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Abstract-This paper describes a novel approach to left ventricle motion analysis via the integration of 
image segmentation with shape deformation analysis using computerized tomography (CT) volumetric 
image data. This approach is different from traditional image analysis scenario in which the image segmenta- 
lion and shape analysis were considered separately. The advantage of integrating the image segmentation 
with the shape analysis lies in the fact that the shape characteristics of the object can be used as effective 
constraints in the process of segmentation while original image data can be made useful along with the 
segmentation results in the process of shape analysis. In the case of left ventricle motion estimation, such 
an integration can be applied to obtain the estimation results that are consistent with both given image 
data and a priori shape knowledge. The initial segmentation of the images is obtained through adaptive K- 
mean classification and the region-of-interest is then identified based on the initial segmentation. The shape 
analysis is accomplished through fitting the boundary points of the region-of-interest to the surface modeling 
primitives. These two processes are integrated through the feedforward and feedback channels so that the 
surface fitting is constrained by the confidence measures of the boundary points and segmentation refinement 
is guided by the result of surface modeling. Global motion parameters are obtained by comparing the 
parameters of the fitted surface model at consecutive time instances. The segmentation and shape analysis 
results obtained show that the integrated approach is capable of providing promising improvement over 
traditional approaches. 

Key Words: Cardiac motion analysis; Cardiac image processing; Image segmentation; Nonrigid motion estimation; Shape 
analysis; Integration 

1 INTRODUCTION 

Left ventricle motion analysis from image sequences 
has received considerable attentions for the past few 
years. The problem is very challenging since the heart 
is a nonrigid object and the description of its motion 
over a cardiac cycle usually requires the displacement 
information of each localized material element. How- 
ever, it is an important research topic in the area of 
biomedial engineering because of its noninvasive na- 
ture in assessing the cardiac dynamic behavior. Such 
assessment can be an invaluable tool in diagnosis of 
heart disease, monitoring of cardiac therapy, and other 
clinical and research applications. The left ventricle as 
a whole is a nonrigid object and its shape changes over 
the cardiac cycle. The shape change of the left ventricle 
is due to the global and local deformations during the 
pumping of the heart. Logically, deformation modeling 
of the left ventricle, global or local, can be realized 
by surface modeling if we are able to incorporate the 
deformation parameters into the surface modeling 
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primitives. In the earlier study of left ventricle dynam- 
ics based on surface modeling, simple surface models 
such as ellipsoid and cylinder have been assumed. 
These simplified surface primitives are very crude rep- 
resentations based on a priori knowledge of the left 
ventricle shape. The analysis based on these simple 
surface primitives provide only limited qualitative 
measure of the left ventricle dynamics. The lack of 
ability to incorporate deformation parameters into 
these simple models makes them inapplicable to quan- 
titative analysis of typical deformations such as tapered 
shape and non-uniform dilation. We proposed a class 
of three-dimensional (3D) shape modeling primitives 
called superquadrics to include the deformations that 
were unable to be incorporated into the simple models. 
The superquadric shape modeling has been success- 
fully applied to motion and deformation analysis of 
left ventricle ( 1, 2). 

To analyze the shape of an object based on a given 
image or a stack of images, the extraction of object 
shape is usually accomplished through the segmenta- 
tion process. A subsequent analysis of the object shape 
is then based on the results of such segmentation, or 
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shape extraction. Traditionally, the segmentation is 
based only on image features, such as gray level, tex- 
ture, and color without utilizing the shape properties 
of the object, while the shape analysis is based on 
the final result of segmentation without regard to the 
confidence measure of the shape extraction. It is evi- 
dent that such separated processing and analysis, at 
least, have not completely made use of all the available 
information. Due to the lack of interaction between 
segmentation and shape analysis, many existing ap- 
proaches have produced object boundary inconsistent 
with a priori knowledge, or shape parameters inconsis- 
tent with the given image data. In biomedical applica- 
tions, we look for certain structures in the given images 
and therefore the shape information is known to us to 
a certain degree. Hence, the shape information should 
be used to guide the segmentation process to overcome 
the difficulty of segmentation using noisy image data 
and to refine the crude segmentation through feedback. 
On the other hand, the estimated boundary points based 
on the segmentation are often ambiguous due to the 
poor contrast of the discontinuities. The degree of such 
ambiguity can be a meaningful confidence measure 
associated with each extracted boundary point and 
should be used in the fitting of shape modeling primi- 
tives. Without the confidence measure, the surface pa- 
rameter estimation would be derived from all the 
boundary points with equal weights. This implies that 
all the boundary points have equal strength which is 
generally not true. 

Over the years, there have been some researchers 
who have attempted to develop segmentation algo- 
rithms suited for certain class of boundary extraction. 
Their approaches can be generally divided into two 
major categories: optimization in parameter space and 
optimization in image space. In the case of boundary 
finding through the optimization in parameter space, a 
class of parameterized templates are used to model the 
objects. Examples of this type of approaches include 
the rubber masks proposed by Widrow (3)) eye tem- 
plate and mouth template described by Yuille, Cohen, 
and Halliman (4)) and deformable hand models devel- 
oped by Grenander, Chow, and Keenan (5). All these 
approaches have been implemented through fitting the 
model to the image data by searching the parameter 
space for the best fit. In the case of boundary finding 
through the optimization in image space, the measure 
of fit is represented by certain image related quantities. 
Some of these approaches use a flexible bead chain to 
represent the boundary points and make them attracted 
to the pixels with certain image statistical properties 
(6, 7). Among those image space based approaches, 
an elegant approach proposed by Kass, Witkin, and 
Terzopoulos (8) uses the boundary model primitives 
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called snakes to form an energy minimization problem. 
The snakes are attracted to boundary by external and 
internal forces. The internal forces are composed of 
mainly the smoothness constraints of the snakes, while 
the external forces are the image features such as edges 
and lines. As opposed to the parameter space based 
boundary representation, the image space based repre- 
sentation and optimization are difficult to incorporate 
the a priori shape information, especially those alge- 
braic properties of the surface modeling primitives 
other than the smoothness. 

We propose a novel approach to left ventricle 
motion and deformation analysis through the integra- 
tion of image segmentation and shape analysis. Our 
proposed approach is different from both types of tradi- 
tional segmentation approaches in that we consider the 
optimization in both image and parameter spaces. The 
advantage of this approach over existing approaches 
lies in the fact that the interactions between the image 
segmentation and subsequent shape analysis are ex- 
ploited so that all the available information can be 
made use of in either image segmentation or shape 
analysis. Since both image segmentation and shape 
analysis have been traditionally formulated as optimi- 
zation problems, the interactions between these two 
processes can therefore be used to form additional con- 
straints in each of the original optimization processes. 
These constrained optimizations in image segmenta- 
tion and shape analysis constitute an integrated ap- 
proach to image analysis and provide each process a 
dimension for major improvement. However, there has 
not been enough effort made along this direction of 
research. This paper is intended to serve as an initiative 
to promote the integration of image segmentation with 
the shape analysis through the estimation of left ventri- 
cle motion using CT volumetric image data. 

In this research, we are given a sequence of 16 
CT volumetric images, each with the dimension 90 X 
90 x 95. Our earlier studies (2) have concentrated 
on the shape analysis using digital volumes obtained 
through manual outlining of original images. The goal 
of this research is to develop a systematic approach 
for cardiac motion analysis such that the original gray 
level volumetric images are directly used without time 
consuming manual outlining by skilled operators. We 
propose to integrate multiple processes involved in the 
cardiac image analysis utilizing the original gray level 
images as well as a priori shape knowledge of the 
left ventricle. The processes of image segmentation, 
region-of-interest (ROI) identification and subsequent 
shape analysis are effectively integrated to produce 
better results than the results produced by traditional 
approaches in which these processes are separately im- 

plemented. To achieve this goal, a key step of the 
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research is to identify the interdependent relations be- 
tween these optimization processes, since these rela- 
tions serve as the channels for mutual feedback and 
can be used to form well defined constrained optimiza- 
tions in the process of integration. The research pre- 
sented here is motivated by surface modeling based 
left ventricle motion and deformation analysis using 
CT volumetric image data. However, this integrated 
approach can be applied to a wide variety of other 
image analysis tasks when the shape information of 
the object is available. Some other forms of surface 
modeling primitives can be used to suit the specific 
class of object shape under consideration. 

Section 2 describes the acquisition of CT volumet- 
ric images and the appearance of cardiac anatomy in 
such a volume. The knowledge of the cardiac anatomy 
and its appearance is used in designing the image seg- 
mentation algorithm. Section 3 presents the overall 
scheme of the integrated approach and identifies the 
interdependence between the process of image seg- 
mentation and the process of shape analysis. Section 
4 describes the implementation details of image seg- 
mentation and shape analysis, as well as the feedfor- 
ward and feedback channels. Section 5 presents the 
results obtained based on this integrated approach and 
Section 6 concludes this paper with summary of this 
research and discussions of future research plans. 

2 DATA ACQUISITION AND LEFT 
VENTRICLE ANATOMY 

Our CT volumetric data sets are obtained from 
the Dynamic Spatial Reconstructor (DSR), the unique 
ultra-fast multislice scanning CT system built and man- 
aged by the Mayo Foundation (9). Compared to com- 
mercially available Picker Fastrac, or Imatron scan- 
ners, the DSR scanner has functional flexibility in that 
the spatial, temporal, and contrast resolution can be 
adjusr:cd to favor one aspect of resolution over the 
other. ‘This flexibility facilitates basic research applica- 
tions. 

According to Dr. Ritman and his colleagues ( 10, 
1 1 ), the DSR synchronously scans multiple, parallel, 
transaxial sections within & s. These scans are re- 

peated 60 times per second. Up to 120 images of 
transaxial sections were reconstructed for each & s 

scan sequence, and post scan manipulation and interpo- 
lation of the reconstructed images were used to gener- 
ate cubic voxels of such volumetric image sequences. 
With such rapid, extensive data collection, high-resolu- 
tion volumetric images, largely free of motion blur, 
can be generated for moving organs, such as the heart. 
In a typical DSR experiment, 16 volumes are recon- 
structed within a cardiac cycle, with each volume rep- 

Fig. 1. A few typical cross sections of the original DSR data. 

resenting one time instant. Each reconstructed volu- 
metric image usually contains roughly 120 128 X 128 
slices, however, this research is based on a sequence 
of 16 volumes each contains 95 90 X 90 slices. Each 
slice of a reconstructed volume represents an approxi- 
mately 0.9 mm thick transverse cross section of the 
scanned anatomy, and each of the volumetric elements, 
or voxels, represents an (0.9 mm)’ cube of tissue. To 
bring out the left ventricle chamber as a bright object, 
a Roentgen contrast agent is injected into the right 
atrium several seconds prior to the scanning of the 
heart. A few cross sections of the original DSR data 
are presented in Fig. 1. 

In a typical volume of such images, the left ventri- 
cle is included in a high intensity region which would 
also includes the left atria1 chamber and aorta. Al- 
though there are valves separating the left ventricle 
chamber from the left atria1 chamber and aorta, the 
valves of canine heart, which has been used in this 
basic research rather than the human heart, are only 
of the order of 1 mm thick and their visibility in the 
volume is diminished by the partial volume effect and 
the resolution limitation of DSR scanner ( 12) _ Further- 
more, the valves open and close alternatively during a 
cardiac cycle so that whether or not they appear in an 
acquired image would also depend on the timing of the 
image acquisition. Therefore, the left ventricle often 
appears connected with the left atria1 chamber and 
aorta in the acquired volumetric images. 

Overall, the intensity of the left ventricle is much 
brighter than the myocardium. However, the intensity 
distribution of the left ventricle chamber is not uniform 
due to the uneven distribution of the contrast agent. 
The nonuniform distribution of the contrast agent is 
difficult to model and compensate, and therefore re- 
quires the image segmentation algorithm to be adaptive 
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to local properties of the intensity distribution. In addi- 
tion to the nonuniform distribution of contrast agent, 
the noise from the errors in scanning and volume re- 
construction causes the blurring of the structural bor- 
ders and hence introduces the ambiguity in boundary 
classifications. According to Dr. Higgins ( 11 ), the left 
ventricle chamber appeared in the CT volumetric im- 
ages is a large, bright, smooth, solid region, varying 
in size and shape over time, approximately attached to 
the left atrial chamber and aorta through the valves, 
and separated from the myocardium by a strong, but 
blurred and noisy, interface. 

This general image model of the left ventricle is 
used in the design of the clustering algorithm for the 
image segmentation. We design a robust image seg- 
mentation algorithm using the image model of the left 
ventricle such that it is adaptive to spatial-varying im- 
age intensity of the left ventricle caused by the nonuni- 
form distribution of the contrast agent. This image 
model of left ventricle will also be used to devise an 
ROI identification algorithm using various morpholog- 
ical operations to produce the digital volumes con- 
taining only the left ventricle chamber. The blurred 
and noisy boundary between left ventricle chamber 
and myocardium caused by errors in scanning and re- 
construction is used to compute the segmentation con- 
fidence measures used in the implementation of the 
shape analysis algorithms to enforce the data consis- 
tency constraint. The shape information of the left ven- 
tricle, which generally can not be inferred from the 
image, is used as the guidance for the segmentation 
refinement so that the final segmentation is compatible 
with the surface modeling primitives derived from a 
priori shape knowledge. The overall scheme of the 
integration for a general purpose image analysis task 
is described in Section 3. The detail of how multiple 
sources of information are utilized in implementing an 
integrated algorithm for left ventricle motion analysis 
is given in Section 4. 

3 O V E R V I E W  OF THE I N T E G R A T E D  
A P P R O A C H  

The overall block diagram of the integration is 
presented in Fig. 2. The image segmentation process 
includes the adaptive K-mean clustering and ROI iden- 
tification. The shape analysis process includes the con- 
struction of the object centered coordinate system and 
the fitting of shape modeling primitives. The feedfor- 
ward channel from the segmentation to the shape anal- 
ysis is formed through the application of confidence 
measures derived from the original image data to the 
fitting of the boundary points to shape modeling primi- 
tives. The feedback channel from shape analysis to 

segmentation is formed through the masking of the 
region of adjustment in the given images followed by 
the necessary procedures for shape knowledge based 
segmentation refinement. 

The block diagram in Fig. 2 represents the overall 
scheme of integration for a general image analysis task 
based on surface modeling. For each specific problem, 
the implementation of the algorithms within the inte- 
grated frame will be different from one to another. In 
general, the original image data sets are first passed 
through an adaptive K-mean clustering algorithm to 
obtain an initial segmentation. The knowledge of the 
object shape, such as the anatomy of biomedical struc- 
tures, is applied to identify the ROI. The ROI identifi- 
cation process can be implemented, in many cases, by 
the morphological operations on the segmented re- 
gions. The boundary of this ROI is then extracted and 
the confidence measure of each boundary point is com- 
puted. The confidence measure of a boundary point 
includes the neighborhood information such as magni- 
tude of the gradient and the difference between its 
grey-level value and class mean. The subsequent con- 
struction of the object centered coordinate system is 
usually the first step in shape analysis in order to align 
the position and orientation of the region-of-interest 
for normalized deformation analysis. The confidence 
measures weighted fitting of the normalized boundary 
points to surface modeling primitives provides a pa- 
rameterized characterization of shape deformations. 
After the surface fitting, the energy functions of the 
errors in both image segmentation and surface fitting 
are combined to compute the total energy function of 
the system. If the energy of the system has not reached 
the minimum, the feedback channel is opened for seg- 
mentation refinement. Then, the fitted surface is pro- 
jected back to the original image space to form masked 
regions composed of inconsistently classified pixeis. 
Within these masked regions, the grey level value of 
their pixels is updated according to the nature of the 
classification inconsistency. A stochastic updating 
scheme is developed to ensure the randomness of the 
pixel gray level updating considering that the images 
have in fact been corrupted by various types of noise. 
Upon the completion of the pixel value adjustment, a 
new cycle of image segmentation and shape analysis 
is performed, beginning with the adaptive K-mean 
clustering for segmentation refinement. Such cycle of 
iteration is continued until the system energy reaches 
the minimum. 

It can be seen from the block diagram that an 
output of this system is the parameterized surface rep- 
resenting the object under consideration. Traditional 
segmentation algorithms usually consider the seg- 
mented regions as their final results without concerning 
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Fig. 2. Block diagram of the integrated approach. 

the nature of the subsequent analysis based on the 
segmented results. For general image analysis tasks, 
we usually do not stop at the stage of segmentation, 
instead, we treat the segmentation as an effective way 
of representing the image information for subsequent 
segmentation based further analysis. The segmentation 
of a given image serves only as an intermediate result, 
and in fact, as the input to the shape analysis process. 
Hence, the clustering and segmentation of structure- 
of-interest based on the original image data should be 
an integral part of the overall image analysis system. 
An overall optimal solutions can only be obtained 

through integrating the segmentation with other com- 
ponents within such a system. The feedforward chan- 
nel in this integrated approach is designed to enforce 
the constraints of data consistency on the surface anal- 
ysis process. These constraints are imposed in the form 
of weighted surface fitting through the applications of 
confidence measures derived from the original images 
data. Such weighted surface fitting is able to integrate 
the segmentation results with the original image data 
to achieve a data consistent results. On the other hand, 
the a priori shape knowledge of the object under con- 
sideration can be very useful in the process of segmen- 
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tation in order to determine what type of structure one 
should look for. Unfortunately, such a priori knowl- 
edge have not been used in existing segmentation algo- 
rithms. Many segmentation algorithms have thus pro- 
duced segmented regions inconsistent with a priori 
knowledge. The feedback channel in this proposed ap- 
proach serves as a guidance for the refinement of image 
segmentation so that the segmented region is compati- 
ble with a priori shape knowledge of a given object. 
Without doubt, this feedback of shape information 
would provide an opportunity for the shape analysis 
process to integrate with the segmentation process so 
that both the image data and shape information are 
used to generate accurately segmented regions from 
the noisy images. Through integration, the linkage be- 
tween the process of image segmentation and the pro- 
cess of shape analysis has been enforced in a dual 
directional fashion. 

4 IMPLEMENTATIO N OF THE 
INTEGRATED APPROACH 

We have presented, in Section 3, the overall de- 
scription of the integrated approach. The system of 
integration consists of three major components: image 
segmentation, shape analysis, and their interactions. 
Such integrated scheme can be applied to many image 
analysis tasks based on parameterized surface model- 
ing. However, the implementation of the integration 
scheme for each specific problem is different from one 
to another because different objects often have distinct 
shape characteristics. These shape characteristics de- 
termine how the segmentation and ROI identification 
should be done and what type of surface modeling 
primitives should be employed. In the case of left ven- 
tricle motion analysis based on surface modeling, the 
algorithms for initial segmentation and ROI identifica- 
tion are designed based on a priori information of the 
heart anatomy and the appearance of left ventricle in 
the given image. The surface modeling primitives are 
also derived from a priori shape knowledge of the 
left ventricle widely used in cardiac research. In the 
following, we discuss in detail the implementation of 
the algorithms in this integrated approach for left ven- 
tricle motion estimation. 

4.1 Segmentation and ROI identification algorithms 
For many image analysis applications, we are of_ 

ten interested in only a single region or a cluster of 
regions that are the projection of an object-of-interest 
in a given image. This is particularly true for biomedi- 
cal applications when we look for certain structures 
from a given image or a set of image data. The first 
step in such image analysis applications is to identify 

the region-of-interest from the image data. In the case 
of left ventricle motion analysis, we are given a se- 
quence of volumetric image data representing the dy- 
namics of the heart. The left ventricle can be identified 
from the given image sequence since it is contained 
within a bright region produced by the contrast agent. 
However, as we have pointed out in Section 2, the 
design of the segmentation and RO! identification algo- 
rithms is challenging since the algorithms need to ex- 
tract the left ventricle chamber form the given images 
having nonuniform intensity distribution within the re- 
gion-of-interest, blurred and noisy interface between 
left ventricle and myocardium, and ambiguous separa- 
tion between left ventricle and left atrium and aorta. 
After the successful extraction of the left ventricle 
chamber from a given volume of image data, the 
boundary of the extracted region is used for the subse- 
quent process of shape analysis. 

4.1.1 The adaptive K-mean segmentation. Image 
segmentation is an important, yet challenging problem 
in image processing and image analysis. There have 
been numerous algorithms developed over the years. 
Depending on the goal of the research, the algorithms 
of image segmentation range from generating binary 
representation from a gray level image to tracking of 
time-varying regions in a given image. However, there 
is one thing in common for all the segmentation algo- 
rithms, that is, they all seek to develop an accurate and 
compact representation of the information contained 
in the images. The representation of the extracted in- 
formation is usually critical for further analysis and 
processing. In the case of extracting region-of-interest 
from the images, many thresholding based approach 
have been developed. The thresholding based ap- 
proaches generally classify each image element as ei- 
ther a member of the region-of-interest or a non-mem- 
ber of that region. The major drawback of these 
thresholding based approaches is the binary nature of 
the clustering that usually produces inaccurate classi- 
fication of regions since natural and biomedical images 
are often composed of more than two clusters of image 
elements representing corresponding types of different 
objects or structures. In particular, when the image 
segmentation or region extraction techniques are ap- 
plied to biomedical images with known number of 
multiple clusters, an algorithm better than the thresh- 
olding based approach can be designed. This multi- 
cluster classification of images is known as the K- 
mean image segmentation and can be applied to many 
biomedical image analysis problems since the value of 
K can be determined a priori for images of particular 
parts of human anatomy. 

The traditional K-mean image segmentation algo- 
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rithms and their variations classify the pixels in an 
image into clusters based only on their intensity. Each 
cluster of pixels is characterized by a constant intensity 
and is free of any spatial constraints. In practice, the 
images, are noisy version of the reflected density func- 
tion, and the image intensity of same cluster may 
change over the spatial domain due to some physical 
limitations of the imaging system. Furthermore, certain 
spatial constraints are needed since a pixel tends to 
belong to the same class as most of its neighbors unless 
it is on the boundary of sharp region transition. Our 
adaptive K-mean segmentation algorithm is based on 
the approach proposed in ( 13 ) in which both spatial 
constraints and varying intensity functions are included 
in the adaptive process. We have extended that ap- 
proach to include an additional constraint that the esti- 
mated variance of each cluster is adaptively updated 
in the process of classification. Essentially, the adap- 
tive K-mean segmentation algorithm makes use of spa- 
tial information by assuming that the distribution in 
regions is described by a Gibbs random field with its 
parameters representing the size and shape of the re- 
gion. A Maximum A Posteriori (MAP) algorithm is 
used to characterize the spatial varying intensity 
change of the left ventricle chamber caused by inhomo- 
geneity of contrast agent distribution in the CT images. 

It has been shown that (13, 14) images can be 
modeled as a Gibbs random field and the segmentation 
can be accomplished through MAP estimation tech- 
niques. According to Bayes’ rule, the posterior proba- 
bility can be expressed as: 

P(XlY) a P(YlX)P(X), (1) 

where p(x) is the a priori probability of the segmenta- 
tion, and p ( y Ix) represents the conditional probability 
of the image data given the segmentation. The Gibbs 
random field can be characterized by a neighborhood 
system and a potential function. An image segmenta- 
tion is accomplished by assigning labels to each pixel 
in the given image. A label x5 = i implies that the pixel 
s belongs to the i-th class of the K classes. Therefore, 
we have: 

P(X.,l&, v’t f s) = P(.?,l&, t E N,), (2) 

where N, represents the defined neighborhood for pixel 
s. Associated with each neighborhood system are 
cliques and their potentials. A clique is a set of sites 
where all elements are neighbors. A Gibbs distribution 
can then be defined as: 

(3) 

where Vc is a certain clique potential function for 
clique C. If we model the conditional density as a 

Gaussian process, then the overall probability function 
will be: 

where p* and cs are the class mean and variance at 
pixel location s. MAP estimation can be implemented 
based on Equation 4 using optimization techniques. In 
this process, pX and crl are adaptively estimated and 
updated so that the segmentation algorithm can be ap- 
plied to images of spatial varying intensity associated 
with the left ventricle. This adaptive clustering algo- 
rithm is applied to obtain four regions with the bright- 
est region corresponding to left ventricle chamber. 

4.1.2 ROI identi$cation. For many biomedical 
applications, we know in advance the approximate size 
and shape of the object we are looking for from the 
images. Due to the errors in scanning and reconstruc- 
tion of the original images, the results from image 
segmentation using adaptive K-mean clustering may 
still contain small regions that have been mis-classi- 
fied. The knowledge of the object shape and size can 
now be used to eliminate any region that are not com- 
patible with the a priori knowledge. In the case of left 
ventricle chamber extraction, after the completion of 
adaptive K-mean segmentation, all the pixels that have 
been segmented into the brightest region are first con- 
sidered as potentially belonging to the left ventricle 
while the rest of pixels are considered as not belonging 
to the left ventricle. This binary re-classification is 
based on the results of K-mean segmentation, however, 
it is necessary to use multi-cluster segmentation (K 
= 4) instead of thresholding in the process of initial 
segmentation. Notice that the segmentation of left ven- 
tricle chamber would be incorrect if we use thresh- 
olding (K = 2) directly in the process of initial seg- 
mentation since the given images indeed consists of 
four representative regions corresponding to four types 
of biomedical structures that produce different densi- 
ties in the image. 

Based on the description presented in Section 2 
on how the left ventricle chamber would appear in a 
given image, the ROI is assumed to be one single 
bright region. Hence, the small isolated bright regions 
should either be merged with the main region if they 
are in the neighborhood of the ROI, or be labeled as 
non-R01 according to model of the appearance of the 
left ventricle. To achieve these goals, we have designed 
a combination of digital morphological operations on 
the initial segmentation results and obtained the desired 
results. The resultant single bright region represents 
the connected volume consisting of the left ventricle, 
left atrium and aorta. The morphological operations 
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used to obtain such volume include opening, (0) and 
closing, (C) which are in turn defined by basic mor- 
phological operations, such as dilation, (D) and ero- 
sion, (E) ( 15). The opening and closing are defined 
as: 

WA, B) = D[E(A, B), Bl (5) 

C(A, B) = E[D(A, -B), -B] (6) 

where A is the image and B is the operation element 
and -B denotes the reflection of B with respect to its 
origin. 

We then begin to eliminate the left atrium and 
aorta from the resultant volume after completion of 
these morphological operations, since the further anal- 
ysis of left ventricle dynamics would require the given 
volume to consist only the left ventricle. There has 
been no existing method of automatically identifying 
the separations between the left ventricle chamber and 
the left atrium and aorta in a given CT images. Higgins 
and his colleagues have recently worked towards an 
automatic segmentation of left ventricle from these 
volumetric images ( 11, 16), however, the separation 
of left ventricle from left atrium and aorta is accom- 
plished either manually in advance or interactively by 
a skilled operator. We proposed to use predictive mor- 
phological operations to identify the left ventricle 
chamber from this composite region. The basic mor- 
phological operation is erosion, though, the position 
and area of the seed region are obtained from the pre- 
dictions computed from previous cross sections ac- 
cording to the shape modeling primitives. We have 
achieved promising results with these knowledge- 
based morphological operations. The detail of such 
predictive morphological operations is described in 
( 17). The resultant volume after predictive morpho- 
logical operations is considered as the segmented left 
ventricle chamber. The boundary of this region is then 
extracted using simple manipulation on the binary data 
and will be used as the input to the shape analysis 
algorithms. 

4.2 The shape analysis algorithms 
Given the extracted 3D structures from the volu- 

metric images, the next step in biomedical image anal- 
ysis is to infer physiology or pathology related infor- 
mation from such structures. Simple calculation of 
volume measurement from the extracted structure has 
often been adopted since the computation of more 
complicated measures usually requires better under- 
standing of the given object or structure. However, for 
many biomedical structures, the shape characterization 
has important clinical and research applications be- 
yond what simple volume measure could provide since 
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many physiological properties of a given structure are 
more closely related to shape deformations in either 
spatial or temporal domains. Shape analysis of biomed- 
ical structures usually provides more detailed and lo- 
calized information than the volume analysis which 
generally provides only global measures. In particular, 
the left ventricle is considered as a deformable object 
that changes its shape continuously over the cardiac 
cycle. The shape characterization of left ventricle 
chamber is therefore a vital component of the cardiac 
image analysis. 

The shape modeling based algorithms have been 
successfully applied to motion and deformation esti- 
mation of various deformable objects ( 1, 18, 19). It 
is true that the 3D dynamic surface models employed 
in these approaches are different from one application 
to another. However, the implementation of the shape 
modeling based approaches are generally accom- 
plished by surface fitting. The motion and deformation 
parameters of the object are then usually obtained by 
comparing the implicit shape parameters of the fitted 
surface at two consecutive time instants. Among these 
shape modeling based approaches, the hierarchical 
scheme of modeling and estimation of surface motion 
and deformation has led to a computationally efficient 
implementations ( 18). Our shape modeling and analy- 
sis algorithms for left ventricle motion and deformation 
estimation are hence based on the principles of hierar- 
chical modeling and estimation. 

In our hierarchical modeling and estimation based 
approach, the motion and deformation parameters are 
obtained by comparing the corresponding parameter- 
ized surfaces. Logically, such comparisons of parame- 
terized surfaces can only be made with the assumption 
that the representations of the surfaces are with respect 
to the same reference coordinate system. Therefore, 
the first step in the process of shape analysis is to 
construct an object centered coordinate system and 
transform all the boundary data points to this coordi- 
nate system before the next step of fitting of the shape 
modeling primitives is undertaken. The procedures of 
coordinate system construction and shape modeling 
primitives fitting are repeated for every volume in a 
given image sequence. The details of how the motion 
and deformation parameters are computed from the 
fitted parameterized surfaces are described in ( 1). 

4.2.1 Object centered coordinate system. The es- 
tablishment of the object centered coordinate system 
is necessary for the surface modeling based nonrigid 
motion analysis. In the hierarchical scheme of model- 
ing and estimation of left ventricle motion and defor- 
mation, the origin and orientation of the this coordinate 
system is computed from the estimated long axis of 
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the left ventricle extracted from the given discretized 
boundary of the ROI. In addition, the curvature of the 
estimated long axis is also used to represent the overall 
bending deformation of the left ventricle under the 
assumption that the left ventricle is having linear bend- 
ing deformation during the cardiac cycle. 

It has been shown that (20, 21) the center-of- 
contraction of the left ventricle surface can be used to 
represent the estimated origin of the object centered 
coordinate system. The computation of the center-of- 
contraction is usually accomplished through least 
square estimation if one is given the corresponding 
surface points at two consecutive time instants. When 
no such correspondence but a dense cluster of surface 
points are given, a good approximation of the center- 
of-contraction is the center-of-gravity of the given sur- 
face points (2 1). We have also shown in (2 1) that 
this center-of-gravity is equal to the weighted centroid 
of all cross section centroids in a given volume. The 
weight of each cross section is equal to the relative 
number of boundary points within the given cross sec- 
tion. Although the center-of-gravity can be computed 
directly from all the boundary points, the computation 
of center-of-gravity from cross section centroids can 
be conveniently incorporated with the construction of 
the long axis which is used to estimate the orientation 
of the object centered coordinate system as well as the 
bending deformation of the left ventricle chamber. 

In the case of left ventricle, the motion of its long 
axis is a clear indication of its position and orientation 
changes. Generally, the long axis of the left ventricle 
is defined as a curved line connecting the center of the 
base and the apex of the left ventricle. We shall assume 
that this curved long axis lies approximately on a plane 
whose motion is driven mostly by the overall position 
and orientation change of the left ventricle (21). Such 
assumption has been implicitly used in many previous 
studies of left ventricle dynamics since the long axis 
is often assumed to be only a straight line (22). In the 
case of CT volumetric data, the discrete representation 
of the long axis can be approximated by the centroids 
of cross sections, assuming that these cross sections 
are obtained transversely. Then, upon the extraction of 
cross section centroids, the plane that the long axis 
lies can be constructed through estimating a best-of- 
tit plane based on the extracted centroids. This plane 
is determined from a 3 X 3 scattering matrix computed 
from the given cross section centroids such that the 
normal of this plane coincides with the eigenvector that 
corresponds to the smallest eigenvalue of the scattering 
matrix. Since the scattering matrix is symmetric and 
positive definite, its three eigenvectors are ordered ac- 
cording to the error-of-fit and are mutually orthogonal. 
The order of these eigenvectors is assumed unchanged 

since the twisting deformation of the left ventricle is 
generally small compared with other forms of global 
motion and deformation (20). Therefore, these ordered 
eigenvectors can be used to represent the orientation 
of the object centered coordinate system. After the 
determination of the object centered coordinate system, 
we follow the procedures described in ( 2 1) to compute 
the global rigid motion and bending deformations. Es- 
sentially, the global translation is the difference be- 
tween the origins of two object centered coordinate 
systems, and the global rotation is the orientation 
change of these two coordinate systems. In matrix 
form, the global translation and rotation parameters of 
the left ventricle can be written as: 

T= [;] - [F] (7) 

R = [el 4 e;l[e, e, e31r (8) 

where (x,, ymr z,) and (XL, yk,zb) are the centroids, 
and e,, e2, el and el, e;, e; are the eigenvectors of 
the scattering matrices at two consecutive time in- 
stants. The bending deformation parameters are ob- 
tained through fitting the cross section centroids to an 
arc since linear bending is assumed. For linear bending, 
a straight line becomes an arc with radius R, and the 

bending rate is equal to f . These estimated motion 

and deformation parameters are used to transform the 
extracted discretized version of the left ventricle 
boundary to an object centered coordinate system in 
which the surface fitting and parameterization can be 
implemented coherently. 

4.2.2 Fitting of sulfate modeling primitives. Su- 
perquadrics are used in this research as the surface 
modeling primitives for the left ventricle. It is a param- 
eterized family of shapes known capable of modeling 
wide variety of deformable objects, including the left 
ventricle ( 1, 19,23). The parameters of the deformable 
shape modeling primitive are obtained through surface 
fitting when enough samples points of the surface are 
given. An implicit equation of the basic superquadrics 
can be written as: 

(($+ + (LJ)““)““’ + ($‘I = I. (9) 

where scale parameters a,, a,, az define the size of the 
superquadrics in the x, y, and z directions, respectively, 
E, is the squareness parameter along the z axis and c2 
is the squareness parameter in the x - y plane. We 
have extended the basic superquadric model to include 
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tapering and bending deformations (21) so that it 
would characterize the left ventricle shape better. The 
tapering deformation allows the model to capture the 
varying size of the cross sections and can be written 
as: 

X = (kz + l ) x  

Y =  ( k z +  1)y 

Z = z  (10) 

1 1 
- - - < k < - - .  

az az 
where k is a tapering constant and 

The estimation of tapering deformation can be incorpo- 
rated into the fitting of superquadric modeling primi- 
tives since its linear nature would not complicate the 
fitting process. In general, the incorporation of bending 
deformation estimation to the model fitting is compli- 
cated because of its second order representation. This 
is why we choose to estimate bending deformation 
from long axis arc fitting and use the estimation result 
to unbend the given boundary points before the fitting 
of the superquadric surface modeling primitives. The 
fitting of the extracted left ventricle boundary to the 
surface modeling primitives has been implemented as 
nonlinear optimization. The objective function of the 
nonlinear optimization is expressed as the "inside-out- 
side" function of the superquadrics summed over all 
given surface sample points. The "inside-outside" 
function is defined as: 

f ( x , y , z )  = --  + + (11) 
\ \ a , /  \a>,/ / 

where, i f f (x0 ,  y0, z0) = 1, then (x0, Y0, z0) is on the 
surface; i f f (x0 ,  Y0, z0) < 1, then (x0, Y0, z0) lies inside 
the surface; i f f ( x 0 ,  yo, z0) > 1, then (xo, yo, zo) 
lies outside the surface. The objective function for the 
optimization is defined as: 

n 

Minimize: ~ I f ( x , , Y , , Z , ) -  112 (12) 
i I 

where the summation is over all extracted surface 
points. With the inclusion of tapering deformation, the 
optimization is rewritten as: 

Minimize: k If( Xi, Y,, Zi ) 1 I 2. 13) 
i I 

It is well known that the nonlinear optimizations 
are computationally intensive. We have, however, 
worked towards reducing the complexity of the optimi- 
zation using a sequential fitting scheme (2).  

4.3 Feedforward and feedback algorithms 
Sections 4.1 and 4.2 described, respectively, the 

algorithms tbr image segmentation and shape analysis. 

It has been pointed out earlier that these two processes 
are traditionally implemented separately in existing 
surface modeling based image analysis approaches. 
We have also discussed how these two processes can 
benefit from each other if constructive interactions be- 
tween them can be identified and positive influences 
can be enforced. We present here the algorithms to 
link these two processes through the design of the 
feedforward and feedback channels in this integrated 
approach. 

The feedforward channel is composed of the steps 
needed to compute the confidence measures associated 
with the extracted boundary points. The confidence 
measure of a given boundary point is directly related 
to the neighborhood statistics derived from the original 
gray level image, and is used to represent the strength 
of a boundary point. The fitting of surface model 
weighted by such confidence measures generates a pa- 
rameterized surface that will match well to the strong 
boundary sections but will be more flexible in weak 
boundary sections. The feedback channel consists of 
the steps needed to incorporate the surface model into 
the refinement of ,*he segmentation. The goal of such 
incorporation is to use available shape information to 
guide the segmentation so that the effects of image 
distortion and reconstruction noise on image segmenta- 
tion is reduced. Such a surface model based segmenta- 
tion is capable of providing segmented regions corre- 
sponding well to both original image and the surface 
model. 

4.3.1 Confidence measure computation. Two 
types of neighborhood statistics are used to measure 
the strength of a boundary point: local relative inten- 
sity, and local relative gradient. We define the overall 
average intensity of a segmented region as the aver- 
aged intensity of all points inside that region, and the 
local average intensity of a boundary points as the 
average intensity of all points within the intersection 
of a pre-defined neighborhood and the segmented re- 
gion. In this research, we define a 3 × 3 window 
centered on the given point as the neighborhood region, 
however, other types of neighborhood region can also 
be defined. The difference of these two average is used 
as one measure to characterize the strength of a bound- 
ary point; the small the difference, the stronger the 
boundary strength. The gradient of the a given bound- 
ary point is used as another measure to characterize 
the strength of a boundary point, since we expect that 
there is a sharp transition in intensity at these boundary 
points. In general, for a strong boundary point, its local 
average intensity is similar in value with the overall 
average intensity of the given region while the magni- 
tude of its gradient is large. Therefore the strength of 
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Fig. 3 

(a) (W 

(a) Initial segmentation results and (b) its comparison with the original data for a few typical cross 
sections. 

boundary point, or the confidence measure, is propor- 
tional to the magnitude of the gradient and inversely 
proportional to the difference between its local average 
intensity and overall average intensity. 

With the assumption of Gaussian intensity distri- 
bution for the clustered ROI, the local relative intensity 
C, is defined as: 

(14) 

where I,,,,,, is the overall average intensity of the ROI, 
I,,),,, is the local average intensity of pixels within the 
neighborhood of a given boundary point, and Al is a 

constant which is the standard deviation derived from 
distribution of the corresponding cluster. The local rel- 
ative gradient CG is defined as: 

(15) 

where G,,,, is the local gradient and G,,, is the maxi- 
mum gradient. The higher these two coefficients, C, 

and C,, the stronger is the boundary point. The 
weighted optimization of surface fitting then becomes: 

Minimize: c C,C,If( X, , Y, , Z, ) - 1 1’ (16) 
,=I 

(a) (W 

Fig. 4. (a) ROI identification result and (b) its comparison with the manually segmented result for the same cross 

sections presented in Fig. 3. 
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(a) (b) 

(C) (d) 

Fig. 5. Rendered volumes of the (a) manually segmented left ventricle chamber provided by Mayo Clinic, (b) 
the segmented region following the initial morphological operation, (d) the left ventricle chamber generated by 
predictive morphological operation, and (e) the parameterized surface created by fitting the extracted left ventricle 

to the superquadric surface model. 

4.3.2 Region masking and segmentation refine- 
ment. The feedback channel serves as an effective way 
of  incorporating the shape information into the process 
of  segmentation refinement. In fact, we have utilized 
the shape information in the procedure of  predictive 
morphological processing to identify the left ventricle 
region from the composite region that also contains 
left atrium and aorta. After the completion of  the sur- 
face fitting, we have obtained a parameterized descrip- 
tion of  the left ventricle shape. The parameters of  the 
fitted surface can then be used to guide the process 
of  segmentation refinement. In particular, the scaling, 
tapering, and bending parameters of  the fitted super- 
quadrics can be used to construct a surface that can be 
projected into each cross section to create regions that 
would need necessary adjustment. The projected re- 
gions are to be compared with the regions obtained in 
the process of  K-mean clustering to find out how the 
initial segmentation result conform with the shape 

modeling primitives. No adjustment is necessary for 
those pixels which belong to consistent projected re- 
gion and clustered region. After the comparison, two 
types of  inconsistency are found among the pixels that 
need corresponding adjustment. The first type of  incon- 
sistently classified pixels are those clustered in the ini- 
tial segmentation as the same class as the left ventricle 
but are not within the projected regions. They include 
the pixels corresponding to the left atrium and aorta 
that have been excluded from ROI in the process of  
predictive morphology. They also include pixels lo- 
cated outside of  the fitted surface due to the smoothness 
constraints of  the surface modeling primitives. The 
second type of  inconsistently classified pixels are those 
clustered in the initial segmentation as not the same 
class as left ventricle but are within the projected re- 
gions. Such inconsistency is mainly due to the smooth- 
ness constraints of  the surface modeling primitives. 

To ensure the randomness of  the pixel value ad- 
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justment, a stochastic updating scheme is imple- 
mented. We make use of a Gaussian distribution de- 
rived from the pixel value distributions of the initially 
segmented region-of-interest which includes the left 
ventricle and its adjacent segmented region. Suppose 
the pixel values in both regions can be represented as 
random variables with Gaussian densities. Then, the 
difference of these two random variables is another 
Gaussian and both mean and variance can be computed 
from the two given Gaussian distributions. For pixels 
with first type of inconsistency, since they are outside 
the projected region but inside the initial clustered re- 
gion, we subtract from each pixel a random value gen- 
erated from the distribution of difference we have de- 
rived so that their grey level are statistically closer to 
its adjacent cluster. For pixels with second types of 
inconsistency, since they are inside the projected re- 
gion but outside the initial clustered region, we add to 
each pixel a random value generated from the same 
distribution so that their grey levels are statistically 
getting closer to the ROI. Such updated images are 
used as the input to the next iteration of the integrated 
approach. 

5 RESULTS 

Promising results have been obtained based on 
this integrated approach using one sequence of CT 
volumetric images. The results of image segmentation, 
ROI identification, and shape deformation analysis 
have all shown their consistency with both image data 
and a priori shape knowledge. Figure 3 shows the ini- 
tial segmentation results of a few typical cross sections. 
In general, these regions include not only the left ven- 
tricle, but also the left atrium and aorta, as well as 
other types small regions that are generated by image 
acquisition noise. Figure 4 shows the result of ROI 
identification after a series of morphological operations 
for the same cross sections presented in Fig. 3. Notice 
that those small isolated regions have been eliminated 
and the regions corresponding to left atrium and aorta 
have been removed. The comparison of our ROI identi- 
fication result with the manually segmented result 
shows that our morphological operation algorithms, in 
particular the predictive morphology algorithm de- 
signed to automatically remove the left atrium and 
aorta, are very successful. Figure 5 shows the 3D ren- 

Fig. 6. Several rendered volumes of segmented left ventricle after the completion of ROI identification. 
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Fig. 7. Several rendered volumes of parameterized surface created by fitting the extracted left ventricle to the 
superquadric surface model. 

derings of left ventricle obtained using different tech- 
niques. It clearly demonstrated that this integrated ap- 
proach is capable of achieving very promising results 
beyond the manual operation and other semi-automatic 
segmentation algorithms since it provide not only accu- 
rately segmented volumes, but also the parameterized 
shapes that characterize the motion and deformation 
of the left ventricle. Figure 6 shows a few typical vol- 
umes of the segmented left ventricle and Fig. 7 shows 
their corresponding parameterized surfaces. 

6 C O N C L U S I O N  

We have presented an integrated approach which 
unifies the image segmentation with the shape analysis. 
The application of this approach to the left ventricle 
motion analysis has shown that the traditionally sepa- 
rated image processing and image analysis processes 
can be integrated through the design of proper feedfor- 
ward and feedback channels. Such integration of dif- 
ferent image processing and image analysis is particu- 
larly suitable for applications when a priori intormation 

of the object in the given image is known. For biomedi- 
cal applications, this integrated approach can be very 
successful since we often seek to analyze structures in 
the images with known topological and morphological 
properties. Our success in left ventricle motion and 
deformation analysis based on the integrated approach 
has demonstrated the importance of using a priori 
knowledge in the surface modeling based image analy- 
sis tasks. The impact of this research will certainly 
reach beyond the specific application of integration to 
the left ventricle motion analysis. The methodology of 
the integration developed in this research can be ap- 
plied to other types of shape structures and other im- 
aging modalities. 

The adaptive K-mean segmentation algorithm 
may also be extended to 4D to generate a coherent 
segmentation in the time domain using the temporal 
information of the given volumetric image data. Esti- 
mation algorithms for left ventricle local deformation 
will be developed to completely characterize the dy- 
namics of the left ventricle. We will also investigate 



CT Volumetric data-based left ventricle motion estimation l C. W. CHEN rt cd. 99 

different types of surface models and explore their 
applicat.ions to other biomedical image analysis prob- 
lems. 
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