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Abstract
Background: The prevalence of liver diseases, especially steatosis, requires a
more convenient and noninvasive tool for liver diagnosis, which can be a sur-
rogate for the gold standard biopsy. Magnetic resonance (MR) measurement
offers potential, however ultrasound (US) has better accessibility than MR.
Purpose: This study aims to suggest a multiparametric US approach which
demonstrates better quantification and imaging performance than MR imaging-
based proton density fat fraction (MRI-PDFF) for hepatic steatosis assessment.
Methods: We investigated early-stage steatosis to evaluate our approach.An in
vivo (within the living) animal study was performed.Fat inclusions were accumu-
lated in the animal livers by feeding a methionine and choline deficient (MCD)
diet for 2 weeks.The animals (n = 19) underwent US and MR imaging,and then
their livers were excised for histological staining. From the US, MR, and histol-
ogy images, fat accumulation levels were measured and compared:multiple US
parameters; MRI-PDFF; histology fat percentages. Seven individual US param-
eters were extracted using B-mode measurement, Burr distribution estimation,
attenuation estimation, H-scan analysis, and shear wave elastography. Feature
selection was performed, and the selected US features were combined, provid-
ing quantification of fat accumulation. The combined parameter was used for
visualizing the localized probability of fat accumulation level in the liver; This
procedure is known as disease-specific imaging (DSI).
Results: The combined US parameter can sensitively assess fat accumulation
levels, which is highly correlated with histology fat percentage (R = 0.93, p-
value< 0.05) and outperforms the correlation between MRI-PDFF and histology
(R= 0.89,p-value< 0.05).Although the seven individual US parameters showed
lower correlation with histology compared to MRI-PDFF, the multiparametric
analysis enabled US to outperform MR. Furthermore, this approach allowed
DSI to detect and display gradual increases in fat accumulation.From the imag-
ing output, we measured the color-highlighted area representing fatty tissues,
and the fat fraction obtained from DSI and histology showed strong agreement
(R = 0.93, p-value < 0.05).
Conclusions: We demonstrated that fat quantification utilizing a combination
of multiple US parameters achieved higher performance than MRI-PDFF;
therefore, our multiparametric analysis successfully combined selected fea-
tures for hepatic steatosis characterization. We anticipate clinical use of our
proposed multiparametric US analysis, which could be beneficial in assessing
steatosis in humans.
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2 MULTIPARAMETRIC US COMPARED WITH MRI

1 INTRODUCTION

The worldwide epidemic of obesity and fatty liver dis-
ease has motivated the search for reliable, noninvasive,
and widely available measures of fat in the liver.1–3 In
the past, liver biopsy has been regarded as the gold
standard for assessment, however the disadvantages
of this procedure include sampling error, poor patient
acceptance for repeat examinations, and bleeding.4–6

Thus, as a noninvasive surrogate for biopsy, magnetic
resonance (MR) imaging techniques have gained
acceptance as a quantitative and reliable standard for
assessment of liver fat.7 MR imaging-based proton
density fat fraction (MRI-PDFF) has emerged as an
important measurement in liver studies with the best
diagnostic performance among non-invasive imaging
modalities.8 However, its high cost and long operation
time limit the widespread use of MR in the clinic.

Within medical ultrasound (US), which is noninva-
sive and more widely available due to its more than
ten times lower cost than MR or computed tomography
scans, a relevant trend for addressing the quantifica-
tion of liver fat is the increasing number of parameters
related to compression and shear wave phenomena that
can be implemented on clinical scanners in addition
to analysis of ultrasound backscattering. A commonly
used US image characteristic of fat accumulation is
hyperechoic speckles compared to normal livers. Fur-
ther analysis of the speckle distribution has been
conducted while modeling the distribution with sta-
tistical models, starting from the classical Rayleigh9

to the more recently adapted Nakagami10 and Burr
distribution.11 Moreover, quantitative ultrasound (QUS)
parameters12 were developed and applied to tissue
characterization, including the frequency spectrum anal-
ysis. These have resulted in a number of techniques
and metrics for fatty liver diseases which are reviewed
in recent publications.13,14 Shear wave elastography
(SWE) can also noninvasively extract attenuation and
speed parameters. SWE utilizes an US push beam
to generate shear waves in order to measure tissue
stiffness. Previous studies15,16 found that the SWE
parameters are capable of estimating fat accumulation,
but the parameters can be only measured within a lim-
ited lateral field of view and within limited penetration.
Lastly, H-scan is a novel US quantification method utiliz-
ing a frequency spectral-based analysis.17,18 It has been
reported that the H-scan outperformed SWE in liver
tissue characterization19; for differentiation between
early- and mid-stage tumors, the H-scan showed signif-
icant difference (p-value < 0.0001), whereas SWS was
unable to differentiate these stages (p-value > 0.05).
The H-scan can characterize tissue structures related
to scatterer sizes and frequency shifts, and thus can
differentiate fat accumulation levels.20

However, generally speaking, the single-parameter
correlations with steatosis suffer from imprecision in

measurements, biological variability, and the inevitable
presence of confounding cofactors that are unmea-
sured yet can influence the parameter being studied.
Therefore, recent research utilizes multiparamet-
ric analysis,21–23 whereby multiple parameters are
measured simultaneously, which can improve the
assessment of the degree of steatosis.20,24–28 In these
studies, the a priori classification of training sets play
an important role in defining clusters of parameter
values associated with a condition, and the boundaries
between different states.

In this paper, we add to our previous work20 on an
animal model of steatosis by adding an independent
measure of liver fat content from MR imaging as a refer-
ence. Furthermore, we focus more on short-term accu-
mulation of liver fat at 1 and 2 weeks on a diet known
to produce steatosis. We also examine the results of
utilizing different subsets of measured parameters, an
important consideration since not all measured param-
eters are equally sensitive to the accumulation of fat in
the liver. Finally, we introduce a mathematical measure
in multiparametric space that enables small regions of
the B-scan to be assessed for degree of steatosis, lead-
ing to a color overlay forming a visual map of the degree
of severity of steatosis within any individual liver. These
approaches combined allow for final classification accu-
racies of 100% in discriminating between normal livers
and those exposed to the steatotic diet at 1 and 2 weeks.
The multiparametric analysis results were compared
with MR and histology to evaluate performance.

2 MATERIALS AND METHODS

2.1 Animal model and study overview

This study protocol was approval by the Institutional
Animal Care and Use Committee (IACUC) at the Univer-
sity of Texas at Dallas. Animal studies were conducted
using Sprague-Dawley rats (n = 19; Charles River
Laboratories, Wilmington, MA). The rats were randomly
divided into control (n = 7) and diet (n = 12) groups.The
control group was fed a standard chew, whereas for the
diet group, a methionine and choline deficient (MCD)
diet was given to induce nonalcoholic fatty liver disease
(NALFD). The rats were monitored for 2 weeks under
a 12-h day/night cycle with free access to food and
water.

Animal livers were imaged at week 0 (baseline),
week 1, and week 2 with US and MR scanners, and the
animals were sacrificed after the second week’s scan
for histological image analysis. Utilizing the acquired
US, MR, and histology images, we extracted features
that can characterize livers to assess fat accumulation.
Our study design is summarized in Figure 1, and the
details of this feature extraction are described in the
next Sections.
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MULTIPARAMETRIC US COMPARED WITH MRI 3

F IGURE 1 Flow diagram of study design. We acquired images or data from histology, MR, and US. Measured parameters are in
dashed-line boxes. Fat %: fat percentages, PDFF: proton density fat fraction, 𝛼: attenuation coefficient, 𝜆 and b: Burr parameters, B-mode I:
Brightness-mode intensity, SWA: shear wave attenuation, SWS: shear wave speed, PCA: principal component analysis, PC1: the first principal
component, DSI: disease-specific imaging.

2.2 Histology

As the ground truth for assessing steatosis progres-
sion,we quantified the fat percentages utilizing histology
images. After the second week’s MR and US imag-
ing, animals were humanely euthanized, and livers were
excised and sectioned for hematoxylin and eosin (H&E)
staining. H&E images were binarized and processed
with morphological operations using ImageJ software.29

2.3 MR image acquisitions and PDFF

Liver MR imaging was performed using a 3.0 T pre-
clinical scanner (BioSpec 3T, Bruker Corp, Billerica, MA,
USA). Proton MR imaging was used to acquire sig-
nals that originate from water and fat molecules; these
signals differ in frequencies because of their chemical
compositions. The two-point Dixon with inhomogene-
ity correction method was used to acquire in-phase
and out-of -phase images and to estimate an inhomo-
geneity phase.30 Water-only and fat-only images were
obtained at each voxel by adding and subtracting the
in-phase and out-phase images after inhomogeneity
correction, respectively. For this, a T2 Turbo Rare scan
was used with the following imaging parameters: echo
time = 50 ms and echo spacing = 10 ms. Each liver
scan had a field of view (FOV) of 60 mm × 60 mm with a
slice thickness of 1 mm. The fat fraction calculation was
performed offline using ParaVision 360 (Bruker,Billerica,
MA, USA). Rectangular regions of interest (ROI) of size
100 mm2 were selected to avoid major blood vessels
and then used to evaluate the MRI-PDFF values.

2.4 US acquisitions and US features

We extracted 7 US features from B-mode imaging and
shear wave elastography (SWE). The features were H-
scan color level (H), B-mode attenuation coefficient (𝛼),
Burr distribution 𝜆 and b, B-mode intensity (B), shear
wave speed (SWS), and shear wave attenuation (SWA).
To measure the features from US signals, a B-mode
scan was performed using a Vevo 3100 scanner (FUJI-
FILM VisualSonics Inc, Toronto, Canada) equipped with
a 15 MHz center frequency linear probe (MX201), and
then SWE was performed using the Vantage 256 US
system (Verasonics Inc, Kirkland, WA, USA) equipped
with an L11-4v probe. As shown in Figure 1, the B-mode
imaging sequence provided radiofrequency (RF) data
that were processed for H-scan analysis and attenua-
tion estimation. In-phase quadrature (IQ) demodulation
and envelope detection calculated envelope data that
were processed for Burr distribution and B-mode inten-
sity estimation. The B-mode acquired 50 or 100 frames
for each scan, and every 5 frames were processed and
averaged for feature measurement.

The H-scan is a matched filter analysis, extracting
frequency information. Two hundred and fifty-six Gaus-
sian filters with different peak frequencies were used
for bandpass filtering in the frequency domain. These
filters estimate each sample’s frequency component
corresponding to scatterer size. Lower to higher fre-
quency components (larger to smaller scatterer sizes)
are mapped to red and blue colors, respectively, where
the red to blue range has 256 color levels from 1 to 256.
However, attenuation due to US propagation causes
a frequency down-shift (red-shift for the H-scan color
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4 MULTIPARAMETRIC US COMPARED WITH MRI

level) along the depth direction. Thus, we estimated the
attenuation coefficient31 prior to H-scan processing and
corrected the attenuation effect in the RF data.18 The
attenuation-corrected RF data was used as the input
for H-scan processing, and the estimated attenuation
coefficient was used as a feature.

Utilizing envelope data which includes brightness
information, we extracted three features: Burr distribu-
tion parameters 𝜆 and b, and B-mode intensity. Burr
distribution fitting for a histogram of envelope data was
performed to estimate 𝜆 and b. The distribution is:

P (A) =
2A (b − 1)

𝜆2

[(
A

𝜆

)2
+ 1

]b
(1)

where P(A) is a probability density governed by the Burr
distribution, and A is the envelope data amplitude. The
fitting estimates are 𝜆 and b;𝜆 is a scale factor increasing
with US gain, and b is a power law exponent depending
on scatterer distributions. Further, the echo amplitude
is estimated by averaging the envelope data intensity
which estimates B-mode intensity, which is also related
to Burr 𝜆.

A custom SWE imaging sequence consisting of
three rapid push beams was implemented on the pro-
grammable Vantage 256 US system (Verasonics Inc.).32

The push beam used an aperture size of 64 elements
and a pulse length of 230 μs.The push beam was placed
along the tissue depth with 2 mm spacing and in the
region of liver parenchyma, avoiding major blood ves-
sels. The induced shear waves are tracked by ultrafast
plane wave imaging with a frame rate of 10 kHz. A 2-
dimensional (2D) algorithm was used to calculate tissue
displacement from the beamformed IQ data. Thereafter,
a 2D fast Fourier transform of the tissue displacement
data was used to estimate parameters of liver tissue
viscoelasticity, namely the SWS and SWA.

2.5 Multiparametric analysis and
feature selection

Our goal for multiparametric analysis is to combine
the individual US parameters and obtain a combined
parameter which performs better than the individual US
parameters, MRI-PDFF, and histology. The performance
for individual parameters and the combined parameter
was evaluated using a correlation coefficient (R) with its
p-value,1D support vector machine (SVM) classification
accuracy, and leave-one-out cross validation (LOOCV).
We extracted the seven US features and performed
feature selection (Figure 2). Although we extracted the
seven features, some features might not contribute to
assessment of fat accumulation and classification of
different fat accumulation levels, and there might be

F IGURE 2 Feature selection for multiparametric analysis. H:
H-scan color level, 𝛼: attenuation coefficient, B: B-mode intensity, 𝜆
and b: Burr parameters, SWS: shear wave speed, SWA: shear wave
attenuation. PCA: principal component analysis, PC1: the first
principal component, SVM: support vector machine.

high dependence between some features. Therefore,
we investigated eight feature combinations that have
seven to three selected features, as listed in Figure 2.
Specifically, one feature combination includes all seven
features, while others exclude one–four features based
on each feature’s correlation coefficient with MRI-PDFF
and histology fat %. The eight different combinations
were selected based on each feature’s R and US
physics. Features with lower R were excluded but fea-
tures with higher R were included.Furthermore,we tried
to select conceptually independent features from distinct
categories based on US physics. We extracted features
based on the categories of attenuation, frequency shift
information, B-mode brightness, and SWE, and thus we
also investigated feature combinations including at least
one feature from a category. If there were more than one
feature from a category and there was high correlation
between the features,one feature was included and then
the others were excluded.

For each feature combination, Z-score normaliza-
tion was initially applied to normalize different features’
scales. Using the normalized features, a principal com-
ponent analysis (PCA) was performed.The first principal
component (PC1) was used to calculate correlation
coefficients with MRI-PDFF and histology fat percent.
Using the PC1, 1D SVM classification was performed
to differentiate fat accumulation levels, which can eval-
uate separation between classes; higher classification
accuracy indicates less overlap between classes. A
one-versus-the rest approach33 was utilized for SVM
classification of the three classes. Among the feature
combinations,a feature set was selected,which showed
higher R and less overlap between classes, and better
LOOCV results (with higher accuracy and lower mean-
squared error (MSE)). In this way, individual US features
were combined into PC1,a combined 1D parameter, that
includes information extracted from multiple parameters.
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MULTIPARAMETRIC US COMPARED WITH MRI 5

F IGURE 3 Multiparametric imaging. (A) Imaging concept with
DSI colormap. PC1 is a combined parameter obtained from
multiparametric analysis. A threshold differentiates normal and fatty
tissue area showing B-mode gray scale and DSI color, respectively.
(B) Optimization of DSI to set a threshold, which aims to provide DSI
fat % consistent with ground truth histology fat %.

The performance of the selected feature set was eval-
uated by investigating SVM classification accuracy; the
LOOCV approach was used, resulting in an averaged
accuracy and MSE34 for the different combinations of
parameters.

2.6 Multiparametric imaging—DSI

To visualize the results of the multiparametric analysis,
we propose a multiparametric imaging method to pro-
vide a simple color display of the results. Beginning with
the concept of disease specific imaging (DSI)24,27 which
utilizes the inner-product and the SVM, we simplify the
imaging method. The combined parameter, PC1, is used
for color imaging intensity, and we set a threshold to dif-
ferentiate between normal and fatty tissue (Figure 3a).
Fat accumulation (DSI fat area percent, DSI fat %) is
quantified by:

DSI fat % =
Fatty tissue area

Total area within ROI
× 100%. (2)

The DSI processing is optimized by setting a thresh-
old (threshold PC1) as shown in Figure 3a.The 1D SVM
for PC1 can be an automatic threshold setting. However,
a decision point determined by the 1D SVM relies on
the training data set.Specifically,when using later-stage
fatty livers for the classification between normal and fatty
tissue, the threshold is further from the average PC1 of
the normal class when compared to using earlier-stage
fatty livers.Therefore,we set a threshold based on histol-
ogy fat % instead of utilizing SVM results by solving an
optimization problem. The optimization was performed
by comparing the DSI fat % (y) to the ground truth his-
tology fat % (x), and the objective function was defined

by:

minimize
threshold PC1

|1 − a| (3)

subject to the constraint function of y = ax + b which
is a linear fit line of the scatter plot of x and y from his-
tology fat % and DSI fat %, respectively, as shown in
Figure 3b; where a is the slope and b is the intersec-
tion of the line. DSI fat % (y) can be determined by the
threshold PC1; the fatty tissue area in Equation (2) is a
set of pixels which has measures of PC1 > threshold
PC1. Since our goal is obtaining DSI fat % comparable
to the histology measurement,the objective function was
defined to have a slope close to 1. Depending on the
threshold, DSI can overestimate, or underestimate, fat
%.Examples of overestimation and underestimation are
provided in Figure 3b, in the first (threshold PC1 = −11)
and third (threshold PC1 = −14) plots, respectively. With
an optimal threshold as shown in the middle plot of
Figure 3b (threshold PC1 = −12.5), the linear fit line of
measured data points, including control and diet groups,
is almost close to the line y = x, indicating a slope a = 1.

3 RESULTS

3.1 Multiparametric
analysis—quantification of fat
accumulation

Seven individual US parameters (H, 𝛼, B, 𝜆, b, SWS,
SWA), MRI-PDFF, and histology fat % were measured,
and US parameter correlation with MRI-PDFF (Figure 4)
and histology fat % (Figure 5) were determined (cor-
relation coefficient (R)). Figure 4 includes data points
measured at weeks 0, 1, and 2, however Figure 5 solely
provides data measured at week 2 to include histology
results.As shown in Figure 4,H-scan color level showed
the highest correlation with MRI-PDFF, and measure-
ments with higher correlation in order were H, 𝛼, 𝜆, B,
SWA,SWS,and b.Burr b and SWS showed |R| less than
0.1 (p-value > 0.05), which may not be able to charac-
terize fat accumulation, and thus needs to be excluded
for multiparametric analysis.

Figure 5 shows MR and US parameter correlation
with histology. MRI-PDFF showed the highest R = 0.89
(p-value < 0.05), which is higher than the correlation
coefficients for all US parameters. Thus, the MR param-
eter can assess fat accumulation better than the US
parameters when investigating individual parameters.
Among the US parameters, H-scan color level, B-mode
attenuation,B-mode intensity,and Burr 𝜆 resulted in high
R > 0.8 (p-value < 0.05). SWA was also correlated with
histology fat % (R= 0.48,p-value < 0.05),but Burr b and
SWS were not correlated with histology fat % (|R| < 0.3,
p-value > 0.05).
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F IGURE 4 Individual US parameters and correlation (R, solid line) between US parameters and MRI-PDFF.
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F IGURE 5 Individual US parameters and MRI-PDFF and correlation between histology and MR/US parameters. Only week 2 data are
available due to histology.

3.2 Multiparametric analysis—feature
selection and a combined parameter

Eight parameter combinations were investigated as
listed in Table 1. For each combination, PC1 was cal-
culated and used to evaluate performance (correlation
and SVM classification accuracy).As mentioned in Sec-
tion 3.1, the correlation coefficient between MRI-PDFF

and histology is 0.89 (p-value < 0.05), but correla-
tions between PC1 and histology resulted in equal to
or over 0.9 (p-value < 0.05). The highest R is 0.94
(p-value < 0.05). Therefore, our multiparametric analy-
sis suggesting the combined parameter PC1 achieved
better performance in assessing fat accumulation com-
pared with the MR parameter. Further evaluation results
of performance are provided in Table 1. To select the
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MULTIPARAMETRIC US COMPARED WITH MRI 7

TABLE 1 Feature combinations and performance for feature selection from this limited set of livers.

Parameter
combination

#
featurea

|R| Histologyb

(Week 2)

|R| MRc

(Weeks
0,1,2)

1D SVM %d

(GTe: Histology
-Week 2)

1D SVM %d (GTe:
MR-PDFF -Weeks
0,1,2)

3D SVM % LOOCVf

Training
accuracy %

Testing
accuracy % MSE

(H, 𝛼, B, 𝜆, b,
SWS, SWA)

7 0.93 0.82 100 91.07 100 100 0

(H, 𝛼, B, 𝜆,SWS,
SWA)

6 0.93 0.82 100 91.07 100 100 0

(H, 𝛼, B, 𝜆, SWA) 5 0.93 0.83 100 92.86 100 100 0

(H, 𝛼, B, 𝜆) 4 0.94 0.83 100 94.64 100 100 0

(H, 𝛼, 𝜆, SWA) 4 0.93 0.84 100 100 100 100 0

(H, 𝛼, B, SWA) 4 0.90 0.83 100 98.21 100 100 0

(H, 𝛼, 𝜆) 3 0.94 0.84 100 98.21 100 100 0

(H, B, 𝜆) 3 0.92 0.81 100 83.93 99.87 96.43 0.3574

…

(𝜆, b, SWA) 3 0.83 0.56 83.33 69.64 78.38 71.43 0.4486

(b, SWS, SWA) 3 0.15 0.23 61.11 62.50 68.34 67.85 0.6486

Shading indicates the selected combination for multiparametric study.All correlation coefficients in this table have p-value < 0.05.Higher accuracy of 1D SVM indicates
less overlap between clusters of the fat classes. LOOCV evaluated the performance of fat quantification in higher dimensional space and is illustrated in Figure 7.
a# feature: number of features.
b|R| Histology: correlation |R| with histology.
c|R| MR: correlation |R| with MRI-PDFF.
dSVM %: SVM accuracy %.
eGT: ground truth.
f LOOCV: leave-one-out cross validation.

best combination, we investigated the correlation with
the ground truth histology (|R| Histology). Further, the
correlation with MRI-PDFF (|R| MR) was investigated
because MRI-PDFF can be used as a biomarker to
quantify fat fraction with high performance.8 In addition
to the correlations, we also evaluated performance of
the combined parameter by examining how much the
1D measurements overlap between different classes.
The overlapped intervals were evaluated using 1D SVM,
and thus all data were used as inputs of 1D SVM. The
1D SVM classification outputs can quantify the overlap;
less overlapped data between classes resulted in higher
classification accuracies. Furthermore, LOOCV results
with SVM classification accuracy and MSE were pro-
vided for all investigated combinations. Since we first
selected the eight combinations in Figure 2 based on
each feature’s R and US physics, their performances
seemed high for all combinations; the bottom two rows in
Table 1 provide two additional combinations,which were
excluded for the eight-combination selection because
they were expected to have low performance based on
R and US physics.

Among the eight combinations, three representative
combination results are shown in Figure 6, which pro-
vides correlation plots and 1D SVM classifications to
show feature selection metrics. The right-most col-
umn in Figure 6 illustrates SVM classification and PC1
distribution in 1D space. We investigated two classifi-
cations where the upper and lower plots differentiated
two classes of the normal/week two diet group and

three classes of the normal/diet (week 1)/diet (week 2),
respectively. The feature combination of (H, 𝛼, 𝜆, SWA)
resulted in 100% accuracy for the three-class classi-
fication without overlap between groups (Figure 6c).
According to Figure 6 and Table 1, the parameter
combination (H, 𝛼, 𝜆, SWA), tended to show the best
performance, and thus it was used for multiparametric
analysis and imaging in this study.

Moreover, PCA calculated the second and third prin-
cipal components (PC2 and PC3) in addition to PC1.
The selected four features of (H, 𝛼, 𝜆, SWA) were
reduced into three parameters of PC1, PC2, and PC3,
which can illustrate fat accumulation trajectories in 3D
space as shown in Figure 7a. The gray and yellow
dashed lines show trajectories over time for the diet
group and the normal group, respectively. The yellow
dashed lines showed fat accumulation trajectories from
right to left. Figure 7b shows SVM classification for the
three classes of week 2 diet, week 1 diet, and normal
group. The 3D SVM LOOCV iterated observations of
training/validation, and each iteration has 55 training
data and one validation data. Representative five train-
ing/validation sets are provided in Figure 7c, and as
shown in the results, all validation sets were classified
correctly with the trained decision planes, meaning
all iterations had 100% accuracy with MSE = 0 for
(H, 𝛼, 𝜆, SWA). Further, LOOCV results for the other
combinations were provided in Table 1. Therefore, our
multiparametric analysis combining the US parameters
performed successfully, and we were able to assess
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8 MULTIPARAMETRIC US COMPARED WITH MRI

F IGURE 6 Correlation coefficients and 1D SVM accuracies for representative feature combinations, including an optimal combination. (A)
includes all extracted features: (H, 𝛼, B, 𝜆, b, SWS, SWA). (B) includes 5 features after excluding the two lowest-performing features, b and SWS:
(H, 𝛼, B, 𝜆, SWA). (C) shows the selected optimal combination of (H, 𝛼, 𝝀, SWA). Normal (SVM), wk1 diet (SVM), and wk2 (SVM) to indicate the
output of 1D SVM classification; the area boundaries denote class boundaries for the liver conditions.

progressive fat accumulation in early stages over time
from week 0 to week 2.

3.3 Multiparametric imaging—DSI

PC1 obtained from the feature combination (H, 𝛼, 𝜆,
SWA) was used for multiparametric imaging. To set a
threshold to differentiate normal from fatty tissue as
described in the Section 2.6. Multiparametric Imaging—
DSI and Figure 3, we investigated PC1 thresholds
between −15 and −10, and calculated DSI fat %.
Figure 8a shows DSI optimization output with a resulting
slope of a linear fitted line. Thresholds less than −12.5
underestimated fat accumulation levels as the slopes
are less than 1, but thresholds greater than −12.5 over-
estimated fat percentages. In other words, DSI fat % is
less than histology fat % for thresholds less than −12.5,
whereas DSI fat % is greater than histology fat % for
thresholds greater than −12.5. The PC1 threshold of
−12.5 optimally estimates fat %. Figure 8b shows the

measured data and its linear fit line indicating slope = 1
when using the optimal PC1 threshold of −12.5. The
correlation between DSI fat % and histology fat % was
R = 0.93 (p-value < 0.05).

Example images of B-mode, H-scan, DSI before
thresholding, DSI, and MRI-PDFF are displayed in
Figure 9. A DSI method is used in this study to
assess and visualize fat accumulation level in livers
by combining multiparametric measurements including
information extracted from B-mode brightness,scatterer
size, attenuation, and SWE corresponding to Burr 𝜆, H-
scan color level, attenuation coefficient 𝛼, and SWA.
H-scan color level and 𝛼 are local parameters; H-scan
measures a color level for each pixel, whereas atten-
uation estimation measures 𝛼 for each scanline. Burr
𝜆 and SWA are global parameters, having a measure-
ment within a ROI. Therefore, by combining the four
parameters, PC1 produces a color image DSI with pixel
resolution. Figure 9 presents five liver cases with pro-
gressive fat accumulation levels from left to right; fat
accumulation levels were verified by histology fat %.
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MULTIPARAMETRIC US COMPARED WITH MRI 9

F IGURE 7 Multiparametric analysis showing (A) fat accumulation trajectories and (B) SVM classification. We appliedleave-one-out cross
validation (LOOCV) to 56 data, which were divided into 55 training and 1 validation data. (C) displays 5 representative iterations of LOOCV.

(a)

(b)

F IGURE 8 (A) DSI optimization to set an optimal threshold. (B)
Correlation between DSI fat % and histology fat %.

The left-most case is a control rat at week 2, whereas
the others are diet rats at week 2 with difference
in histology fat %. Due to fat accumulation, B-mode
and H-scan images show increase in brightness and
blue color fraction, respectively. MRI-PDFF also shows
increase in brightness. The image changes may not
be clearly seen due to subtle differences between the
B-mode, H-scan, MRI-PDFF images. However, our mul-
tiparametric analysis revealed higher performance in
quantifying fat accumulation than any individual param-

eters, including B-mode and H-scan parameters, and
thus multiparametric imaging also demonstrated more
sensitive imaging illustrating fat quantification,as shown
in Figure 9c,d. Figure 9c presents DSI before threshold-
ing normal tissue area, depicting an increase in yellow
color brightness from left to right; brighter yellow color
can indicate a higher probability of fat accumulation.
Figure 9d presents DSI results, highlighting the fatty
tissue area in yellow. In addition to yellow brightness
changes, the area of yellow overlay can indicate relative
fat accumulation levels, so an increase in yellow over-
laid area is shown from left to right.Moreover,MRI-PDFF
image differences between week 2 diet rats are not
clearly visible in Figure 9e. In contrast, the segmented
DSI images in Figure 9d provide a better differentiation
between the diet animals.

4 DISCUSSION

Our multiparametric analysis is capable of quantifying
fat accumulation levels, including early-stage steato-
sis induced by MCD diet for 2 weeks. This approach
combined US features into a combined parameter
(PC1) resulting in a correlation coefficient of R = 0.93
(p-value < 0.05) with histology fat quantification, out-
performing the MR parameter PDFF (R = 0.89, p-value
< 0.05). Although individual US features showed less
correlation with histology compared to MRI-PDFF as
shown in Figure 5, multiparametric analysis success-
fully combined individual parameters and achieved
higher performance than MR. Utilizing the combined
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10 MULTIPARAMETRIC US COMPARED WITH MRI

F IGURE 9 Example images of (A) B-mode, (B) H-scan, (C) DSI before thresholding, (D) DSI, and (E) MRI-PDFF for five different livers. The
left column displays a control (normal) liver, and the next four columns to the right are four livers from the steatotic diet group after 2 weeks.
There is increasing fat accumulation from left to right, as verified by histology, with a maximum value on the right of 33.2 percent fat. H-scan and
DSI color bars are presented. The H-scan colors from red to blue indicate smaller to larger scatterer sizes. The DSI colors from dark to light
yellow visualize fat accumulation levels: lighter yellow indicates more fat inclusions accumulated.

parameter, we reached 100% classification accuracy
for three different fat accumulation levels (normal group
and fatty liver groups at 1 and 2 weeks) as illustrated in
Figure 7. Furthermore, based on the combined parame-
ter, we suggested a multiparametric imaging framework,
a simplified DSI, visualizing progressive fat accumula-
tion by highlighting fatty tissue area as shown in Figure 9,
which achieved a correlation R = 0.93 (p-value < 0.05)
for fatty area segmentation compared to histology.

To achieve the high performance of multiparametric
analysis, there are essential contributions from individ-
ual US features. This study extracted features from
H-scan, attenuation estimation, B-mode backscattering,
and SWE. These four categories can be considered
conceptually independent. In multiparametric analysis,
it is helpful to select more independent features. First,

the H-scan analyzes the backscattered echo signals
for frequency shifts and estimates scatterer sizes. The
H-scan showed increase in color levels due to fat
accumulation over time (Figure 4), meaning fat inclu-
sions cause tissue structure changes resulting in a
decrease in US scatterer size.Further research remains
to understand how and why the fat inclusions render
the US scatterer size smaller. Second, attenuation due
to US beam propagation was estimated by analyz-
ing frequency down-shift over depth. This study found
that fat accumulation leads to an increase in atten-
uation (Figure 4). Previous studies35–38 also reported
higher attenuation in steatosis compared to normal liv-
ers. Third, backscattered US echo displayed in B-mode
intensity was analyzed by measuring the intensity of
B-mode envelope data and fitting the envelope data
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MULTIPARAMETRIC US COMPARED WITH MRI 11

using a Burr distribution. The envelope intensity and
Burr parameter 𝜆 estimate brightness, and Burr param-
eter b estimates envelope histogram distribution. In
this study, Burr b tended to remain unchanged as fat
accumulated for the investigated early-stage steato-
sis, whereas the backscattering estimated by envelope
intensity and Burr 𝜆 seemed to increase due to fat
accumulation (Figure 4). We investigated the correla-
tion coefficient between the measurements of envelope
intensity (B) and Burr 𝜆 and found a high correlation
of R = 0.88 (p-value < 0.05) between B and 𝜆. Fur-
ther, as reported in Table 1, we investigated parameter
combinations, which include both (H, 𝛼, B, 𝜆, SWA)
and each (H, 𝛼, 𝜆, SWA)/ (H, 𝛼, B, SWA) parameter.
Including only one parameter 𝜆 instead of including
two dependent parameters showed the highest perfor-
mance among the three combinations. Thus, selecting
independent parameters can result in a higher per-
forming multiparametric analysis. Lastly, we extracted
SWS and SWA from viscoelasticity utilizing SWE. An
increase in SWA was detected due to fat accumulation,
whereas SWS seemed unchanged as fat accumulated
for 2 weeks (Figure 4). Thus, SWA was included but
SWS was excluded for the multiparametric analysis in
this study. In summary, we extracted seven relatively
independent features within the four categories, and
only one feature from each category was included for
multiparametric study; because the combination (H, 𝛼,
𝜆, SWA) includes all four categories considered in this
study and also tended to show higher performance than
the other combinations as reported in Table 1. Thus, the
four categories of tissue structure changes, attenuation,
backscattering, and viscoelasticity contribute to assess
and quantify fat accumulation in liver. Furthermore, in
multiparametric analysis, we suggest including more
independent features but excluding dependent features.
This results in higher performance than solely including
more features without considering feature dependence.
We focused on including 4 independent feature cate-
gories which have different US physics characteristics,
and the evaluation metrics of the correlation coeffi-
cients and SVM classification accuracies supported
our approach, showing the combination (H, 𝛼, 𝜆, SWA)
tended to outperform the others. However, note that per-
formances between different combinations are not nec-
essarily statistically significant. If there are combinations
including only one feature among several dependent
parameters (e.g., B-scan intensity and Burr λ), these
combinations can perform similarly without showing sig-
nificant differences. More extensive statistical analysis
including post-hoc corrections on a larger set of sam-
ples would make our approach more reliable in future
work.

When investigating changes in individual US parame-
ters over time in Figure 4, H-scan color level, B-mode
attenuation, and SWA tended to increase over time,
indicating progressive fat accumulation; Burr b and

SWS did not seem to detect fat accumulation with
|R| < 0.1.However, the two parameters of B-mode inten-
sity and Burr 𝜆 detecting US echogenicity decreased
from week 0 to 1 and then increased from week 1
to 2. The week 1 measurements were slightly lower
than the baseline. In this study, we only obtained his-
tology images from normal livers and the week 2 diet
group. Therefore, we cannot explain the week 1 results
(decrease in some parameters), and further research is
required.

Previous US multiparametric analyses have
shown promise in the improvement of liver disease
assessment.21,22,39,40 Specifically, Pirmoazen et al.21

showed agreement with our findings; their spectral
driven parameters, attenuation coefficient, and Nak-
agami parameter correspond to our H-scan, attenuation
coefficient, and Burr parameters, respectively. Pir-
moazen et al.also reported that the SWE parameter had
lower performance compared to the other parameters,
which was demonstrated in our results as well. Previ-
ous multiparametric studies demonstrated quantitative
assessment of performance, for example providing
correlation coefficients or classification accuracies.
However, we have further provided DSI, a visual display,
which combines information from multiple parameters.
DSI can help clinicians understand results of a multi-
parametric analysis without background knowledge of
the parameters.

For diagnosis of hepatic steatosis, biopsy is still the
gold standard. However, recently MR has been utilized
to quantify fat fraction in livers due to its noninvasive
nature. MRI-PDFF is one of the most used MR quan-
tification methods for accurate fat quantification,41 but
to become a surrogate biomarker for biopsy, further
improvement is required.42 Our noninvasive technique
demonstrated higher precision in the quantification
of fat accumulation than MRI-PDFF, with the advan-
tages of lower cost and higher accessibility. Hence,
with further validation of our approach, our multipara-
metric US analysis could have more potential than a
single MR parameter (e.g., MRI-PDFF) to be an alter-
native to biopsy as the gold standard in assessing
steatosis.

Moreover, although our multiparametric approach has
been validated using US features in this paper, this
approach can be applied to MR or computed tomogra-
phy (CT) data.The radiomics study has been performed
with multiple features, and there has been effort to
combine multiple features using artificial intelligence
(AI).43 Multiparametric MR analysis for the detection of
non-alcoholic fatty liver diseases was also performed.44

Thus, some multiple features from previous studies can
be utilized for the first step of “parameter estimation” in
Figure 1.Then with the MR or CT features, the other two
steps of “multiparametric analysis”and “multiparametric
imaging” enable the application of our method to MR or
CT data.
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12 MULTIPARAMETRIC US COMPARED WITH MRI

5 CONCLUSION

Our quantification and imaging successfully assessed
fat accumulation levels in early-stage hepatic steato-
sis, where low grade steatosis was induced for 2 weeks
with fat percentages between 14% and 33%. The
quantification was performed by obtaining a combined
parameter from individual US features, and it resulted
in a high correlation (R = 0.93, p-value < 0.05) with
histology fat percentages, outperforming the correlation
between MRI-PDFF and histology (R = 0.89, p-value
< 0.05). Moreover, the suggested DSI can illustrate
the probability of fat accumulation locally in the liver.
This simple visual display could provide clinicians with
a more convenient steatosis diagnosis tool since it
does not require the understanding of individual US
features.
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