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New algorithms are described that provide insight into linear field propagation and offer 
significant reductions in computational complexity. The developments presented here include 
the usage of a recently developed discrete Hankel transform to implement two single step, 
planar propagation algorithms for baffled, radially symmetric, acoustic pressure or velocity 
fields; an update on the single step approaches that reduce computational complexity through 
geometrically determined spatial frequency limitations; and algorithms for extending to 
multistep propagation. Two equivalent means of introducing arbitrary medium attenuation 
into the above schemes are presented. Finally, a planar boundary crossing algorithm that 
accounts for refraction and reflection (but not multiple reflections) is added to one of the 
multistep propagating algorithms. The resulting algorithm is then used to examine the 
differences between the corresponding fields of a focused piston source operating in water and 
in a layered fat/liver (biomedical imaging) medium. The results yield computationally 
efficient algorithms that can be used for linear propagation of focused or unfocused beams in 
attenuating, multilayer media, and also provide the basis for a novel nonlinear propagation 
algorithm. 

PACS numbers: 43.20.Bi, 43.20.Hq, 43.20.Tb 

INTRODUCTION 

The propagation of acoustic fields from realistic sources 
involves significant effects of diffraction and medium at- 
tenuation. The Rayleigh-Sommerfeld diffraction (RSD) 
formula I provides an exact analytical expression for the ef- 
fects of diffraction on any linear field. For most fields and 
propagations of interest, though, the analytical solution to 
this formula is unavailable and the direct numerical evalua- 

tion is difficult. This formula is also an expression of Huy- 
gen's principle which characterizes diffractive propagation 
as that of the linear sum of a field's constituent point sources. 
As such, the diffractive propagation characterized by the 
Rayleigh-Sommerfeld equation may be viewed as a convolu- 
tion of the field (usually the source's) with an appropriate 
point spread function. It is well known that convolution of 
functions in one domain can be represented as multiplication 
of the Fourier transforms of the functions, and thus many 
have used the efficient fast Fourier transform approach to 
convolutions to calculate diffractive propagation. 

One of the first works that addressed the potential of 
Fourier transforms for the computation of diffractive field 
propagation was Ratcliffe's. 2 In this work, Ratcliffe used the 
fact that a two-dimensional Fourier transform of a harmonic 

field in a plane is equivalent to a decomposition of the field 
into a sum of harmonic plane waves traveling over a spec- 
trum of angles (this is analogous to the sine wave decomposi- 
tion implicit in a one dimensional Fourier transform). This 
equivalent sum of plane waves is referred to as the angular 
spectrum of the field, and it conceptually allows the diffrac- 
tive propagation of any harmonic field between two arbitrar- 
ily distant, parallel planes to be reduced in complexity to that 
of plane waves propagating between the same planes. The 
angular spectrum concept is the transform domain equiva- 

lent of Huygen's principle. Ratcliffe covered a wide range of 
cases to illustrate the application of the angular spectral de- 
composition to diffraction theory, although the specific ap- 
plication of interest was radio waves in the ionosphere. Op- 
tics textbooks such as those by Goodman 3 and Gaskill I also 
discuss this methodology. 

In acoustics, the angular spectrum methodology has 
been utilized by a number of investigators in a variety of 
applications. Maynard and Williams used it to investigate 
the possibility of subwavelength resolution acoustic hologra- 
phy 4 and to compute the field from planar radiators. 5 Ste- 
panishen and Benjamin applied the angular spectrum ap- 
proach to the forward and backward projection of planar 
acoustic fields. 6 Waag et al. 7 reported on a similar investiga- 
tion except they also explored the important topic of win- 
dowing in finite length, discrete operations. The windows 
investigated included those applied in the spatial domain to 
the point spread function and those applied in the spatial 
frequency domain to the analytical transform of the point 
spread function. Most recently, Shafer and Lewin 8 applied 
the angular spectrum method to the problem of backpropa- 
gation of acoustic fields for the purposes of transducer char- 
acterization. These works on acoustic diffraction have been 

restricted to the use of parallel planes with equispaced, rec- 
tangular grids and nonattenuating, homogeneous media. 

This paper reports on work further investigating the 
Fourier transform-based approach to diffractive propaga- 
tion. Our investigation treats the field propagation of planar, 
baffled, radially symmetric acoustic sources, though the 
general principles expounded in the paper are applicable to 
nonradially symmetric, planar sources as well. The con- 
straint of radial symmetry allows our computational efforts 
to be greatly simplified by utilizing a recently developed, 
discrete Hankel transform (DHT) algorithm. After briefly 
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presenting this DHT algorithm, we will then present radial 
fields computed for a baffled, uniform amplitude, piston 
source using two different transform based, single step, 
propagation algorithms and discuss the serious shortcom- 
ings revealed in the traditional angular spectrum-based algo- 
rithm. Next using a geometric spatial frequency relation or 
"ray theory" approach, and improved angular spectrum al- 
gorithm is explored. Then we present two incremental, mul- 
tistep propagation algorithms based on the single step propa- 
gation algorithms. The axial pressure and normal velocity 
fields of the same uniform amplitude piston source are com- 
puted using these algorithms and compared with an analyti- 
cal pressure solution. Next, equivalent means of introducing 
medium absorption in the spatial and transform domains are 
shown. Finally, we present an algorithm for field propaga- 
tion through multiple, parallel layers of fluid medium and 
utilize it to consider the differences between the correspond- 
ing focused fields in water and a layered fat/liver (biomedi- 
cal imaging) medium. This multilayer algorithm does not 
consider multiple reflections and thus is not appropriate for 
some applications. 

Together, the results demonstrate a computationally ef- 
ficient means for propagating radially symmetric fields 
through a range of conditions germane to medical ultra- 
sound imaging, underwater acoustics, and other applica- 
tions. The general treatment of the angular spectrum propa- 
gation scheme provides useful insights into diffractive 
problems in linear acoustics. The methodologies also serve 
as the starting point for the treatment of diffractive wave 
propagation in a nonlinear medium, which is covered in a 
companion paper. 

I. THE DISCRETE HANKEL TRANSFORM 

Many applications in ultrasound and acoustics use 
sources that are radially symmetric. To greatly reduce the 
temporal and spatial computational requirements of the 
propagation of fields from such radially symmetric sources, 
we have chosen to use a discrete Hankel transform (DHT) 
instead of the traditional two dimensional discrete Fourier 

transform. Even when the fields of interest are not radially 
symmetric the DHT may present significant computational 
savings in simplifying the transforming of the radially sym- 
metric point spread function. 

The discrete Hankel transform algorithm selected was 
recently developed by H. Fisk Johnson. Johnson's paper 9 
provides evidence that the algorithm is a significant im- 
provement over other existing DHT algorithms, especially 
in applications involving inverse transforms such as in con- 
volutions. Thus, the algorithm appears well suited to diffrac- 
tive field propagation problems. 

Johnson's algorithm gives output in the Fourier domain 
in terms of radians per unit length. We have chosen to con- 
vert the algorithm to produce output in cycles per unit 
length. The resulting pair of discrete Hankel transform 
equations for a radial function f(r) (which describes the 
radius of a radially symmetric, two dimensional function) 
and the corresponding Fourier transform domain radial 
function F(R ) is 

1 N--I 
f(i) = • Y(i,m)F(m), (1) 2rot 2 m: 1 

2rot 2 • • • Y(m,i)f(i), (2) F(m) = J• i= • 
where JN is the iV th zero of the Bessel function Jo (x) and 

f( i) = f(ji T/j•v ), 

F( rn ) = F(jm/2rrT), 

Y( i,m ) = 2Jo (J.•m /J•v ) /J • (J'm ) ' 

Tis the transform extent in real space and N- 1 is the num- 
ber of discrete samples. Note that the resulting N -- 1 points 
in the real and transform domain are located radially at 
points determined by the zeros of Jo (x). Thus the input and 
output to the transforms are not equispaced values as with 
Fourier transforms. Interpolation formulas are provided in 
Johnson's paper, though, which allow the Bessel-spaced out- 
put points from either transform to be converted to any oth- 
ers in the output range desired. We have used these interpo- 
lation formulas to extend the above transforms to include an 

output value at r = 0 in real space (corresponding in our 
application to the on-axis point) and at R = 0 in Fourier 
space (corresponding to the dc or zero frequency point). 

Our implementation of the Johnson DHT algorithm 
uses Unix math library routines to calculate the Bessel func- 
tions Jo (x) and J1 (x). To acquire the necessary zeros of 
Jo(x) the asymptotic formula from p. xxxvii of the British 
Association for the Advancement of Science, Bessel Func- 
tions, Part II (1952) was used (a shorter version of this 
formula is Eq. 9.5.12 on p. 371 of Abramowitz and Stegun 
and several other references are also listed here). These zeros 
were in turn used as initial values in a Newton's method 

algorithm to insure accuracy. To minimize the recalculation 
of necessary transform constants, a Y(i,m) table was com- 
puted and stored at the beginning of any program utilizing 
the DHT. Alternatively, if an application involves long term 
usage of DHT's with the same Nand T then the correspond- 
ing Y(i,m) table could be computed once and saved for fu- 
ture program runs. 

For a given N complex radial samples over T radial ex- 
tent, Johnson's DHT algorithm requires the computation of 
2 X N 2 real multiplications and real additions [ after comput- 
ing the Y(i,m) table]. Assuming N is a power of 2, a stan- 
dard complex, 2-D FFT routine would require 
(2N) • log2 (2N) complex multiplications and 
2 X (2N) • log• (2N) complex additions. Assuming on the 
other hand that the function's x andy complex symmetry are 
fully utilized, then the minimal 2-D, FFT implementation 
requires N • log2 N real multiplications and 2 X N 2 log• N 
real additions. Assuming that a real multiplication takes the 
same time as a real addition then the DHT's complexity can 
be written as 4 X N • real operations, the standard 2-D FFT's 
complexity as 10 X (2N) • log• (2N) real operations (" 10" 
here accounts for the conversion of complex operations to 
real operations), while that of the optimized 2-D FFT imple- 
mentation can be written as 3 X N • log• N real operations. 
The spatial complexity of the input to the DHT algorithm is 
N -- 1 (a radius of real or transform data), that of the corre- 
sponding standard 2-D FFT is (2N) • (a full square grid 
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enclosing the radial real or transform data), and that of the 
minimal 2-D FFT is N 2 (a quadrant of real or transform 
data). 

On the authors' Digital VAXstation II/GPX, a DHT 
with N = 256 requires 4 s of CPU time, with N = 512 the 
DHT requires 13 s. The CPU time used to compute the cor- 
responding Y(i,m) tables was 42 and 172 s, respectively. 
Using the above approximate expressions for the complex- 
ities and the recorded CPU execution times for the DHT 

algorithm, estimates can be obtained for the CPU execution 
times of a standard and an optimal 2-D FFT routine execut- 
ing on our model of computer. For N = 256 the predicted 
CPU times are 450 and 30 s, respectively. For N = 512 the 
predicted times are 1300 and 88 s, respectively. One addi- 
tional advantage of the Johnson's DHT is that it has no sam- 
ple length constraints-•power of 2 or otherwise. 

II. TWO APPROACHES TO SINGLE-STEP 
PROPAGATION 

Before proceeding to describe and utilize two practical 
discrete transform-based propagation algorithms, we first 
present the analytically derived expression for the radial 
pressure field in a plane Z l due to a harmonic point pressure 
source in a parallel plane Zo, 7 

h(z,r) = 

where 

2w •k 

Z = Z 1 -- Z0, d: •/F 2 -•- Z 2, k = 2rr(f/c). (3) 

This expression also gives the radial normal velocity field in 
the plane Zl due to a harmonic normal velocity point source 
in the parallel plane Zo (this result can be easily derived from 
the Rayleigh integral which relates pressure in a plane to the 
planar, normal velocity profile of the source). For a 3-MHz 
point source in water (c = 1500 m/s), the magnitude and 
phase of h (z,r) as a function of r is shown for two values of z 
in Fig. 1 (a). 

The analytical Hankel transform of h (z,r) is 

H(z,R ) = [exp [j2rrz•/(f/c) 2 -- R 2 ], IR I •/c, texp[ -- 2rrzx/R 2_ (f/c)2], IR l >f /c. (4) 
The magnitude and phase of H(z,R) corresponding to the 
above described 3 MHz h(z,r) is shown as a function of R 
(spatial frequency in cycles per centimeter), again for the 
same values of z in Fig. 1 (b). H(z,R) is the propagation 
function for the angular spectrum method and as such, the 
value of H(z,R) could be directly calculated from geometric 
considerations. The basic geometric relation is 

R = (f/c)sin 0, (5) 

where 0 is the complex angle between a plane and the propa- 
gating plane wave (0 = 0 ø when the plane wave is normal to 
the plane), which together correspond to a spatial frequency 
of R in the plane (due to the plane wave). The angular spec- 
trum analogy offers a good conceptual understanding of the 
two distinct regions of H(z,R). For a given z, the radial re- 
gion for IR I<.<f/c corresponds to the phase only propagation 
factors for the source's plane wave components. These plane 

wave components have directions given by 0ø•<0•<90 ø in 
expression (5). Note that as IR[-•f/c the derivative of 
H(z,R) with respect to R goes to infinity. The remaining 
region for which IR I >f/c corresponds to the exponentially 
decaying real propagation factors for the source's evanes- 
cent wave components (here 0 is imaginary). Note the ex- 
ponentially decaying tail is only visible in the z = 0.05-cm 
(l-A) figure. 

In order to apply discrete transforms to single-step 
propagation of fields, sampling must be performed across 
some finite extent of the source and propagation functions. 
Two approaches, with different consequences, can be taken 
here. One of these algorithms directly samples h (z,r) and we 
shall call this the spatially sampled convolution (SSC) al- 
gorithm. The other directly samples H(z,R) and we shall call 
this the frequency sampled convolution (FSC) algorithm. 
Though the analytical analogs of these algorithms are equiv- 
alent, significant differences exist between these two algor- 
ithms as implemented due to the finite length discrete trans- 
form operations used. We shall first present the SSC 
algorithm. Assume that the finite, complex normal velocity 
field of some harmonic source is known or can be well ap- 
proximated in some initial plane Zo and is desired in some 

ß subsequent plane Zl. Call the complex function describing 
this initial planar field S(Zo,r). The SSC algorithm then con- 
sists.of the following steps: 

( 1 ) Select a radius, ra, greater than the source radius a 
over which correct field propagation results are desired. This 
determines the minimum transform extent as T•ra + a. 

(2) Select a spatial sampling rate, gb, which exceeds the 
Nyquist requirements of the highest expected spatial fre- 
quency emitted from the source. We often use 4 xf/c as this 
ensures finely sampled output and the inclusion of any sig- 
nificant evanescent waves. The number of radial samples is 
then N = •p X T. 

(3) Using the above specified N and T, compute the 
specified samples of function S(Zo, r). Call these complex val- 
uesse(i), i = 1, .... N-- 1. Compute the DHT ofthesese val- 
ues. Call the complex transform output values Se(m), 
m = 1,...,N-- 1. 

(4) Again using the same N and T, compute the speci- 
fied samples of h(Zl- zo,r), where Zl--Zo is the desired 
propagation distance. Call these values 
he(i), i = 1,...,N-- 1. Compute the DHT of these he val- 
ues. Call these complex transform output values He (rn), 
m= 1,...,N-- 1. 

(5) Compute the complex product Se (rn) • H e (rn), 
rn = 1,...,N--1. Now compute the inverse DHT of this 
product to obtain the desired complex field result. Call these 
normal velocity field results ue (zl,i), i = 1,...,N- 1. 

(6) Now the u e values can be examined as real and 
imaginary components, or by computing their magnitude 
and phase. Note that the field samples describing re < r < T 
contain "wraparound error," from the transform-based con- 
volution. 

The SSC algorithm corresponds to a direct application 
of the fact that convolution in the spatial domain corre- 
sponds to multiplication in the transform domain, with the 
understanding that all discrete transform operations are im- 
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plicitly periodic. The other algorithm that we consider in 
this section, the (spatial) frequency sampled convolution 
(FSC) algorithm is a computational simplification of the 
SSC. The two algorithms differ only in step 4 where the FSC 
algorithm has the abbreviated step: 

(4') Using the previously detersmined N and T, directly 
sample H(Zl -- zo,R) to obtain Ha (rn) rn -- 1,...,N-- 1 
(The inverse DHT of this shall be written 
i = 1,...,N- 1 ). Now use these values as the Ha values were 
used in the SSC algorithm. The final results obtained using 
the FSC algorithm shall be written ha (zl,i), i = 1,...,N- !. 

The approach of the FSC algorithm is consistent with 
what in digital signal processing is referred to as frequency 
sampling. The consequences of this short cut will be noted in 
the propagation example next. 

In both of these algorithms, pressure results (instead of 

normal velocity results) can be obtained by replacing h or H 
with the corresponding normal velocity to pressure propaga- 
tion function (hup or Hup,5 respectively). Since most of the 
commonly considered sources have a finite extent normal 
velocity profile, most of our examples will involve the propa- 
gation of a normal velocity source profile. A later section will 
briefly consider the propagation of a source's pressure pro- 
file. 

Consider a 3-MHz, uniform amplitude, unfocused pis- 
ton transducer of radius 1 cm and initial acoustic peak inten- 
sity of 0.1 W/cm 2. The acoustic medium is water with 
c = 1500 m/s and no acoustic attenuation is included here. 

Following the above listed algorithm steps a radial extent of 
correctness of ra = 3 cm is desired, this determines a trans- 
form extent of T = 4 cm. The formula 4 Xf/c gives a sam- 
pling rate •b of 80 samples/cm. Together •b and T determine a 
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FIG. 1. (a) The point source function h(z,r) for a 3-MHz normal velocity point source at z = 1/l (top) and 10/l (bottom). Magnitude (left side) and phase 
(right side) are shown for both distances. (b) The corresponding H(z,R) plots. 
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FIG. 1. (Continued.) 

total sample count of N = 320. The resulting radial normal 
velocity amplitude profile ofsa (i) is shown in Fig. 2(a). The 
DHT of this, Sa ( rn ), is shown in Figz 2 (b). In Fig. 2 ( c ) and 
(d) afe shown overlays of ha and ha and their DHT's Ha 
and Ha for Az = 0.05 cm ( 1 wavelength or A ). In Fig. 2 (c) 
ha is the smooth curve, while in (d) its DHT, Ha, is the 
curve with the visible Gibbs phenomenon wiggle. Figure 
2 (e) and (f) are the same format as 2 ( c ) and ( d ) except here 
Az = 20 cm (400 wavelengths) which equals a2/A the ap- 
proximate distance from the source to the last axial maxi- 
mum. 

The radial normal velocity field results obtained by 
propagating the 3-MHz, unfocused piston transducer field 
out 1 and 400 wavelengths axial distance using the SSC and 
FSC algorithms are shown in Fig. 2(g)-(j). Figure 2(g) and 
(h) are linear and log scaled overlays of the magnitude of ua 
(0.05 cm, i) and ha (0.05 cm,i), respectively (phase overlays 
are not used here as they reveal the same differences, only in 
a much more subtle fashion). The only significant difference 
between these two results is revealed in the log scaled figure, 
where l ual is smooth out to 3 cm ( = ra ) and thereafter is 

predictably bad due to convolutional wraparound error, I I 
on the other hand visibly starts to deviate from a convolu- 
tionally correct result at about 2 cm. A more striking differ- 
ence in the results of these two algorithms is revealed in 
comparing l ua (20 cm,i) 1 and I (20 cm,i) [. Figure 2 (i) is a 
linear plot of[ual, while Fig. 2 (j) is a linear plot of lb a l. The 
results of the FSC algorithm as depicted in the curve of [h•l 
are very poor at all radial distances. 

The differences just observed can easily be illuminated 
by considering the well established principles of discrete 
convolution. •ø The SSC algorithm by using a sufficiently 
large sampling rate, tp; directly sampling the spatial func- 
tions S(Zo, r) and h(z,r); and then transforming, multiplying 
the results, and inverse transforming the product, correctly 
implements the discrete, circular version of the (Fourier) 
convolution theorem. Thus in the case where Az = 20 cm, 
S(Zo, r) and h(20 cm,r) are very accurately convolved to a 
radial extent of 3 cm (r a ) by discretely convolving sa (i) and 
ha (i) as described in the SSC algorithm example. The only 
source of errors in the resultant ua (20 cm,i) values (where 
r = Ji T/J•v < 3 cm) should be attributable to finite sampling 
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FIG. 2. SSC- and FSC-based propagation of a 3-MHz uniform piston source of radius 1 cm. The medium is water and no attenuation is included in the 
propagations. The number of discrete field samples N is 320 and the transform extent Tis 4 cm. (a) The magnitude of the acoustic normal velocity profile of 
the piston source (Jsa(i)J). (b) The magnitude of the DHT of the source profile (JSa(rn)J). (c) Overlay of Jha(i)J and J•ta (i) j for Az = 0.05 cm (1 A). 
Jha(i)J is the solid curve (all subsequent SSC-FSC overlays will use the format SSC solid curve, FSC dotted curve). (d) Overlay of the corresponding 
JHa ( m )J and J•r a ( rn )J. The JHa ( m )J curve has a little visible Gibbs ringing. Note the evanescent tails extending beyondf/c ( 20 cycles/cm ). (e) and (f) are 
identical in content and format to (c) and (d), respectively, except here Az = 20 cm. Note the log scale in (e). (g) and (h) are linear and log scaled overlays 
of Jua (0.05 cm, i) J and Jha (0.05 cm, i)J, respectively. The only significant difference between these curves is revealed in the log scaled plot where Jua (0.05 
cm, i) J stays smooth (and correct) out to 3 cm. (i) is a linear plot of J ua ( 20 cm,i) J and (j) is a linear plot of J ha ( 20 cm, i) J. Note the miserable result in (j) due 
to the FSC algorithm's uncorrected wraparound error. 
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FIG. 2. (Continued.) 

(since a finite extent, continuous function like the source 
function has an infinite extent, continuous spatial frequency 
content) and inaccuracies in Johnson's DHT itself. The 
small errors due to truncating real numbers to double preci- 
sion or approximately 16 decimal places of accuracy, can be 
safely ignored here (this is probably also true for single pre- 
cision). To examine the possible size of the DHT and sam- 
pling errors the transform extent and sampling rate were 
increased. This should have reduced the sampling errors by 
increasing the spatial frequency resolution and ceiling, as 
well as reduced the DHT inaccuracies. 9 With the SSC algo- 
rithm though, the ud results show very small improvements 
only in the extreme near field (0-20 A, see the multistep 
section). Thus it appears that the predicted acoustic normal 
velocity field of the piston source is in very good agreement 

with the best possible prediction, an analytical solution 
based on Huygen's principle. 

The implementation of discrete convolution by the FSC 
algorithm is markedly different. Whereas the SSC algorithm 
discretely convolves the sd and h• samples, the FSC algo- 
rithm is instead equiva•lent to a discrete convolution of the s• 
and •t• samples. The h• samples were obtained by directly 
sampling H(z,R), the analytical Hankel transform of the 
infinite extent h (z,r) function, and then performi•ng a (finite 
extent) inverse DHT on these samples. Thus the hd samples 
correspond to samples of the infinite h function which has 
been infinitely wrapped around to produce a finite function 
of radial extent T. Such a wrapped around version of h could 
be physically approximated by propagating the field of an 
appropriate normal velocity (or pressure) point source 
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down a cylindrical reflecting tube of radius T. When z is 
small the resulting wraparound error can be very small as 
shown by the close correspondence between the ha. and •ta 
sample curves plotted in Fig. 2(c). For larger values of z 
these errors can be overwhelming as evidenced in the curves 
of Fig. 2 (e). Also note the corresponding differences in the 
transform domain curves of Fig. 2 (d) and (f). Thus, it is not 
surprising that large errors can appear in the output of the 
FSC algorithm. 

In spite of these problems with the FSC algorithm, it 
appears to be the most widely used approach to the propaga- 
tion of diffractive acoustic fields, perhaps because of its con- 
ceptual similarity to the analytical angular spectrum meth- 
odology. However, the perils of "frequency domain 
sampling" of a continuous transform function are well 
known in digital signal processing, and we have shown that 
the FSC approach is only numerically convergent in the case 
where z-•0 (or equivalently T-• oo ). In contrast the SSC 
algorithm is convergent for any Az propagation (with rea- 
sonable sampling rates though, the SSC algorithm fails for 
propagation distances ,•A due to limited sampling of the 
significant portion of the function h(z,r), which approaches 
a delta function when z-•0). We thus argue that the SSC 
algorithm should be the first choice (over the FSC algo- 
rithm) for plane-to-plane, linear diffractive propagation. 

III. A RAY THEORY TRUNCATION FOR THE FSC 
ALGORITHM 

The FSC algorithm can be greatly improved by modify- 
ing it with a ray theory interpretation of the h-H transform 
pair. Since the field of a point source at distances greater 
than A can be very well described by ray theory (which only 
neglects the point source's evanescent waves), it thus follows 
that this same theory well describes the h (z,r) function for 
x/•-+---r z > A. Consider the field of a harmonic normal veloc- 
ity (or pressure) point source as depicted in Fig. 3 (a). In 
particular, consider the radial spatial frequency (or radial 
derivative of the phase) of the resultant field at some point Pi 
in the plane P. Given the geometry depicted in Fig. 3 (a) a 
ray theory interpretation of the field would suggest that the 
radial spatial frequency, r/r,, of the field in plane P at point 
should be given by the expression 

r/r, = (f/c) sin Or, , cycles/unit length. (6) 

As pictured, Or, is the angle between the ray connecting a 
point at radial distance r, and the point source, and a ray 
normal to P at the same point. In (6) the spatial frequency 
increases monotonically from 0 tof/c as ri goes from 0 to 
Note that this expression is the real, spatial domain version 
of that given in expression (5) [i.e., the field in the vicinity of 
Pi approximates a plane wave with direction Or, and spatial 
frequency R given by ( 5 ) ]. Expression (6) was first present- 
ed and utilized in Waag et al., 7 in this and the following 
section we attempt to further explore and elaborate on the 
utility of applying this result to the FSC algorithm. 

Figure 3 (b) and (c) show the results of tests on the 
above ray theory relation at Az = 1A and 10A, respectively. 
The solid lines were computed using the above approximate 
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FIG. 3. (a) Geometry for the ray theory interpretation of h(z,r). (b) Ray 
theory-derived radial spatial frequency overlayed with the derivative of 
h(z,r)'s phase at Az- 1 A. Ray theory is the lower curve (evanescent 
waves, neglected by ray theory, account for the difference). (c) Same over- 
lay this time at Az - 10 A. 
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relation for a 3-MHz normal velocity point source in water. 
The dotted lines were derived from the computed rate of 
phase change at the corresponding (actual field) ha (i) sam- 
ples (N = 200, T = 5 cm). To obtain an estimate of the spa- 
tial frequency at the ha (i) samples, the forward difference 
method of calculating the derivative was used. The spatial 
frequency values obtained from the approximate ray theory 
relation and those computed directly from h (z,r) show small 
differences at Az = 1A due to the presence of evanescent 
waves, but then quickly converge as the evanescent waves 
fade. 

For the field of some harmonic, finite (acoustic normal 
velocity profile) emitter, expression (5) can be combined 
with Huygen's principle to estimate the magnitude of the 
maximum spatial frequency contribution of the emitter's 
constituent point sources to a point in the field. Using this, 
and again neglecting evanescent waves, a reduced minimum 
spatial sampling rate can be determined. Call the angle 
between the normal ray at a point p• in a plane and the ray 
passing through the same point and also the most distant 
point source contributor in the emitter plane, 0 ?ax. This is 
depicted in Fig. 4(a) (along with an additional point P2). 
Substituting 0 ?ax into (5) gives a reduced (radial) spatial 
sampling rate, •[nax, required to meet the Nyquist criteria in 
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FIG. 4. (a) Geometry for the ray theory RFSC propagation step. (b) The 
associated, truncated H(z,R) functions. The truncation points are deter- 
mined by the geometry of 4(a) and the spatial frequency relation (5). 

sampling h(z,r) for the given Az, in the radial range from 
r = 0 to r --- ri + a. This reduced sampling rate can then be 
used directly to update the SSC algorithm's sampling of 
h(z,r), or indirectly to update FSC's sampling of H(z,R). 
Figure 4(b) shows the truncated H(z,R ) functions associat- 
ed with p• (and 0 ?ax) and P2 (and 0 •ax). The spatial fre- 
quency relation not only allows for a reduction in the com- 
putational requirements of the two algorithms, but more 
importantly it greatly reduces the wraparound errors pres- 
ent in the FSC algorithm. 

The idea of limiting the maximum spatial frequency 
used in computation by ray theory or g•ometric consider- 
ations leads to a simple truncation of the Ha function and we 
call this approach the ray theory-updated, FSC algorithm 
(RFSC). Applying RFSC to the previously described 3- 
MHz uniform piston field is illuminating. Consider the radi- 
al field at the Rayleigh distance ofz = 20 cm. Assuming that 
good field results are desired out to a radial distance of 

ra = 5 cm, then a - 1 cm implies that the sampling rate •r• ax 
must be greater than or equal to 2 X (f /c ) sin ( Or, ) where 
0 rn• ax = tan - • [ ( 5 + 1 )/20 ] = 16.69 ø. After choosing 
T = 10 cm this impli• N = 120. Using these in the RFSC 
algorithm gives the Hall and I•dl samples shown in Fig. 
5(a) and (b). Also shown in Fig. 5(b) is the corresponding 
I hal samples [ note the vast improvement in the agreement of 
these curves compared to Fig. 2(e)]. In Fig. 5(c) is the 
resulting output radial field I •d I values from the RFSC algo- 
rithm as well as l udl values from the SSC algorithm 
(N = 500, T = 10 cm, and rd = 9 cm). Note the good agree- 
ment between the curves out to about 5 cm and the subse- 

quent smooth divergence of the I•al dotted curve (as pre- 
dicted by ray theory). 

The ray theory relation of Eq. (6) offers a reduced mini- 
mum sampling rate to all of the propagation algorithms-- 
though this relation should be superseded by the sampling 
rate requirement in the emitter plane, if this is larger. Alter- 
natively, if a higher spatial sampling rate is desired or re- 
quired, (6) allows the frequency domain sampling FSC al- 
gorithm to accurately mimic the (correct) spatial domain 
sampling of the SSC algorithm. This can be accomplished by 
simply limiting the FSC's sampling of H(z,R) to those val- 
ues of R < (,f/c)sin (0 rn•ax). Thus, the validity of ray theory 
in describing a point source's field provides for a unique, h- 
H transform pair, with which the convolutionally necessary 
windowing in the spatial domain can instead by accurately 
and easily accomplished in the frequency domain. To ensure 
good results though, a relatively large T (greater than 5 or 10 
source radii) should be used to obtain adequate spatial fre- 
quency domain resolution, or equivalently, sufficiently 
many plane waves to represent the field accurately. Even 
with this additional requirement, the RFSC method has 
much to offer in some applications as discussed in the next 
section. 

IV. EXTENSION TO MULTISTEP PROPAGATION 

The SSC and RFSC single step, plane-to-plane, propa- 
gation algorithms can be extended to multistep algorithms. 
If the field of a planar source is desired in a sequence of 
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FIG. 5. Uniform piston (same case as Fig. 2) example of th,,e RFSC step at 
the Rayleigh distance of 20 cm from the transducer. (a) IHd (rn) [ for the 
RFSC step. Note thatf/c -- 20 cycles/cm, so •r d (rn) propagates only 1/3 
of the spatial frequencies contained in the full H(z,R ) function. (b) RFSC' s 
I•d(i)[ (•'s) and SSC's [hd(i)l (solid curve) overlayed. Note the rough 
agreement to r- 6 cm in spite of RFSC's Gibbs ringing (compare to Fig. 
2(e)'s log scaled overlay). (c) Rayleigh distance RFSC output ]hid(i)] 
(•'s) overlayed with SSC output ]ud(i)] (solid curve). They agree well 
with the SSC curve out to the desired r = 5 cm. The small shift in the radial 
node positions visible between the two results is due to the different source 
radii implicit in the different discretizations of the actual 1-cm source. (This 
problem can be corrected by updating T appropriately). 

parallel planes then the SSC or RFSC step could be repeated 
for each of these planes. Since the only plane in which the 
normal velocity field is of finite extent is the source plane, 
each SSC or RFSC iteration must begin there--otherwise 
the iterative propagation of truncated infinite fields quickly 
causes large errors. The source plane transform should be 
computed once and then repetitively used for each SSC or 
RFSC iteration. 

Figure 6(a)-(d) display the results of testing the SSC- 
based multistep algorithm against the analytical axial pres- 
sure amplitude expression for a uniform piston source. • • The 
analytical axial amplitude expression used was 

Ip(z,0) I - 2pcUolsin{«kz[x/1 + (a/z) 2 -- 1 ] }1, 
wherep is the medium density and Uo is the magnitude of the 
source's normal velocity. The source and medium param- 
eters are the same as before for the 3 MHz, unfocused piston 
source. The agreement between the SSC algorithm and theo- 
ry is excellent in the near and far field as displayed in Fig. 
6(a) and (b). Figure 6(c) reveals small differences in the 
extreme near field (0-20/l). The radial sampling rate used 
for these results (a)-(c) was 4 xf/c (2 X Nyquist rate). By 
increasing the radial sampling rate, the edge discontinuity of 
the source can be better represented, and thus the near field 
can be more accurately computed. Figure 6(d) shows the 
results of recomputing the near field with a radial sampling 
rate of 6 xf/c. Note the improvement in the accuracy of this 
result versus that of Fig. 6 (c). 

To compute the axial pressure field results of Fig. 6 (a)- 
(d) the source plane, normal velocity description had to be 
propagated with a normal velocity to pressure point spread 
function. The function used was 5 

hup (z,r) = -- ifp(eik•/x/z• + r e ). (8) 
This function can be used directly in the SSC propagation 
step or its analytical transform could be used with the RFSC 
step. 

An alternative route to obtain pressure field results 
based on a source normal velocity description is to convert 
the initial (planar) normal velocity description to an initial 
(planar) pressure description. The conversion of the source 
plane description from normal velocity to pressure (or vice 
versa) can be performed using the expressionS2 

p(O,r) = pcF - •[F[ u(O,r) ]k /kz ], (9) 
where p(O,r) is the source plane pressure profile, u(O,r) is 
the source plane normal velocity profile, and 

= [l: I/c 

= i[ (2rrR) 2 -- k2] 1/2, IR I>f/c. 
An important point to be noted here is that associated with a 
finite acoustic normal velocity profile, is an infinite extent 
pressure profile. Thus, the use of Eq. (9) to compute the 
source pressure profile with the DHT can be problematic 
due to the presence of convolutional wraparound errors. 
These errors appear to be insignificant only when the trans- 
form extent Tis an integer multiple of the propagating wave- 
length. The source plane pressure field could be propagated 
using the same algorithms and h and H functions [ (3) and 
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FIG. 6. On-axis sound pressure magnitude versus axial distance for the 3-MHz uniform piston source. The analytical solution results (solid curves) are given 
along with the DHT-based, SSC multistep algorithm results (dotted curves). Note the exponential notation on the pressure axis. (a)-(c) different axial 
ranges showing results obtained with the SSC multistep algorithm using N = 240 and T = 3 cm (thus sampling at 2X f/c). In (a) the two results show no 
visible differences. The multistep result is erroneously high in the near field (b)-(c), though. (d) near-field axial results over the same range as (c), but here 
using N = 360 and thereby sampling at 3 xf/c. Note the considerable improvement in agreement between the multistep SSC result and the analytical result. 

(4) ] as with the propagation of a source plane normal veloc- 
ity field. The results will not be as accurate though, as the 
corresponding propagation of the normal velocity source de- 
scription, since the source pressure description is necessarily 
a truncated version of the real source plane pressure profile. 

Applying the SSC- and RFSC-based, multistep algor- 
ithms to an initial normal velocity, planar description of this 
source reveals an interesting difference between acoustic 
particle velocity and acoustic pressure in the nearfield of a 
uniform piston source. Figure 7 (a)-(e) shows overlays of 
the radial and axial, pressure and normal velocity amplitude 
curves for the same unfocused piston transducer. The axial 
pressure curves were calculated using the analytical expres- 
sion (7). The normal velocity curves have been scaled up by 
the factor pc. The radial curves in Fig. 7 (a) are from z = 1A. 
Note the initial differences, and eventual convergence, of the 
axial curves. The initial differences between the cures re- 

flects the failure of the plane wave impedance relation 
p = pcu in describing the nearfield of an unfocused piston 

source. The results of Fig. 7 ( a)-(c) were obtained using the 
SSC-based algorithm. The small wiggle in the RFSC-based 
results of Fig. 7 (d) and (e) is an artifact of the frequency 
Sampling performed--still present, though greatly reduced, 
from the original FSC formulation. The wiggle can be indefi- 
nitely reduced by increasing T (and thus the spatial frequen- 
cy resolution). 

A more continuous multistep, propagation algorithm 
based on the SSC (or RFSC) step would return each of the 
planar fields computed (except the last) back to the source 
plane and then restart the SSC (or RFSC) step using the 
returned field. This can be easily accomplished by decon- 
volving the field at each plane with the same he (i) samples 
that were used in convolving the source field to that plane 
(since Ud = $d X H•, then $• = U,•/H,• ). This multistep 
scheme we call the "back-and-forth" approach. In general, 
this is computationally redundant and thus undesirable, but 
in the case of the nonlinear propagation of a field, in which 
nonlinear effects can be added as a separate step between 
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subsequent planes, it is essential that the nonlinear transfer 
of energy amongst the various harmonic fields be main- 
tained by the multistep diffraction algorithm. In this case, 
the deconvolution back to the source plane can be viewed as 
providing a nonlinear update to the "effective" multihar- 
monic source. 

A very simple, multistep scheme can be devised using 
the RFSC step when the multiple output planes are separat- 

'J. Acoust. Soc. Am., Vol. 90, No. 1, July 1991 

ed by a constant Az increment. For the first step follow the 
RFSC single step approach. Each subsequent Az propaga- 
tion step is completed by multiplying the current field's (not 
the source's) DHT by a trimmed version of the first step's 
A A 
H a'(m) samples. The incremental trimming or truncating 

A A 
of the H a'(m) function is performed to avoid wraparound 
errors of the field in the subsequent plane as prescribed by 
expression (6). For values of T equal to the axial extent of 
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propagation, this algorithm gives accurate multistep field 
propagation results. It is also extremely fast as it requires the 

AA 
computation of only one set of H az(rn) rn = 1 .... ,mma x val- 
ues, as opposed to one set of ha(i), i---- 1, .... N-- 1 values 
(where R mm.• •f/c and mma x •N- 1 ) and their DHT per 
step in the SSC multistep approaches. Note, this constant 
step size RFSC scheme gives results identical to that of the 
straightforward approach of repeating the RFSC step from 
the source to each plane, however the constant step size 
RFSC appr•oach saves significant computer time by using 
one set of Ha values which are truncated as required. This 
algorithm is also adequate for the propagation needs of mul- 
tistep, nonlinear propagation. 

The computer time required to calculate the results of 
Fig. 7 reveals the savings possible through use of the RFSC 
propagation scheme. The axial results of Fig. 7 (b)-(e) in- 
volved the advancement of the field through 2750 Az incre- 
ments. The SSC-based results of 7 (b) and (c) required 2 
hours on a VAXstation II/GPX, while the corresponding 
constant step size RFSC-based results of 7 (d) and (e) re- 
quired only 4 min. Thus, if the small artifacts of the RFSC 
approach are acceptable, then the speed of the RFSC multis- 
tep algorithm can be a great convenience, in particular in the 
case of the repetitive use of one or more Az step sizes. 

V. INCLUSION OF FREQUENCY-DEPENDENT MEDIUM 
ATTENUATION 

Frequency dependent losses in the medium can be add- 
ed to either the SSC or the RFSC propagation approaches. 
Medium attenuation is here modeled for spherical or plane 
waves by the expression 

exp(-af"'d), (10) 

where d is the distance propagated in the medium •3 and a 
power law relation for attenuation versus frequency is as- 
sumed. This expression is appropriate for weak attenuation 
in which a/k• 1. TM For stronger attenuation, a complex 
(dispersive) expression such as the one derived in Ref. 11 
could be used instead of (10). Expression (10) can be ap- 
pended to the h(z,r) point normal velocity (or pressure) 
spread function to form an attenuated point spread function 

ha (z,r) = h(z,r) X exp( - af"'•/z 2 9- r • ). ( 11 ) 
This attenuated function can then be used in place ofh in any 
algorithm using the SSC step. 

Attenuation can be added in the spatial frequency do- 
main to the function H(z,R ) in order to account for medium 
attenuation in the RFSC propagation step. The resulting up- 
dated function is 

Ha (z,R) = H(z,R) 

X exp( -- •fn. (Z/COS [ sin -' (Rc/f) ] )), 
(12) 

where the expression in place of d on the right accounts for 
the distance traveled by the plane wave component specified 
by spatial frequency R in the angular spectrum interpreta- 
tion as stated in Eq. (5). 

There is one notable difference between the attenuation 

computed using ha (z,r) and that computed using Ho (z,R). 

In using the RFSC scheme, in which evanescent waves are 
always neglected, Ha (z,R) correctly only applies the attenu- 
ation of (10) to the propagating or plane wave components 
of the source. In using the SSC scheme, in which evanescent 
waves are never neglected [however small they might be, 
they are always included in the h(z,r) expression], ha (z,r) 
incorrectly applies (10) to both the evanescent and propa- 
gating components of the source's field. Thus, when propa- 
gating over very short distances ( < A) and facing very large 
attenuation (significant over distances <A), the SSC-ha 
propagation scheme will give erroneous results reflecting its 
use of (10) on the evanescent components. 

To check the equivalence of the two attenuation 
schemes, Fig. 8(a) displays an overlay of the Rayleigh dis- 
tance radial field results obtained by using an attenuated 
SSC step [with ha (z,r) ] and an attenuated RFSC step [with 
Ha (z,R)] for the previously described 3-MHz unfocused 
piston source. The propagation parameters used for the SSC 
and RFSC steps are identical to those used in Fig. 5, except 
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that the medium attenuation used in this example was 
a = 0.025 and n = 2 which is approximately 100 times the 
measured attenuation of water. Figure 8(b) shows an over- 
lay of the SSC step's Ha and the RFSC step's Ha curves. 
Note the increasing influence of attenuation at bigger values 
of R which corresponds to larger d's or equivalently larger 
0 's (for the plane wave components representing h). 

VI. MULTILAYER PROPAGATION 

To extend the capabilities of the multistep SSC and 
RFSC approaches to include propagation through multiple, 
parallel layers of fluid medium (without the inclusion of 
multiple reflections between the boundaries, that are not rel- 
evant to the authors' biomedical applications), Snell's law 
and the transmission coefficient must be accounted for. For- 

tunately, Snell's law is implicit in the h and H propagation 
scheme. To see this, consider a plane wave travelling in me- 
dium A with a direction that forms an angle 0in with the 
norm of the boundary plane with medium B. By Eq. (5) this 
implies a spatial frequency Rin- (f/cA)sin 0in in the 
boundary plane. Continuity of the normal component of 
acoustic velocity implies continuity of the phase of this com- 
ponent, and thus Rtr = Rin. This relationship is always 
maintained in the h and H scheme since the spatial frequency 
of any component is always preserved. Substituting from the 
geometric spatial frequency relation (5) gives the desired 
Snell's law 

sin 0in/sin 0out = CA/Ca. ( 13 ) 

Using the SSC or RFSC approaches without modifica- 
tion to cross a fluid boundary would not account for the 
reflected field and thus fails to conserve energy and momen- 
tum. Stated differently, the amplitude of the transmitted 
plane waves does not agree with those given by the complex 
analytical transmission coefficients • 

T•, 2( PA CA cOSOout = X•+1 , 
t O B CB COS0in ( 14 ) 

T •' -- T•'X (pAc•/paca), 

where T v and T u are the pressure and velocity transmission 
coefficients, respectively, and 0•n and 0ou t are complex to 
account for evanescent waves. 

A multilayer point spread function h m which would ac- 
count for all propagation effects through multiple fluid lay- 
ers does not appear to be analytically derivable or easily nu- 
merically approximated. Thus, updating the SSC approach 
to allow for multiple layers appears to be very difficult. One 
problem is that in the spatial domain evanescent energy is 
not separated from nonevanescent energy, and thus couldn't 
be properly transmitted using (14). Even neglecting the 
evanescent waves, an explicit analytical expression for h m 
appears unlikely, and further each h m(z,r) value appears to 
require an involved numerical estimate. 

Boundary crossing in the spatial frequency domain ap- 
pears to be much easier. H is an explicit function of R and 
thus 0. One simple spatial frequency domain algorithm con- 
sists of a straightforward combination of the transmission 
coefficients of (14) and the RFSC propagation step. An ana- 
lytical, multiple layer H m function can be written as 

Hm(z,R) --HA (AZA,R) X T,•B(R) XHB (Azs,R) X... 

X T•(R) XH•(Az•,R), (15) 

where 

COS [ 0ou t (R)] (cos [ 0ou t (R) ] T• (R) = 2. . 
COS [ 0in (R) ] cos [ 0in (R) ] •o B CB ) - 1 

is the complex, velocity transmission coefficient for the 
boundary between medium A and medium B [expression 
(13) allows this to be converted to the corresponding pres- 
sure transmission coefficient ]. 0in and 0ou t express 0 as func- 
tion of R via (5) and z = Az A + Az a + ...Az•. Also note the 
difference between T]s and T u as given by (13) isdue to the 
implicit transmission coefficient already present in 
H A X H B [ the fact that H A X H • has a nonunity transmis- 
sion coefficient that must be corrected for before applying 
(14), is apparently commonly neglected]. To examine the 
propagation of evanescent waves in the vicinity of a bound- 
ary, expression (15) can be integrated numerically to obtain 
an appropriate set of h m samples, or placed in the analytical 
convolution integral and then numerically integrated. The 
numerical integration could utilize variable step sizes to 
avoid problems with the rapid phase changes of Has R -•f/c. 

Here H m can be sampled and utilized as in the RFSC 
algorithm. The only complication is keeping track of the 
maximum spatial frequency component allowable in a given 
plane (which doesn't wraparound the spatial aperture T). 
This is trivial in the spatial frequency domain (tag each spa- 
tial frequency component with its greatest possible radial 
extent at the current plane, update and check these tags with 
each Az advancement )--unlike with hm in the spatial do- 
main. Results from an example using this algorithm are 
shown in Fig. 9(a) and (b). Consider the field of a 3-MHz 
focused piston transducer operating in water and operating 
in a two-layer medium of fat and liver. The water medium 
has parameters c = 1500 m/s, p = 1.0 g/cm 3, a = 0.00025 
Np/cm MHz, and n = 2. The two-layer medium consists of 
2 cm of fat with parameters c = 1460 m/s, p -- 0.95 g/cm 3, 
a = 0.15 Np/cm MHz, and n -- 1.0, followed by 10 cm of 
liver with parameters c--1570 m/s, p = 1.05 g/cm 3, 
a = 0.03 Np/cm MHz, and n = 1.3. •3'•4 The initial source 
peak acoustic intensity is 0.1 W/cm 2 and the transducer ra- 
dius is 1 cm. The geometric focal length (F) is 10 cm. The 
focusing was accomplished by applying a spherically focus- 
ing phase factor [ d O(r), where 0(r) = (2rrf/c)x/r 2 + F 2 ] to 
the source plane amplitude profile. The computed axial and 
radial (at z = 10 cm) normal velocity fields are shown in 
Fig. 9(a) and (b). The computer runs for both mediums 
(water and fat/liver) involved 600 Az advancements of the 
acoustic particle velocity fields and took only 50 s using the 
constant step size RFSC approach on the authors' VAXsta- 
tion II/GPX. 

The results of Fig. 9 depict dramatically the effects of 
the high attenuation of the biomedical imaging, fat and liver 
layered medium. The axial velocity magnitudes in the fat- 
/liver medium are much lower than in the corresponding 
water propagation. Also the axial maximum magnitude oc- 
curs earlier in the layered medium in part due to the in- 
creased attenuation. The effects of the boundary crossing are 
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FIG. 9. Multilayer RFSC propagation example. A 3-MHz focused piston 
transducer is propagated through water and compared to propagation 
through a two layer medium. The geometric focal length of the transducer is 
10 cm and its radius is 1 cm. The two-layer medium consists of 2 cm of fat 
followed by 10 cm of liver. (a) Axial particle velocity magnitudes for water 
(solid curve) and the fat/liver medium (dotted). (b) The log of the corre- 
sponding focal plane (z -- 10 cm) radial results. 

more subtle due to the closeness of the two medium's param- 
eters. In the radial plot of Fig. 9(b) the layered medium's 
sidelobes show a gradual shift away from the axis at increas- 
ing radial distance, relative to the corresponding sidelobes of 
the water propagation. This agrees with the Snell's law phe- 
nomenon of rays shifting away from the norm when passing 
from a slow medium (fat) into a faster one (liver). This 
same phenomenon should cause the focus in the layered me- 
dium to occur earlier (prematurely). This is visible in earlier 
occurrence of the last axial minimum. 

VII. CONCLUSIONS 

A number of new approaches to the linear propagation 
of diffractive fields have been presented. A discrete Hankel 
transform is used to efficiently propagate radially symmetric 
fields. The sampling of the spatial domain point spread func- 
tion is shown to be more accurate and reliable than the com- 

mon approach of sampling its transform. Extensions to mul- 
tistep propagations are given including the effects of 
attenuation and transmission coefficients in layered media. 
The results form an efficient computational tool for acoustic 
field propagation. The methodology will be applied to non- 
linear diffractive field propagation in a companion paper. 
Currently under development are efficient extensions of 
these methodologies to handle nonradially symmetric 
sources, nonsinusoidal sources, and nonplanar sources. 
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