the stress relaxation response behavior is oz =~ Agt' ~? = A, /t® The tissue stress—strain
transfer function, or complex modulus, in the frequency domain resembles |E (w)| = Ayw?, and the shear wave
phase velocity ¢, (w) o< w2, Wehave found that 0 < a < (1,/4) for many normal soft vascularized tissues
(Zhang et al 2007, Parker 2014, Ormachea et al 2016).

2.3. Specific components of the brain microchannel flow model

As shown in figure 2, a full model of the brain fluid channels would include at least the following five
components: the arterial, periarterial, venous, perivenous, and interstitial (glymphatic) channels within the
brain parenchyma. These are modeled herein as two interconnected but separate fractal systems: the larger
comprised of the parallel vascular and perivascular branching structures over a scale of approximately 1 mm to 4
microns in radius, and then the smaller fractal structure within the tortuous interstitial space, covering a scale
from about 1 micron (gaps in the astrocytic endfeet locations) to approximately3 angstroms (AQP4 pore size), as
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indicated in figure 2. Both systems are tightly regulated in the brain in normal individuals; the NVU regional
control is assessed in functional magnetic resonance imaging scans, angiography, and other tests, while the
glymphatic regulation under sleep /wake cycles is a more recent discovery and the main focus of this model. The
vasculature and perivasculature are naturally described as fractal systems (Risser et al 2007, Parker 2017a),
however the interstitial /glymphatic networks require additional justification. First, following Murray’s law of
fluid transport, a great many biological systems employ a scale invariant, power law, or fractal organization as an
optimum configuration (Sherman 1981, Hughes 2015). Secondly, in optical studies of other organs, power law
behaviors are seen down to a scale on the order of 10 nanometers (Schmitt and Kumar 1996). Thirdly, the
multiscale organization of the interstitial space is suggestive of a power law model (Nicholson 2022). We
therefore assume a two compartment blend of the microchannel flow model of equation (9): alarger scale
version representing the vascular and perivascular branching structures and a smaller scale version representing
the interstitial spaces:

szax szin
£a + A2 12 > (11)

PI:az, L — FI:(lz, L
osr(t) = A

where A, represents the vascular and perivascular fractal branching structures and A, the smaller scale
interstitial /glymphatic structures. The time constants will be set by the largest and smallest channels expected
within each of these. The parameters are conditioned by anatomical measures and are discussed in more detail in
the appendix A, although the parameters for mouse and human brain regions require refinement. The complex
modulus as a function of frequency will then be given by the sum of two corresponding groups of beta functions
given by equation (10), and the SWS as a function of frequency (the phase velocity and dispersion) can be
calculated from this quantity. As a practical matter, the pores and channels in the glymphatic system are very
small, extending to well below 1 micron. Correspondingly, the time constants for the glymphatic system are
proportionally long, and so the influence of these long time constants at typical elastography frequencies
(roughly 40-100 Hz in adult human magnetic resonance elastography) approaches an asymptotic limit. Thus, in
elastography, the glymphatic compartment term approximates an additive constant in equation (10) of
(1/752.)(Ay /ap) for a, > 0 and for frequencies >>1/ 7. Consequently, our simplified model for the complex
modulus in the frequency domain for the brain, accounting for both the neurovascular and the glymphatic
systems, may be expressed as:

E(w) = Al(—1w)(BI(—1wTmin), (1 — a), 0] = B(—IwTmax), (1 — a), 0D + (A2 /73,)(1/a2) (12)

fora > 0and w > 1/7,;,. Dilation or constriction of either of the two compartments can be treated simply
with scale factors shifting both the magnitude and the time constants, as described in appendix B.

3. Methods

3.1. Animal preparation

Five wild-type mice (C57BL/6, mean 9.21 £ 0.13 months of age, 3 female /2 male) were scanned with OCT
elastography in both awake and anesthetized (mimicking sleep) states. Mice were habituated to the scanning
apparatus and prior to scanning, cranial window surgeries were performed in which a 5 mm diameter circular
region of center skull was replaced with a glass window. The dura mater was left intact, and 1.1% agarose gel was
used to adhere the glass window to the brain. A rectangular head plate and mounting station was used to secure
the mouse head and body during both awake and anesthetized states. After the cranial window surgery, the
mouse was allotted at least 30 min to wake before scanning. Upon completion of the awake scan, the mouse was
injected with ketamine—xylazine and allotted at least 15 min before scanning the sleep scan. Mice experiments
were performed under protocols approved by the University of Rochester Committee on Animal Resources.
Figure 5 shows the experimental setup with respect to the mouse.

3.2. Optical coherence tomography

A custom phase-sensitive OCT and mechanical piezo-electric system was used to scan the mice and perform
reverberant shear wave (RSW) elastography. The OCT system source is a swept-source laser (HSL-2100-HW,
Santec, Aichi, Japan) with a center wavelength of 1310 nm and a bandwidth of 140 nm. The lateral resolution is
approximately 20 pm and the axial resolution is approximately 6 ;m in air. The field of view for these
experiments was 5 X 5 mm. The OCT system is controlled using LabVIEW (version 14, National Instruments,
Austin, Texas, USA).
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Figure 5. Experimental setup with mouse scans (not to scale). The top right corner depicts the dimensions of the cranial window
(blue) with respect to the custom ring (black) and region of interest analyzed (red).

3.3. Reverberant shear wave elastography

RSW elastography is implemented with a mechanical excitation system that operates in conjunction with the
OCT scanning system. The main piezo-electric controlled component is a custom 10 mm diameter 3D-printed
ring with 8 concentric points of contact that generates multiple shear waves inside the brain region of interest
(ROI). The rings’ tips are in physical contact with the agarose gel that supports the cranial window but are not in
physical contact with the brain. The function generator used for the piezo-electric actuator was operated ata
frequency of 2 kHz. The MB mode acquisition approach acquires 4D data (3D space and time) in a synchronized
fashion, with 100 A-lines by 100 frames by 100 M-modes with an axial depth of 2000 points. For each individual
point in time in which a fully developed 3D RSW pattern is present, 2D local spatial autocorrelations (in x—y
plane) are performed in window sizes of 1 x 1 mm with window intervals of 0.5 x 0.5 mm along each pointin
depth. From this, a 3D map of local wavenumbers is obtained, which can then be converted to local SWS.
Subsequently, the estimated 3D elastograms from each timepoint in the acquired data are averaged together to
generate the final elastogram. More details on the OCT and mechanical excitation system can be found in
previous studies using OCT elastography to evaluate corneas (Zvietcovich et al 2019, Ge et al 2022).

3.4. Statistical analysis

From the 3D elastograms, homogeneous ROIs are selected to obtain mean SWS results. In the awake scans,
mouse ROIs included are the brain parenchyma (BP) and the perivascular (PV) regions, where the boundary is
distinct. In the sleep scans, the boundary between BP and PV can be less distinct, and pre-calculations indicated
there were no statistical differences between the two regions (using a ¢-test), and so a single sleep SWS is reported
for the entire homogeneous ROI With these multiple groups of mice scan types, a one-way ANOVA test is
performed with a subsequent Bonferroni-corrected multiple comparisons test. Statistical significances are
assigned as follows: no significance (NS) for p > 0.05, * forp < 0.05, forp < 0.01, ™" forp < 0.001,and
“*forp < 0.0001.

4, Results

Application of 2 kHz shear waves to the cranium with multiple contact points creates a randomized pattern of
shear waves that we classify as a RSW field, with a characteristic ‘boiling’ pattern shown in figures 6(b) and (e).
Estimators then assess the local value of SWS (Parker et al 2017, Ormachea and Parker 2021) which are displayed
in colors within the 3D scanned volume as shown in figure 6. In the cranial window, major vessels can be
resolved and the proximal region surrounding them may appear softer than the more distal parenchyma, see
figure 6(c). Repeatably, the brain in the sleep state (mean of 2.17 4 0.05 m s~ ') is softer than in the awake state
(mean 0f2.46 + 0.04m s~ !inbrain parenchyma), as indicated in figures 6(f) and 7. SWS in the awake state for
the cortical region drops nearly 12% in the sleep state. The SWS of the perivascular region in the awake state
(mean 2.16 & 0.05 ms™ ' in perivascular region) was statistically similar to the SWS of the sleep state (mean of
2.17 £ 0.05ms ).

Using equation (12), a corresponding model of the complex modulus was generated and is plotted in figure 8
on alog-logscale over arange of shear wave frequencies from 1 to 3 kHz. The dashed lines indicate the level of

7
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Figure 6. OCE of mouse brain in vivo. (a) 3D B-mode scan in awake state. (b) Sample transverse plane (atz = 0.57 mm) of measured
2 kHz shear wave pattern. (c) Reconstructed 3D elastogram showing regional stiffness variation between perivascular regions

(y > 2 mm) and surrounding brain parenchyma (y < 2 mm). (d) 3D B-mode scan in anesthetized state (with ketamine-xylazine). (e)
Sample transverse frame (atz = 0.57 mm) of measured 2 kHz shear wave pattern. (f) Reconstructed 3D elastogram showing stiffness
homogenization after anesthesia with KX to simulate sleep state. We hypothesize that this softening is directly related to the change in
glymphatic system morphology and CSF egress, as depicted in figures 1 and 2. Elastogram shear wave speed values are reported in
meters/seconds as mean =+ standard deviation in 3D ROI. Units of color bars in (a) and (d) are in arbitrary grayscale values; units of

color barsin (c) and (f) areinms™".
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Figure 7. Measured shear wave speeds (SWS) in the cortical brain at 2 kHz for groups of wild-type mice in sleep and awake conditions.
The 3D regions are denoted in figure 6 and BP = the brain parenchyma or cortex, PV = perivascular region surrounding a resolved
vessel. We find a statistically significant drop in shear wave speed of approximately 12% from awake to sleep, hypothesized to be
influenced by changes in the glymphatic system.

complex modulus expected given the measurements shown in figures 6 and 7 for both awake and sleep states at
2 kHz. The model fits for both the awake and sleep states demonstrate a monotonic increase throughout the
frequency range, indicating dispersion associated with viscoelastic losses, and tends to flatten near the upper
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Figure 8. Theoretical values of complex modulus (vertical axis) magnitude versus shear wave frequency (horizontal axis). Dotted lines
represent the approximate bounds of measured values at 2 kHz, based on the results of figure 7. Solid lines represent the model results
with awake (top curve blue) and sleep (lower curve, yellow). A, for the vascular system is taken as 0.38 Pa, power law exponent ais
0.15. For the glymphatic compartment, A; is higher than A; (2 x higher density of fluid channels) and a is 0.05, corresponding to a
higher branching exponent of b than the vascular system, approaching b = 2.95 and close to Murray’s Law where b would approach 3.
The dilation (lower curve) is a factor of 1.28 increase in radius throughout the glymphatic fluid channels, corresponding to an overall
increase in glymphatic fluid percent volume (23%/14% attributed to increases in radius squared across the entire range of
microchannels in the glymphatic system) depicted in figure 1 during sleep cycles as compared with awake cycles.

Table 1. Baseline parameters used in the microchannel flow model of the brain incorporating the terms in equation (12) and their
constituent elements.

Parameter Value Units Comments

Eq 1 kPa unitary, also very soft tissue

b, (a) 1.05-1.25, (0.05-0.25) dimensionless power power law from anatomy

A 0.38 Pa-s® related to N(r) of vasculature and perivasculature

A 0.76 Pa-s” related to N(r) of glymphatic system

Timin 0.0005 s related to largest radius or free fluid interface

Timax 23 s set by capillary size

Tomin 190 s set by glymphatic space openings

Tomax 10 s set by AQP4 pore radius, and assumed to approach infinity in
equations (11), (12)

X 1.28 ratio dilation of glymphatic system

n 1.5 x 107° Pa-s plasma and extracellular fluid viscosity

range of frequencies (3 kHz) as this extends beyond the fastest time constants in the model. In reality, other loss
mechanisms not included in the model, including viscous terms in the parenchymal constituents and scattering
of the shear waves, could become significant at higher frequencies and thereby continue the dispersion.
Accounting for additional loss mechanisms remains for future studies. Table 1 provides the estimated values
employed in the model of equation (12) and figure 8, and we note that no attempt has been made to derive a
maximum likelihood estimate of the model parameters; that remains for future research.

5. Discussion

We have measured subtle sleep/wake changes in the stiffness of the cortical region of the mouse brain using
OCT with RSW field elastography. The simplest rheological model of this is the biphasic model of fluid in a
cellular parenchyma, the microchannel flow model which is compartmentalized in equation (11) into the NUV
and the glymphatic or extracellular system. It may appear at first glance that this equation requires the precise
assessment of eight unknown parameters, [A, @, Timax Tmin]> for each of the neurovascular and glymphatic
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compartments. However, this is reduced by recognizing the asymptotic form of the glymphatic system’s
contribution for typical elastography frequencies in equation (12). Furthermore, as detailed in appendix A, the
parameters a, Tmayx, and Tmin are bounded by Murray’s law and continuity arguments and can be determined by
anatomical imaging studies that quantify the multiscale distribution of vessels and fluid channels within the
brain. These require painstaking efforts with high resolution 3D imaging systems, and more comprehensive
studies and results are needed to refine these parameters in normal and disease conditions.

It can be noted that the microchannel flow model for the brain components has the advantages of both a
simplicity and a framework that relates immediately to the extensive literature on the properties of fractal
branching structures. In particular, there are inter-related power law exponents for anumber of physiological
variables including flow, flow resistance, pressure, fluid volume, and others that can be calculated using many of
the anatomical parameters discussed in our model (Kassab 2006, Kamiya and Takahashi 2007, Mut et al 2014,
Razavi et al 2018). The model thereby provides a close interconnection between elastography and the
hemodynamics and glymphatic flow in the brain. For completion, it should be noted that there are other
classical models that could be applied to the rheology of the glymphatic system. These include the poroelastic
models based on Biot’s approach (Biot 1941, 1962, Konofagou et al 2001). Furthermore, a range of composite
material models has been formulated for determining the effective modulus of a material comprised of two or
several components, including the strain energy analysis of Christensen (1969). Composite material properties
are described and compared in detail in Lakes (1999), including Voigt and Reuss bounds on the properties of the
composite models. In our case, using the Christensen model for nearly incompressible tissue (see equations (1),
(2) in Ormachea and Parker (2022)) with the shear modulus of fluid areas set to zero, we can estimate a sleep/
wake change in the composite glymphatic tissue where volume percent V of fluid changes from 23% to 14% as
shown in figure 1. The result is a predicted increase in shear modulus of 24%, higher than the experimental
change of 12% shown in figure 7. Let us note that the glymphatic system is only one component of the brain, so
further research will be required to elucidate the competitive advantages of different approaches to an accurate
rheological model.

Some of the limitations of this study include the limited number of mice studied, and the need for wider
range of frequencies used for shear wave excitation. Another important limitation of the model itself, along with
the need for more precision in key parameters and exponents, is that the model may be oversimplified in a
number of respects. For example, a single value for viscosity has been used, however the apparent viscosity of
plasma is thought to be a function of vessel diameter in the micron range (Kamiya and Takahashi 2007). Another
example is the length to radius relationship of vessels, which is likely to vary between smaller and larger fluid
channels, and also may vary by region within the cortical structures (Cassot et al 2006). Also, the model does not
explicitly consider anisotropic alignment of structures and nonlinear behavior. In these cases, further
refinements can be made but at the expense of additional complexity. For now, the model presented
incorporates single values of parameters over these possible variations, utilizing estimates from tables 1 and A1.

Another limitation of this study is the use of ketamine—xylazine anesthesia to induce sleep. This particular
protocol is known to produce changes in the glymphatic system commensurate with sleep (Rasmussen et al
2022). However, as shown by Turner et al (2020), natural REM and non-REM sleep states in mice demonstrate
major changes in cerebral blood volume, and increased arterial diameters along with increased neuronal
activation. In our case, the contact with piezo-electric shear wave actuators makes natural sleep difficult. These
conditions remain for further study in terms of their effects on elastography measures and the microchannel
flow model.

We also note that rapid 10% changes in the shear modulus in the mouse thalamus region were reported by
Patz et al (2019), during activation by sensory stimulation. The underlying mechanism of these changes were
thought to be related to several effects including the blood oxygenation changes during stimulation and calcium
ion transport. Some calculations pertinent to change in the underlying tissue properties, captured in the
parenchymal Ey, have been considered previously in Parker (2017a), along with changes in the vascular and
perivascular structures in a strictly confined space. All these effects are potentially able to alter the SWS in
elastography measurements. It remains to be seen if a combination of these is present and influential in human
brain elastography, however the microchannel flow model can model these individually or in combination.

6. Conclusion

The sleep/wake cycle of the brain is found to influence the elastography measure of SWS in the mouse brain.
Specifically, in the cortical brain parenchyma and with RSWs at 2 kHz, we find a softening of the brain by an
approximately 12% drop in SWS during anesthesia-induced sleep as compared with awake status. This can be
plausibly accounted for by employing the microchannel flow model along with recently discovered changes in
the glymphatic extracellular fluid channels during the sleep/wake cycle. These results suggest that the fluid
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systems of the brain including the vascular, perivascular, and glymphatic systems, play a major role in setting the
viscoelastic properties of regions of the brain. The implications for clinical medicine are that regulation and
dysregulation of the neurovascular system and the glymphatic system will influence the parameters measured
during elastography scans, which are increasingly available in magnetic resonance, ultrasound, and optical
scanning systems. In humans, these elastography measures are typically conducted with shear wave frequencies
closer to the 50-100 Hz band, and the trends shown in figure 8 imply that proportional changes in SWS
measured at 2 kHz will also be present at lower frequencies. More research is required to refine the parameters
required for accurate modeling, and for quantifying the effect of other cofactors which may include changes in
the parenchymal constituents and abnormal variations in vascular and cerebral spinal fluid pressures. With
improvement of models and experimental procedures, the stiffness changes observed here between sleep and
awake states can be applied to basic neuroscience questions regarding sleep/wake biomechanics in both mice
and humans. The link between elastography measurements and the regulation (or dysregulation) of the vascular
and glymphatic compartments creates a unique means to noninvasively assess these in clinical studies.
Furthermore, with advances in MR elastography, some important clinical problems in both diagnostics and
prognostics can be addressed by measuring these values, for example differentiating normal aging from
pathological diseases such as Alzheimer’s disease, or surveying the effects of therapy.
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Appendix A. The relaxation spectrum based on anatomical measures

Akey concept in the microchannel flow model is the causal relationship between the fractal branching
vasculature and fluid channels, and the relaxation spectrum A (7) that characterizes the rheological response. In
this appendix A, we derive an explicit dependence based on measures available from anatomical studies. We
begin with an applied force F on an elastic element producing a uniaxial stress o, with N cylindrical fluid
channels of radius r open to a free surface shown in figure A1. Following the derivations in section 2 and applying
Poiseuille’s law, each channel has an output flow Q of approximately Q, =~ o, 7r;} /n8L, where ris the radius of
the microvessel, 7 is the viscosity of the fluid, L,, is the length of the vessel segment, and L,, < Lo, the length of the
elastic element.

The loss of fluid volume during an incremental stress relaxation test is approximately N - Q and outflow will
diminish the height of the block under compression. Assuming negligible change in cross section A, the volume
change from the loss of fluid from the sample must be accounted for by a decrease in the x-dimension, or strain
€. Thus,

ds,  N-Q _ o, TNr*

= (13)
dt Vol n8L, Vol
or
8L, Vol ) de,
x — > 14
K 77( nNr* ) dt (14

where Vol is the volume of the cube in figure A1, and this stress—strain relationship resembles the simple dashpot
where simple viscosity is replaced by the combination of factors in equation (14). By adding the elastic and fluid
outflow strains we obtain the classical Maxwell model comprised of a series spring and dashpot, therefore the
stress relaxation (SR) curve is a simple exponential decay. If e (r) = ¢y U (t), where U(#) is the unit step function,
then

osr(t) = egEe /" fort > 0, (15)
where the time constant 7 is:
n8L, Vol
T=— (16)
EnNrt
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Figure Al. An elastic solid with multiple fluid-filled vessels subjected to uniaxial stress. This biphasic model has characteristic time
constants dependent on the number and radii of the vessels.

We rewrite the time constant 7 as:

=) "

where in a fractal branching network L and N are power law functions of r. Specifically, L(r) /r represents the
ratio of length to radius of vessels and N (r) / Vol is the number density of vessels as a function of radius, and
these are power laws that can be determined from anatomical studies. The tabulated data of Huang et al (1996)
and several others are listed in table A1.

Using this data as a guideline for the brain parameters, we assume that:

N(r) _ No
— = PR 18
Vol r2s (18)
or more generally,
N(@) _ No
=N 19
Vol rd (19)

where dis the power law exponent from anatomical studies.

One additional adjustment must be made to N (r) /Vol, however, in the stress relaxation configuration of
figure A1. Flow Q can only be output at the free surface, and for small vessels and microchannels, only a fraction
f < 1 ofthese will be intersecting with a free surface. Considering uniform distribution over the volume, the
probability of a randomly positioned cylinder intersecting a free outer surface scales with length, f 2 (L/L.y ),
where L,y is the largest vessel in the ensemble. Thus, collecting all anatomical power laws in equation (17), we
have

(8 ) u-a
7(r) (_wENO)(r )

~[_8n —15
_( WENO)(r ) (20)

when dis taken at 2.5. This sets the relationship between time constants 7 and vessel radii r within the ensemble,
and replaces the earlier consideration of r* based on a single element and simply applying Poiseuille’s Law
(Parker 2014). To define the relaxation spectrum A (1) we proceed in a similar manner. We postulate that the
relaxation spectrum is defined by the arrangement and number density of channels as shown in figures 4(a)—(d)
multiplied by the cross-sectional area of fluid channels incident on the free surface of figure A1. Thus, we write:
r 2N 0 N, 0

A(T) < A(r) o< (r* - N(1)) — X ——, (21)
r r
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Figure A2. Power law relationship between element diameter and length in pulmonary arteries. Power law fitd = 0.7 £ 0.07. Data
are extracted from tabulations reported in Huang et al (1996).

and again applying the transformation rule:

A =20 22)
ar
dr
where 7 = C/r*~4. Then we find:
1\7—2d)/¢4=d)
A(r) = Ao(—) . (23)
T
With reference to table Al again, and assuming d = 2.5, then
4/3
A = (22)7, 24)
T

orb = 1.33,a = 0.33. This power law relaxation function sets E(w) = |w|*?and C(w) = |w|*!° from the
dispersion relations, commensurate with frequency-dependent parameters measured in soft tissues (Zhang et al
2007, Parker et al 2019).

Finally, as a first order approximation, we assume the following parameters for the model of the brain: E = 1
kPa (soft tissue range for the ‘elastic’ parenchyma), blood and extracellular fluid n = 1.5 x 102 Pa-s, and
power laws shown in figures 4(b) and A2 extracted from the painstaking study of pulmonary vasculature of
(Huang et al 1996), where we assume that Vol of the whole lung was 3 1or 3 x 10° mm’. Inserting these
particular values into the derivation of 7 produces an estimate of 7 = 0.006/7" in units of seconds and
measured in mm. Thus, in our model of the brain, vessels of radius 1 mm would contribute to the relaxation
spectrum A(r) in the range 0of 0.006 s, or rather quickly on the scale of typical stress relaxation experiments. On
the other hand, capillaries approximately 4 microns in radius would contribute to the relaxation spectrum in the
range of 24 s, and the AQP4 pores at 3 nm would contribute in the range of over 10°® 5. The latter effect is
experienced in stress relaxation experiments as an essentially constant baseline over short measurement periods,
similar to an elastic response. Thus, even the smallest scale of microchannels has an influence on the overall
stiffness of tissues and is subject to the changes from dilation/constriction mechanisms as indicated in
equations (26)—(32).

Appendix B. Mapping changes from rto 7 to A(7) to o5z (¢) under dilation or constriction
of channels in the unconfined space

Given the framework of equations (4)—(10), we derive the new relaxation spectrum A, (1) if all the vessel radii
are increased or decreased by a factor of r, = xr where x > 1representsdilationand x < 1 constriction. To
derive the altered relaxation spectrum function we employ the transformation rule of distributions

(Papoulis 1987). Given a monotonic distribution A (r) and a transformation 7, = C/(xr)'*> = 7/x'?, then the
transformed density function A, (7) is given by:
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Table Al. Anatomical power laws. N(r) = number density, L(r) = vessel length as a function of r.

Parameter Power law exponent Tissue References
N(r) —2.7 pulmonary Huangetal (1996)
N(r) —2.5 brain arterial Mutetal (2014)
N(r) —1.3 cortex terminal arterial Cassot et al (2006)
N(r) -3.0 Murray’s Law Sherman (1981)
L(r) +0.7 pulmonary Huang et al (1996)
L(r) +1.3 cortex terminal arterial Cassot et al (2006)
L(r) +0.75t0 + 1.2 fractal tree structures Hughes (2015)
Takahashi (2014)
A(T)
A(m) = (25)
dT 2
dr

Applying this rule, with A(7) = A /7%, then:

1 A
&@»(wa:ﬁ, (26)

and this relationship conserves the total area under the relaxation spectrum:

f ™ A(Pydr = f

‘min T2min

T2max

Ay (1) dmy, (27)

where

Toee = C/(Xtmin )" = (1/X)"Timax and
Tomin = C/ Xtmax)"> = (1/X)" Tinin. (28)

Finally, we examine the simple case of dilation (or constriction) within an unconfined tissue such that the
extra blood volume associated with enlarged blood vessels is simply added to the organ volume. Although the
skull presents a fixed outer boundary and therefore there must be some reallocation between fluid
compartments, the most direct rheological consequence of dilation is examined below.

We first assume a baseline power law distribution of vessels between r,,,;, and r,,,, consistent with the stress
relaxation spectrum shown in figure 4(d):

A or
AN == ¢ C (29)
5 NTS 750
"max "min

and where the resulting stress relaxation function is given by equation (9). Next, consider that all vessel radii are
altered proportionally by y, where x = 1represents the baseline case and after dilation or constriction:

> 1 implies dilation
QX{XX P (30)

< 1 implies constriction’

Again, applying the transformation rule, the new stress relaxation spectrum is defined as A, (1) where
7 =C/(n) = C/(x)'? = 1/x)'°1,s0 dn /dT = (1/x)"°, and applying equations (25) and (26) we find:

| Ao YTla /7, ] = Tla, t/ 7, D
osra(t) = NE ra

where 7 _and 7, are given by equation (28). Thus, equations (28) and (31) provide the transformation of
elastic properties as a function of vascular changes proportional to , in an unconfined space. In many cases, the
leading term of 1 /X! is the dominant factor, showing a strong effect where small amounts of dilation create a
softening of the tissue. This term directly affects the complex modulus, where after dilation of only the

glymphatic system, equation (12) becomes:

E(w) = A(—1w)(BI(~IwTmin), (1 = a), 0] = BI(—IwTmax), (1 — ), 0]) + (A2 /(T3 X)) (1/az)
(32)

, (€20)

and where the T time constants have been modified by equation (28). Conversely, small amounts of constriction
will generate a hardening of the tissue, as demonstrated in Parker et al (2016).
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As an example, figure 4(g) shows a nominal case where the vessels change with 20% dilation (xy = 1.2) and
then 20% constriction (x = 0.8), and using baseline parameters found in table 1 of Parker (2017a). These model
parameters are representative of other soft vascularized tissues, and a 20% vasodilation is consistent with cortical
laser Doppler flowmetry during sensory stimulation (Malonek et al 1997).
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