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Correction of Periodic Motion Artifacts Along the
Slice Selection Axis in MRI

T. MITSA, K. J. PARKER, SENIOR MEMBER, 1EEE, W. E. SMITH,
A. M. TEKALP, mMeEMBER, 1EEE, AND J. SZUMOWSKI

Abstract—In magnetic resonance imaging (MRI), periodic motion
such as normal breathing, causes artifacts that are primarily mani-
fested as ‘‘ghost’’ images in the phase encoding direction of the image.
In this paper, we model the effect of periodic motion of a single slice
in the direction of the slice selection axis as amplitude modulation of
the raw data with a motion kernel along the phase encoding direction
in the Fourier domain. We show that this motion can be detected in
1-D projections of the raw data along the frequency encoding direc-
tion, which in combination with appropriate filtering leads to the re-
covery of the motion kernel. Finally, we demonstrate, by means of sim-
ulation examples, that significant reduction in the amplitude of the
ghost artifacts is obtained, when we filter the image by the inverse of
the motion kernel. Some issues to be investigated before the technique
can be used in a clinical environment are mentioned.

I. INTRODUCTION

N MRI, single plane and multiple plane data acquisition

can last several minutes, which makes the technique
sensitive to tissue motion and blood flow. Periodic motion
such as breathing produces undesirable blurring and
‘‘ghost’” images or periodic replications of moving ana-
tomic structures. The ghost images can overlap with other
structures, obscure abnormalities, and generally degrade
the diagnostic content of the images. A theoretical model
for periodic motion artifacts was first developed by M. L.
Wood [1]. He demonstrated that motion in any of the three
axes (x, y, z) creates ghost artifacts along the phase cn-
coding direction in two-dimensional (2-D) Fourier trans-
form imaging.

The artifact suppression methods that have been re-
ported in the literature so far are instrumental techniques
related to novel data acquisition schemes such as ordered
phase encoding and gradient waveform modification [2],
[3]. A review of some artifact suppression techniques is
given in [4]. An algorithmic approach which requires the
use of specially encoded *‘navigator’” echocs has been re-
ported recently [S]. The method proposed in this paper is
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novel in that it is an algorithmic post-processing tech-
nique for periodic motion artifact suppression, and does
not require monitoring of thc motion.

In this paper, we examine periodic motion along the z
(slice selection) axis and model its effects as amplitude
modulation of the raw data by a motion kernel along the
phase encoding direction. The model assumes slow peri-
odic movement of a single slice in the z-direction. This is
a simplification of the actual phenomenon in that our
model ignores the effect of the structures above and below
this slice. A study to include thesc effects into the model
is being conducted. We review the principles of 2-D Fou-
rier transform (spin-warp) MRI in Section II.A. In Sec-
tion II.B, we develop a new model for the effect of peri-
odic motion in the slice selection direction on MRI. Based
on this model, we propose a new algorithm for the detec-
tion of the motion parameters and the correction of the
corresponding motion artifacts in Section II.C. We dem-
onstratc thc feasibility of the proposed algorithm with
simulation examples in Section III.

II. THEORY
A. Principles of 2-D Fourier Imaging

A very common MRI data acquisition technique and
also the one used in this paper is 2-D Fourier imaging [6],
[7]. In this method, it is the Fourier transform of the final
image which is actually measured during the acquisition.
The pulse sequence commences with the simultaneous ap-
plication of a 90 degree RF pulse and a z gradient G.,
which results in the selection of a slice (Fig. 1).

After the slice has been selected, the signal must be
spatially encoded in the x and y directions within the slice.
A second gradient (G, ) applied along the x direction per-
mits positions along this direction to be frequency en-
coded. A third gradient (G,) applied along the y direc-
tion, permits positions along this direction to be phase
encoded, i.e., it assigns specific phase to the precessing
nuclei as a function of y-direction.

A spin echo is recorded following the reverse G, pulse
as shown in Fig. 1. The process is repcated with a differ-
ent G, every Ty seconds until sufficient phase encoding
steps are recorded.

Assumc that a stationary point source exists at (xg, Yo,
Zp) and it has intrinsic strength m,. The actual strength of
the point source is rg i (z,) where it (zp) is the excitation
cross section of the slice. The excitation cross section of
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the slice depends upon the shape of the gradient of the
magnetic field and upon the spectrum of the RF excitation
pulse.

Defining as N, the number of phase encoding steps, N,
the number of frequency encoding steps, and < the gy-
romagnetic ratio, the acquired MRI signal can be written
as following {1]:

S(’v G\" ZO) = mOm(ZO) Er(’) E\(G\)

Y
+ ==ty |G
<27r "‘"O>G'\ D}
t G, t G,
X comb | —, — Jrect | —, ——
At” AG N, At N.AG

t G\‘

*comb [ ——, ——

N.Ar” N AG
where E, (1) and E,(7) are apodization functions and *
denotes convolution. For the sake of convenience we will
ignore in the following the apodization, rect, and comb
terms because we assume that the relaxation and sampling
effects do not contribute to the analysis. Thus S(z, G., z0)

can be written as:
S(t, Gy, z9) = mym(zy) exp {(—27”' <~zl G,.xu>t
] T

+ <% tr\,yo> G, )} (2)

Defining as K, = —(y/2#x)G,r and K, = (vy/27)1,G,
the axes in the raw data domain, (2) can also be written

(1)

KRR

as follows:
S(K‘., K\w ZO) — m.”—z(za)e(ﬂky \me(—rl(_r,\n)' (3)

B. Model for Periodic Motion Along the Slice Selection
Axis

Now we assume that the point source is moving period-
ically in the z direction and represent its motion by the
function z(7T ) where T is the motion time variable. Ex-
panding in a Fourier series:

=]

Z Cne(lrinﬁlTi (4)

n=-omw

2(T) =

where fo = 1 /7 with 7 the period of the motion. The com-
plex coefficients c, are given by

r+7
= S z(a)e! TN gq, (5)

1

Becausc 7 itself is a function of time T for our moving
point source, we can write an expression for the magne-
tization of the source as a function of time:

m(T) = m(z(T)). (6)

Because this new function is also periodic we can also
write it as a Fourier series:

w

Z d"e(?_winf.T) (7)

n=-—-o

with an expression for the new coefficients d, similar to
that of equation (5) with the integral now over m(a). Set-
tlng dO = 1’ dn = (Amﬁl/sz)e(M”)’ d—n = (Am—n/
2mg) e ™ equation (7) becomes:

Am, cos (2anfyT + o,) (8)

m(T) =1+ Zx -
n=1 Mg

where Am, refers to change in mass due to the nth har-
monic of the periodic motion. Substituting m(T) in (3),
the expression for the acquired MRI signal for a moving
point source becomes:

S(Kx, K."’ T) = mom(T)e(fiK..m)e(—A'K\vo)

—iKex _iK
(moe( lK\\()]e( l\}(l))

o Am,
, {1 + 5 M os (2anfy T + ¢,,)1.
n O

=1 m

(9)

We assume that Am,/my is less than unity so m(T) is
always positive and ¢, is the phase of the breathing with
respect to the start of data acquisition for the nth har-
monic. In this paper, we will assume that thc motion of
the source is slow compared to data acquisition rates along
the frequency x-gradient, but that the motion is not slow
between y-axis phase encodings. The motion time T and
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K, (or G,) are connected through the following equation

[2}:

=T

= Tr (10)
where A K are the steps by which K, is incremented and
Ty is the time between phase encoding steps. This equa-
tion transforms the independent variable in (8) from T to
K,

With this change of variables, we may write:

27ranK\.

N.AK
where N, = foN, Ty is the number of breathing cycles per
entire scan. After the change of variables, equation (9)
becomes:

g\
m(K) =1+ 2 ~2 cos
: n=1 My

S(KX, K‘) mom(l(_‘.)e( —iK\xo)e,( —iKvy0)

il

(moe( —iKex) of —iK,\.m))
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(12)

The final image /(x, y), is the inverse Fourier transform
of the collected data:

I(x,y) = SK Lv S(K., K,) dK. dK,.  (13)

¥

Replacing S(K,, K,) from (12), (13) can be written as:

I(x, y) = SK SK m(,m(K\l)e("K“"""0”e“""(»"‘-“’” dK, dK,\“

(14)

Performing the integration over K, in (14) we get

I(x, y) = 5(x — x()) S (mom(K\.)e"iK“»“’))e(‘K\‘,") dK,.
Ky B .

(15)
The above integral is actually the inverse Fourier trans-
form of the product m (K,)e' =" According to the con-
volution and shift properties of Fourier transform pairs,
the above equation can be written as

I(x, y) = 8(x = x) <[ SK‘ mym(K,)e'" d[(‘}

*6(y—y0)>. (16)

Replacing m (K, ) from (11) /(x, y) becomes

I(x,y) = SK moe™ Y dK, + E]I SK Am,
2waN, K, o
- cos [ ———— | e'"* dK,
N,AK :

s Am, . nN,
myé(y) + 2 Te("‘"’6<y + N Ab[(>

n=1

Z Am, _ / nN,
+ 2 = sy - —= ).
S ¢ <" N\.AK> (17)

Therefore, /(x, y) consists of an impulse at the origin
plus smaller and phase shifted “‘ghost’” impulses at @ and
—a where a = nN,/N,AK. Thus the ghosts will appear
only along the phase cncoding direction and their distance
depends upon how many breathing cycles occur during
the data acquisition.

We now replace the point source with a stationary in-
finitely thin object m, (x, y) within the field of view. If
the entire object plane is moving periodically in the z di-
rection, then from (12) by replacing xq, y, with x, y and
integrating over x, y spacc the acquired signal S(K,, K,)
will be:

SR K) = | (e y)e 870 e dy
o A
X |\l + » 2
n=-o Mg
27nN,K, (18)
. - L +
cos N.AK @,
S Am,
S(Ke K.) = M(K,, K\-)[l oy S
N . n=-o My
2xnN, K,
- cos ____N‘.AK + @, (19)

where by M(K,, K,) we denotc the Fourier transform of
my;,(x,y). Note that m;, (x, y) denotes the artifact-free im-
age. We can also write (19) as:

L,
S(K,, K,) = M(K,, Kn[l + 2

nw, K,
©Cos | o +
N,

where w, = 27N, /AK.

n=1 My

¢ﬂ>:| (20)

C. Estimation of the Motion Kernel and Correction of
the Motion Artifact

Equation (20) indicates that the z-motion causes a mod-
ulation of the measured data in the K| direction. We at-
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tempt to correct for this modulation by essentially esti-
mating specific frequencies along K, at which excess
power is located and then suppressing the power at such
frequencies.

The detection and removal of the amplitude modulation
(the term in brackets in equation (20)), is done in the fol-
lowing steps:

1) We project the magnitude of the raw data along the
frequency encoding direction. Let Py, denote a projection
of the magnitude of M(K,, K,) as follows:

Puk) = | Mk k)ak. @)

then the projection of the magnitude of the raw data can
be expressed as:

PS(K\') = dK\'

Si >(K,, K,)

S Am, nw, K,
PM(K\.)[I + 2 —'cos( — +
: n=1 ny N,

where the last line substitutes from (20) and (21).
2) We define the inverse Fourier transform of the pro-
jection Py (K,) as:

pu(y’) = XPM(K\')eiK"“'de (23)
then from (22) and (23) the inverse Fourier transform of
the projection of the magnitude of the raw data is

pS(y!) = S PS(K\')eiK“'\Mde

5(y') + LA”’"

n=1

+Z

Z g ¢ ‘"ﬂ>| (24)

where f, = w,/27 and the prime on y indicates that we
have not returned to the original image space by virtue of
the projection and magnitude operations.

Our ability to detect in projections the motion-kernel
frequencies is based on the following assumptions:

(a) The effect of the motion in thc raw data domain
can be modeled reasonably well with finitely many terms
in (8), (b) ppy(y") is highly peaked around the DC term
with other frequencies at least two orders of magnitude
below, sincc Py (K,) is a magnitude projection and a
slowly varying function of K.

An example is shown in Figs. 2 and 3. As (24) shows,
the effect of the motion in the inverse Fourier transform
of the projection is additional impulses, where the mag-
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nitude and frequency provide information concerning the
location and frequency of the breathing artifact. Based on
the previous assumptions, in this paper we attribute to
motion those peaks in the magnitude of ps( y'), that are
at least two standard deviations above the low level base-
line, and refer to them as ‘‘motion’’ peaks.

3) For the estimation of the motion kernel G(K,),
we follow an approach that retains phase information: We
apply a bandreject filter to ps(y’), in order to eliminate
‘“motion’’ peaks. The bandreject filter (BRF) is unity for



314 IEEE TRANSACTIONS ON MEDICAL IMAGING. VOL. 9. NO. 3. SEPTEMBER 1990

all ¥’ except for a four-point window around each peak.
The coefficients of each bandreject window are (1 X
neighborhood mean / local mean) for the two center points
and (0.5 X neighborhood mean [local mean) for the two
others, where by neighborhood mean we mean the mag-
nitude of pg(y') in the vicinity of the ‘‘motion’” peak.
This bandreject operation produces an estimate of the pro-
jection without motion:

pu(y") = BRE(y’) ps(y'). (25)

The reason for using the bandreject filter with a four-point
window, instead of a simple inverse filter of the form
1/cos (27 ft + ¢) is that the single frequency model is
very sensitive to errors, and sampling in the frequency
domain may result in the effect that some frequencies of
the motion may not correspond to the sample frequencies.

4) We obtain an estimate of the projection without mo-
tion artifact, Py (K,), by taking the Fourier transform of
Pm(y).

5) Division of Ps(K,) with Py (K,) yields an estimate,
G(K,.), for the motion kernel:

PS(K\')
FM(K_\')

= G(K,)

N
[1+Z

n=1 My

(26)

Am,

il

cos (nw, K, + ¢,,)}. (27)

Since Ps(K,) is a motion-degraded projection, it contains
all the information about the motion phasc. Furthermore,
since Py (K, ) is a ‘*motion-free”’ projection, the division
of Pg(K,) with Py (K,) yields an estimate G(K‘,) that has
the correct motion phase.

6) The motion kernel inverse can then be used to mul-
tiply the raw data:

M(K,, K,) = S(K., K,) G7'(K,). (28)

7) Finally, the restored image /(x, y) is simply the in-

verse transform of the corrected raw data:

i(x,y) = F'[M(K. K,)]. (29)

III. REsuLTS

The steps of our algorithm are summarized in Table 1.

The image used for the simulations was a motionless
brain image. The raw data were (128 X 256) and the
image was obtained by filling with zeros the top and bot-
tom 64 lines of the raw data and taking the (256 X 256)
inverse Fourier transform. The projection of the raw data
along the frequency encoding direction, Py (K,), and its
inverse Fourier transform are shown in Figs. 2 and 3. We
see from Fig. 3 that py,(y') is highly peaked around the
DC and this conforms with our assumption. Note that
while taking the 128 point projection, the center 14 col-
umns are zeroed in order to avoid the dominant dc com-
ponent at the center for scaling purposes. Ghost artifacts
were simulated on the image, by multiplying the raw data

TABLE 1

Project along K. = Ps(X,)

F 1 (Ps(Ky)) = ps(v)

Apply bandreject filter to ps(y’) = pm(y’)

F(om(y) = Pu(Ky)

Divide Ps(K,) with Py (IS,) = G(K,)

Multiply S(K;, IK,) with G-'(K,) = S(K.,, K,)

il Bl Sl Kl Rl I e

FYS(K,,K,)) = I(z,y)

T T T T A
140.57AN(2.0°pi*1/1 20760, 783 10350 3*Bin((2 O+ 6.0ps | STHO.3°0.1°G0((2. 0PI 0143141}

G(K,)

[ 64
-63 X,

Fig. 4. G(K,), simulated motion kcrncl.

along the K, axis (phase encoding direction) with the

function:
27K,
B + 0.785

27K,
+ 0.15 sin T + 1.57

27K,
+ 0.05 sin <T + 3.141>, (30)

G(K,) =1 + 0.5sin <

which is shown in Fig. 4. Note that this corresponds to
truncating (8) after thrce terms. We detcct the motion kcr-
nel and correct for the motion artifacts by following the
steps described in theory: We project the motion-de-
graded raw data along the frequency encoding direction
and obtain Pg(K,). By taking the inverse Fourier trans-
form of the projection we obtain ps(y'). Ps(K,) and
ps(y") are shown in Figs. 5 and 6, respectively. Notice
the rather broad peaks around /,, /,, and /; (the locations
of the frequencies of our motion). This is due to the fact
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that none of the three frequencies of our motion kernel is
exactly divisible with 128 (the size of our IFT). There-
fore, the energy at fis distributed around the closest in-
teger to 128 /f where f is a frequency component of the
motion kernel.

In order to eliminate the ‘“motion’’ peaks and obtain
Pu(y’) we apply a bandreject filter to ps(K,) that elimi-
nates I, and /, because they are two standard deviations
above the baseline. /; is not being removed because it is
not above the two standard deviations limit. The bandre-
ject filter and py,( y’) are shown in Figs. 7 and 8, respec-
tively. The Fourier transform of iy ( ¥'), provides an es-
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timate of the projection without motion artifact, Py (K, ),
which is shown in Fig. 9. The estimate for the motion
kernel, G(K,), is obtained by division of Pg(y') with
Py(K,), and is shown in Fig. 10. The small deviation
from 1 of the ratio G(K,)/G(K,) (Fig. 11), shows that
the motion kernel was estimated with reasonable accu-
racy.

Finally, as shown in steps (6) and (7) of Table 1, we
multiply the raw data with the invecrse of the motion ker-
nel estimate and the restored image is just the inverse
Fourier transform of the corrected raw data. In Fig. 12 we
show the projection of the corrected raw data, which as
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Fig. 10. G(K\.), estimated motion kernel.

expected is the same as Py, (K,). In Figs. (13), (14), and
(15) we show, respectively,' the original, motion-de-
graded, and corrected brain images. In Figs. (16), (17),
and (18) we show the above images in the same order but
at higher contrast.

IV. DiscussioN

A simple model for periodic motion of a single slice
along the slice selection axis shows that the ‘‘ghost’” im-
ages result from amplitude modulation of the raw data.

| ]
| ‘ /\J\

jl‘- I \b\ / \\«va V\”LJV\’W\j\\f\AﬂWJ\W W\JN \
o 1 V

L L

[} . . -
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Fig. 11. Deviation from | of the ratio G(K_\.)/G(K} ).
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K, .
Fig. 12. Projection along K, of the restored image [(x. y).

This modulation can be detected by inspection of the one-
dimensional transform of the magnitude of the complex
data. This is somewhat analogous to the well known cep-
stral analysis [8], where a log operation would be applied
to the magnitude projection. In our case, that log opera-
tion is not necessary and does not add to the detectability.

It is also interesting to note that if we were to take the
transform of the projection of the power spectrum (mag-
nitude square as opposed to the magnitude), then by the
projection slice theorem this would be equivalent to ex-
amining the intensity autocorrelation of the image along
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(d) () (f)

Fig. 13. a) Brain image. normal contrast. b) Motion-degraded image, nor-
mal contrast c) Restored image /(x, ¥), normal contrast. d) Brain im-
age. high contrast. e) Motion-degraded image, high contrast. f) Restered

image /(x, y), high contrast.

the y axis. Again, this is not done since the information
we seek is explicitly on the magnitude spectrum and its
related functions. The procedure outlined has worked well
when the artifact is imposed on otherwise motion-free
clinical scans. A number of issues remain to be explored
before the technique can be exploited clinically, however.
Some concerns are: a) periodic versus nonperiodic motion
in patients, b) shift-invariant versus shift-varying motion,
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¢) minimum detectability of Am, /my in design of bandre-
ject filter, d) finite slice-thickness, and contamination of
the signal from structures in adjacent slices.

Also, the lack of analogous compensation for the more
difficult cases of x and y motion may limit the applicabil-
ity of this algorithm, since compound motions are likely
in practice. Research continues on these and related is-
sues. The z motion correction algorithm is a preliminary
step in a large and serious problem in MRI, and the initial
results are encouraging.
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