Sonoelasticity imaging: Theory and experimental verification

L. Gao, K. J. Parker, and S. K. Alam
Department of Electrical Engineering, Center for Biomedical Ultrasound and Department of Radiology,
University of Rochester, Rochester, New York 14627

R. M. Lerner
Department of Diagnostic Radiology, Rochester General Hospital, Rochester, New York 14621

(Received 7 April 1994; accepted for publication 3 February 1995)

Sonoelasticity is a rapidly evolving medical imaging technique for visualizing hard tumors in tissues. In this novel diagnostic technique, a low-frequency vibration is externally applied to excite internal vibrations within the tissue under inspection. A small stiff inhomogeneity in a surrounding tissue appears as a disturbance in the normal vibration eigenmode pattern. By employing a properly designed Doppler detection algorithm, a real-time vibration image can be made. A theory for vibrations, or shear wave propagation in inhomogeneous tissue has been developed. A tumor is modeled as an elastic inhomogeneity inside a lossy homogeneous elastic medium. A vibration source is applied at a boundary. The solutions for the shear wave equation have been found both for the cases with tumor (inhomogeneous case) and without tumor (homogenous case). The solutions take into account varying parameters such as tumor size, tumor stiffness, shape of vibration source, lossy factor of the material, and vibration frequency. The problem of the lowest detectable change in stiffness is addressed using the theory, answering one of the most critical questions in this diagnostic technique. Some experiments were conducted to check the validity of the theory, and the results showed a good correspondence to the theoretical predictions. These studies provide basic understanding of the phenomena observed in the growing field of clinical Sonoelasticity imaging for tumor detection.

PACS numbers: 43.80.Qf, 43.80.Jz, 43.80.Vj

LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ</td>
<td>displacement field vector</td>
</tr>
<tr>
<td>ξ_l</td>
<td>longitudinal component of the displacement field vector</td>
</tr>
<tr>
<td>ξ_s</td>
<td>shear component of the displacement field vector</td>
</tr>
<tr>
<td>ρ</td>
<td>density</td>
</tr>
<tr>
<td>E</td>
<td>Young's modulus (stiffness)</td>
</tr>
<tr>
<td>ν</td>
<td>Poisson's ratio</td>
</tr>
<tr>
<td>C_L</td>
<td>speed of the longitudinal wave</td>
</tr>
<tr>
<td>C_S</td>
<td>speed of the shear wave</td>
</tr>
<tr>
<td>ω_0</td>
<td>angular vibration frequency</td>
</tr>
<tr>
<td>Q_0</td>
<td>Q factor of the system</td>
</tr>
</tbody>
</table>

INTRODUCTION

Palpation is a traditional tumor detection method that identifies abnormal regions of increased stiffness (elasticity). But the method is limited to only those tumors which occur close to an accessible surface. Conventional medical imaging, including MRI, CT, mammography, and gray scale ultrasound, is insensitive to stiffness as an imaging parameter and often fails to reveal the extent or existence of tumors which, upon pathologic examination, are found to be palpably more stiff than surrounding normal tissues.

Sonoelasticity imaging is a method of "remote palpation" that identifies hard tumors. This technique combines externally applied vibrations with Doppler detection of the response throughout tissue, to indicate abnormal regions. We define Sonoelasticity as consisting of sinusoidal steady state vibrations, with externally applied stimulus, and production of modal patterns in some organs, and Doppler detection of vibration to generate an image. Sonoelasticity imaging is related to three much larger, older, and somewhat overlapping fields:

1. the study of vibrating targets using coherent radiation (laser, sonar, and ultrasound) (Holen et al., 1985; Cox and Rogers, 1987; Taylor, 1976, 1981),
2. the study of tissue elastic constants (biomechanics) (Fung, 1981; Levinson, 1987; Parker et al., 1993), and

To accurately interpret sonoelasticity images, we must understand the nature of tissue vibrations under different circumstances. There has been some preliminary work on vibration modal patterns in tissue (Lerner and Parker, 1987a, 1987b; Lerner et al., 1988, 1990; Parker et al., 1990; Parker and Lerner, 1992; Lee et al., 1991; Huang, 1990; Gao et al., 1993). Other vibration techniques (Krouskop et al., 1987; Yamakoshi et al., 1990), and also an important class of static and quasistatic techniques have been independently developed by Ophir and others (Ophir et al., 1991; Ponnekanti et al., 1992; Yemelyanov et al., 1992; Céspedes et al., 1993;
A novel theory for vibrations or shear wave propagation in inhomogeneous tissue is developed in this paper. The theory describes the characteristic patterns we expect to see in a sonoelasticity image, especially for tumor recognition. Phantom and in vivo experiments were conducted to corroborate the theory.

I. THEORY

A. Tumor model

We begin by modeling a tumor as an elastic inhomogeneity inside a lossy homogeneous elastic medium. For example, the media stiffness is a constant E_0, except the small area around (x_0, y_0) has the stiffness $E_0 + E'$. When we apply boundary conditions and a driving vibration force, we want to compare the vibration patterns of this medium with and without the inhomogeneity.

B. Displacement wave equation

We start from the basic field wave equations. For a general linear and isotropic material, the displacement field vector $\xi(x,t)$ satisfies the following equation (Landau and Lifshitz, 1970):

$$\frac{E}{2(1+\nu)} \nabla^2 \xi + \frac{E}{2(1+\nu)(1-2\nu)} \nabla \cdot \xi = \rho \frac{\partial^2 \xi}{\partial t^2}. \quad (1)$$

The displacement field vector ξ can be decomposed into longitudinal and shear components (Φ and A are the potential functions for longitudinal and shear components, respectively)

$$\xi = \nabla \Phi + \nabla \times A \quad (2)$$

$$= \xi_l + \xi_s. \quad (3)$$

The two components satisfy, respectively,

$$\nabla \times \xi_l = 0, \quad (4a)$$

$$\nabla \cdot \xi_s = 0. \quad (4b)$$

As derived in the reference (Landau and Lifshitz, 1970), Eq. (1) will give the homogeneous longitudinal and shear wave equations

$$\nabla^2 \xi_l - \frac{1}{C_l^2} \frac{\partial^2 \xi_l}{\partial t^2} = 0, \quad (5a)$$

$$\nabla^2 \xi_s - \frac{1}{C_s^2} \frac{\partial^2 \xi_s}{\partial t^2} = 0, \quad (5b)$$

where

$$C_l^2 = \frac{E}{2\rho(1+\nu)(1-2\nu)}, \quad (6a)$$

$$C_s^2 = \frac{E}{2\rho(1+\nu)}. \quad (6b)$$

Inside both the homogeneous region (tissue) and the inhomogeneous region (tumor), the field vector satisfies the same wave equations (5), but with different C_l and C_s. We assume that ν and ρ do not vary significantly for tumor and normal tissues. The most distinguishable mechanical property that separates tumor from normal tissue is the stiffness E (Parker et al., 1990, 1993). Over the whole medium, we can write E as

$$E(x) = E_0 + E'(x), \quad (7)$$

with

$$E'(x) = \begin{cases} E', & \text{for tumor area } L'_u L'_v \text{ centered at } (x_0, y_0), \\ 0, & \text{for surrounding tissue}. \end{cases} \quad (8)$$

Then we can derive a general expression for the speed of the shear wave:

$$C_s^2(x) = \frac{E(x)}{2\rho(1+\nu)} = E_0/(2\rho(1+\nu)) + E'(x)/(2\rho(1+\nu)) = (1 + E'(x)/E_0)E_0/(2\rho(1+\nu)). \quad (9)$$

If we denote

$$C_0^2 = E_0/(2\rho(1+\nu)), \quad (10)$$

$$\gamma(x) = E'(x)/E_0, \quad (11)$$

then expression (9) could be simplified as

$$C_s^2(x) = C_0^2(1 + \gamma(x)) \quad (12)$$

and $\gamma(x)$ should satisfy

$$\gamma(x) = \begin{cases} E'/E = \gamma, & \text{in tumor area } L'_u L'_v \text{ around } (x_0, y_0), \\ 0, & \text{everywhere else}. \end{cases} \quad (13)$$

So instead of writing two shear wave equations for both the homogeneous and inhomogeneous region, we may write one equation for the entire medium:

$$\nabla^2 \xi_s - \frac{1}{C_0^2(1 + \gamma(x))} \frac{\partial^2 \xi_s}{\partial t^2} = 0. \quad (14)$$

We have chosen to concentrate on shear waves, since low-frequency longitudinal waves have wavelengths that are too large compared to organs of interest at the frequencies used in sonoelasticity imaging (Parker and Lerner, 1992). Furthermore, for simplicity, we will consider the two-dimensional case. If we denote this two-dimensional plane as the $X-Y$ plane, we will only consider the Z component of the displacement vector ξ_z. Thus the letter ξ represents the z component of displacement in all later discussions. The solutions for rectangular enclosures are given for simplicity, although these can be expanded to spherical, cylindrical, elliptical, and other regular geometries. Four cases are given to cover a range of complexity, and build an understanding of the simpler cases.
C. Case one

The case of the homogeneous, lossless medium without source: For a homogeneous rectangle, on all four boundaries \(x=0, x=L_a, y=0, \) and \(y=L_b, \) the displacement is prescribed as \(\xi=0 \) on rigid walls.

Solution: Begin with Eq. (14). In this case the material is homogeneous, \(\gamma(x)=0 \) over the rectangle, so the wave equation becomes

\[
\nabla^2 \xi - \frac{1}{C_0^2} \frac{\partial^2 \xi}{\partial t^2} = 0.
\]

The sinusoidal steady-state solution is well known as

\[
\xi = \xi_0 \exp(i\omega_0 t) \sin(k_m x) \sin(k_n y),
\]

with \(k_m=\frac{m\pi}{L_a}, k_n=\frac{n\pi}{L_b} \) \((m \text{ and } n \text{ are integers}), \) and \(\omega_0^2=C_0^2(k_m^2+k_n^2). \) Thus eigenmodes occur at predictable eigenfrequencies.

D. Case two

The case of the homogeneous, lossy medium with a vibration source on one side: For a homogeneous rectangle, on boundaries \(x=0, y=0, \) and \(y=L_b, \) the displacement \(\xi \) is zero. On the fourth boundary \(x=L_a, \) \(\xi=e_0 \exp(i\omega_0 t) \sin(k_n y). \) Here \(k_n=\frac{n\pi}{L_b}, \) \(n \) is an integer, and \(e_0 \) is a real constant. The material is lossy.

Solution: The term \(\gamma(x)=0 \) throughout the homogeneous medium. As the system is lossy, a relaxation term can be included in Eq. (14) (Kinsler et al., 1982):

\[
\nabla^2 \xi - \frac{1}{C_0^2} \frac{\partial^2 \xi}{\partial t^2} - \frac{R}{\rho C_0^2} \frac{\partial \xi}{\partial t} = 0
\]

(17)

(with \(\omega_0 \rho R=Q_0 \), which is the \(Q \) factor of the system at \(\omega_0 \)).

Assuming sinusoidal dependence \(\xi=\xi_0 \exp(i\omega_0 t), \) the above equation becomes

\[
\nabla^2 \xi + K^2 \xi - (iK^2/Q_0) \xi = 0,
\]

with \(K=\omega_0/C_0, \) which is the vibration wave number.

Given the boundary condition, we know the form of the solution should be

\[
\xi=E_0 \sin[(k_m+i\alpha)x]\sin(k_n y).
\]

(19)

Substituting this into the wave equation (18) and the source term, we find

\[
k_m=(1/\sqrt{2})\sqrt{k_x^2+k_y^2+K^2+Q_0},
\]

(20a)

\[
\alpha=-K^2/2k_m Q_0,
\]

(20b)

\[
E_0=\frac{\xi_0}{\sin[(k_m+i\alpha)L_a]},
\]

(20c)

with \(k_x=K^2-k_y^2. \)

We could rewrite the solution given by Eq. (19) in the conventional exponential form:

\[
\xi=\frac{\xi_0}{2} \exp(i\omega_0 t) \sin(k_n y)
\]

\[
\times \frac{\exp(ik_m x-\alpha x)-\exp(-ik_m x+\alpha x)}{\exp(ik_m L_a-\alpha L_a)-\exp(-ik_m L_a+\alpha L_a)}.
\]

(21)

Separating the real and imaginary part, Eq. (21) becomes

\[
\xi=\xi_0 \sin(k_n y)[(G+iH)/2F] \exp(i\omega_0 t),
\]

with

\[
F=((\exp(-\alpha L_a)-\exp(\alpha L_a))\cos(k_m L_a))^2
\]

\[
+((\exp(-\alpha L_a)+\exp(\alpha L_a))\sin(k_m L_a))^2,
\]

(23a)

\[
G=\exp(-\alpha L_a)-\exp(\alpha L_a))(\exp(-\alpha x)
\]

\[-\exp(\alpha x)\cos(k_m L_a)\cos(k_m x)+(\exp(-\alpha L_a)
\]

\[+\exp(\alpha L_a))(\exp(-\alpha x)
\]

\[+\exp(\alpha x))\sin(k_m L_a)\sin(k_m x),
\]

(23b)

\[
H=\exp(-\alpha L_a)-\exp(\alpha L_a))\exp(-\alpha x)
\]

\[-\exp(\alpha x)\sin(k_m L_a)\cos(k_m x).
\]

(23c)

Only the real part of \(\xi \) is the solution, which is

\[
\text{Re}(\xi)=\xi_0 \sin(k_n y)\frac{G \cos(w_0 t)-H \sin(w_0 t)}{2F}.
\]

(24)

Since ultrasound Doppler devices can easily detect the vibration amplitude, we are also interested in that function of position:

\[
|\text{Re}(\xi)|=\xi_0 \sin(k_n y)(\sqrt{G^2+H^2/2F}).
\]

(25)

E. Case three

The case of the inhomogeneous, lossy medium with a vibration source: Again we begin with a rectangle with dimension \(L_a \times L_b. \) On the boundaries \(x=0, y=0, \) and \(y=L_b, \) the boundary condition is \(\xi=0. \) The fourth boundary \(x=L_a \) satisfies \(\xi=e_0 \exp(i\omega_0 t) \sin(k_n y). \) \(e_0 \) is a real constant. The material is lossy. The stiffness of the inhomogeneous area is \(E_0+E^* \) with dimension \(L_a \times L_b \) (assumed small), which is located at \((x_0,y_0).\)

Solution: Combining the lossy term of Eq. (17) with the inhomogeneous wave equation (14) produces

\[
\nabla^2 \xi - \frac{1}{C_0^2(1+\gamma(x))} \frac{\partial^2 \xi}{\partial t^2} - \frac{R}{\rho C_0^2(1+\gamma(x))} \frac{\partial \xi}{\partial t} = 0
\]

(26)

(with \(\omega_0 \rho R=Q_0 \), which is the \(Q \) factor of the system at \(\omega_0 \)).

Assuming the sinusoidal time dependence \(\xi=\xi_0 \exp(i\omega_0 t), \) the equation above becomes

\[
\nabla^2 \xi + \frac{K^2}{1+\gamma(x)} \xi - \frac{iK^2}{Q_0(1+\gamma(x))} \xi = 0,
\]

(27)

where \(K=\omega_0/C_0 \) and \(Q_0=\omega_0 \rho R. \)

Without changing the equation above, we rewrite it as...
\[\nabla^2 \xi + K^2 \xi - \frac{iK^2}{Q_0} \xi = \frac{K^2\gamma(x)}{1 + \gamma(x)} \xi - \frac{iK^2}{Q_0} \frac{\gamma(x)}{1 + \gamma(x)} \xi. \] (28)

Denoting \(\beta(x) = [\gamma(x)]/(1 + \gamma(x)) \), and recalling the definition of \(\gamma(x) \) given by Eq. (13), we summarize the behavior of \(\beta(x) \):

\[\beta(x) = \begin{cases} \gamma/(1 + \gamma), & \text{in the area } L'_u L'_v \text{ around } (x_0, y_0), \\ 0, & \text{everywhere else}. \end{cases} \] (29)

Splitting \(\xi \) into incident and scattered waves,

\[\xi = \xi_i + \xi_s, \] (30)

where \(\xi_i \) stands for the incident wave and \(\xi_s \) for the scattered wave. \(\xi_i \) satisfies the homogeneous lossy wave equation (18), which we rewrite for the sake of emphasis

\[\nabla^2 \xi_i + K^2 \xi_i = (iK^2/Q_0) \xi_i = 0. \] (31)

Substituting Eqs. (30) and (31) into Eq. (26), the latter becomes

\[\nabla^2 \xi_i + K^2 \xi_i - \frac{iK^2}{Q_0} \xi_i = \beta(x)K^2 \left(1 - \frac{i}{Q_0}\right) \left(\xi_i + \xi_s\right). \] (32)

As \(\beta(x) \) is zero everywhere, except around \((x_0, y_0)\) where it is \(\gamma/(1 + \gamma)\), we may assume that the scattered wave is much smaller than the incident wave: \(\xi_s \ll \xi_i\), and discard the term \(\beta(x)K^2(1 - i/Q_0)\xi_s\). [This is analogous to the Born approximation for longitudinal wave scattering (Morse and Ingard, 1968).] This results in

\[\nabla^2 \xi_i + K^2 \xi_i - \frac{iK^2}{Q_0} \xi_i = \beta(x)K^2 \left(1 - \frac{i}{Q_0}\right) \xi_i. \] (33)

Equation (33) is the governing equation for shear wave propagation in a lossy, inhomogeneous, elastic medium under the "sonoelastic Born approximation." Case two gives the solution of the incident wave, with the same boundary conditions defined as above. So our problem now is to obtain the solution of the scattered wave \(\xi_s\).

As \(\xi = \xi_i + \xi_s\), \(\xi_s\) should have the following boundary condition: on all four boundaries, \(\xi_s = 0\). With this boundary condition, we know that the solution of \(\xi_s\) can be completely determined by the following series expansion:

\[\xi_s = \sum_{pq} (A_{pq} + iB_{pq}) \sin(k_p x) \sin(k_q y), \] (34)

where \(k_p = p\pi/L_u\), \(k_q = q\pi/L_v\), and \(p\) and \(q\) are integers.

Substituting the \(\xi_s\) given by Eq. (34) into the left-hand side of Eq. (33), we have

\[\text{LHS} = \left(\nabla^2 + K^2 - \frac{iK^2}{Q_0}\right) \sum_{pq} (A_{pq} + iB_{pq}) \times \sin(k_p x) \sin(k_q y). \] (35)

Expand the right-hand side of Eq. (33) into a series also:

\[\text{RHS} = K^2 \beta(x) \left(1 - \frac{i}{Q_0}\right) \xi_i = \sum_{pq} C_{pq} \sin(k_p x) \sin(k_q y), \] (36)

with

\[C_{pq} = \frac{4L_u L_v}{L_u L_v} \int_0^L \int_0^L K^2 \beta(x) \left(1 - \frac{i}{Q_0}\right) \xi_i(x_0, y_0) \times \sin(k_p x) \sin(k_q y) \, dx \, dy. \] (37)

As \(\beta(x)\) is zero except in the small area \(L'_u L'_v\) around \((x_0, y_0)\), we assume that \(\xi_i\) and the two sinusoidal functions are essentially constant over this small region of integration. As a preliminary approximation, we use their values at the point \((x_0, y_0)\) to carry out the integration. So the integral becomes

\[C_{pq} = \frac{4L_u L_v}{L_u L_v} K^2 \frac{\gamma}{1 + \gamma} \left(1 - \frac{i}{Q_0}\right) \xi_i(x_0, y_0) \times \sin(k_p x_0) \sin(k_q y_0), \] (38)

where \(\xi_i(x_0, y_0)\) represents the value of \(\xi_i\) at the point \((x_0, y_0)\).

We have the expression of \(\xi_i\) given by Eq. (22) in case two, so \(C_{pq}\) is known. Setting LHS = RHS, expressions for \(A_{pq}\) and \(B_{pq}\) are produced:

\[A_{pq} = e_0 \frac{2L_u L_v}{L_u L_v} \frac{\gamma}{1 + \gamma} \sin(k_j y_0) \times \frac{K^2[(K^2 - k_p^2 - k_q^2)G'(x_0, y_0) - (K^2/Q_0)H'(x_0, y_0)]}{F[(K^2 - k_p^2 - k_q^2)^2 + (K^2/Q_0)^2]} \times \sin(k_p x_0) \sin(k_q y_0), \] (39a)

\[B_{pq} = e_0 \frac{2L_u L_v}{L_u L_v} \frac{\gamma}{1 + \gamma} \sin(k_j y_0) \times \frac{K^2[(K^2 - k_p^2 - k_q^2)H'(x_0, y_0) + (K^2/Q_0)G'(x_0, y_0)]}{F[(K^2 - k_p^2 - k_q^2)^2 + (K^2/Q_0)^2]} \times \sin(k_p x_0) \sin(k_q y_0), \] (39b)

with

\[G'(x_0, y_0) = G(x_0, y_0) + \frac{H(x_0, y_0)}{Q_0}, \] (40a)

\[H'(x_0, y_0) = H(x_0, y_0) - \frac{G(x_0, y_0)}{Q_0}. \] (40b)

\(G(x_0, y_0)\) and \(H(x_0, y_0)\) represent the value of \(G\) and \(H\) at the point \((x_0, y_0)\). The expression of \(G\), \(H\), and \(F\) are given in case two by Eq. (23).

So we have the solution for \(\xi_s\), and also that for \(\xi_i\) given by Eq. (22):

\[\xi_s = \sum_{pq} (A_{pq} + iB_{pq}) \sin(k_p x) \sin(k_q y), \] (41)

\[\xi_i = \epsilon_0 \sin(k_j y) \left[(G + iH)/2F\right]. \] (42)

The total wave will be

\[\xi = (\xi_i + \xi_s) \exp(\text{i}w_0 t). \] (43)

Only the real part of the solution is of interest, which is
\[I = 0 \]

\[\text{Re}(\xi) = \left(\epsilon_0 \sin(k_Jy) \frac{G}{2F} \right) \]

\[+ \sum_{pq} A_{pq} \sin(k_p x) \sin(k_q y) \cos(\omega_0 t) \]

\[- \left(\epsilon_0 \sin(k_Jy) \frac{H}{2F} \right) \]

\[+ \sum_{pq} B_{pq} \sin(k_p x) \sin(k_q y) \sin(\omega_0 t). \]

(44)

Also of interest is the amplitude of the vibration,

\[\text{Amp}_{\text{Re}(\xi)} = \left[\left(\epsilon_0 \sin(k_Jy) \frac{G}{2F} \right) \right] \]

\[+ \sum_{pq} A_{pq} \sin(k_p x) \sin(k_q y) \]

\[+ \left(\epsilon_0 \sin(k_Jy) \frac{H}{2F} \right) \]

\[+ \sum_{pq} B_{pq} \sin(k_p x) \sin(k_q y) \]

\[\right]^{1/2}. \]

(45)

\[\text{F. Case four} \]

The case of the inhomogeneous, lossy medium with Gaussian source (shown in Fig. 1): Based on case three, we model the vibration source as Gaussian extended source, which is more plausible for some experimental setups.

We have a rectangle with dimension \(L_x \times L_y \). On the boundaries \(x = 0, y = 0, \) and \(y = L_y \), the boundary condition is \(\xi = 0 \). The fourth boundary \(x = L_x \) satisfies \(\xi = e_0 \exp(i\omega_0 t) \exp(-y/L_y)^2/2(\alpha L_y)^2 \). \(\alpha \) is a small number (no more than 0.11), so the source is a small width Gaussian. \(e_0 \) is a real constant. The material is lossy. The inhomogeneous area is around \((x_0, y_0) \).

Solution: The approach is to decompose the Gaussian boundary condition into a sinusoidal boundary condition, ob-
Now this is in the form of a known integration (Gradshteyn and Ryzhik, 1965):
\[
\int_{-\infty}^{\infty} \sin(p(x + \phi)) \exp(-q^2x^2) \, dx = \frac{\sqrt{\pi}}{q} \sin(p\phi) \exp\left(-\frac{p^2}{4q^2}\right). \tag{51}
\]
So the expression of \(C_j \) is
\[
C_j = 2\alpha \sqrt{2\pi} \frac{J\pi}{2} \exp\left(-\frac{J^2\pi^2\alpha^2}{2}\right). \tag{52}
\]
Note that \(C_j \) is 0 for \(J = 0, 2, 4, \ldots \). That is easily understood by analyzing the symmetry property. Our Gaussian function is even symmetric with respect to the point \(y = L_b/2 \), so we expect the odd-symmetric components to be zero. Please note that
\[
C_j \to 0 \quad \text{as} \quad J \to \infty
\]
and the decay is square exponential, which provides rapid convergence. So in computer simulation, we could truncate the series (47) at a reasonable \(J' \).

For the sake of emphasis, we rewrite the decomposition equation (47) here:
\[
C_0 \exp(\alpha \theta t) \exp\left(-\left(y - \frac{L_b}{2}\right)^2/2(\alpha L_b)^2\right) = C_0 \exp(\alpha \theta t) \sum_{J=1}^{\infty} C_{2J-1} \sin\left(\frac{(2J-1)\pi}{L_b} y\right). \tag{53}
\]

Case three gives the solution when the source term is a sine function \(\xi = \exp(\omega_0 t) \sin(\frac{\pi}{L_b} y) \). So the solution for the Gaussian source is easily obtained by adding up the results of those sine functions, weighted by the coefficient \(C_j \). Using Eq. (43), our final solution is
\[
\xi = \exp(\omega_0 t) \sum_{J=1}^{\infty} C_{2J-1} (\xi_{(2J-1)i} + \xi_{(2J-1)s}). \tag{54}
\]
Here \(\xi_{(2J-1)i} \) means the incident wave of the \((2J-1)\)th component, and \(\xi_{(2J-1)s} \), the scattered wave of the \((2J-1)\)th component. The expressions below also contain the index \((2J-1)\), and it is understood as indicating the \((2J-1)\)th component.

Only the real part is the solution, which is
\[
\text{Re}(\xi) = \cos(\omega_0 t) \sum_{J=1}^{\infty} C_{2J-1} \left(e_0 \sin(k_{2J-1}y) \frac{G_{2J-1}}{2F_{2J-1}} + \sum_{pq} A_{(2J-1)pq} \sin(k_{(2J-1)p}x) \sin(k_{(2J-1)q}y) \right)
\]
\[
- \sin(\omega_0 t) \sum_{J=1}^{\infty} C_{2J-1} \left(e_0 \sin(k_{2J-1}y) \frac{H_{2J-1}}{2F_{2J-1}} + \sum_{pq} B_{(2J-1)pq} \sin(k_{(2J-1)p}x) \sin(k_{(2J-1)q}y) \right).
\]

The amplitude is given by
\[
|\text{Re}(\xi)| = \left[\left(\sum_{J=1}^{\infty} C_{2J-1} \left(e_0 \sin(k_{2J-1}y) \frac{G_{2J-1}}{2F_{2J-1}} + \sum_{pq} A_{(2J-1)pq} \sin(k_{(2J-1)p}x) \sin(k_{(2J-1)q}y) \right) \right)^2 + \left(\sum_{J=1}^{\infty} C_{2J-1} \left(e_0 \sin(k_{2J-1}y) \frac{H_{2J-1}}{2F_{2J-1}} + \sum_{pq} B_{(2J-1)pq} \sin(k_{(2J-1)p}x) \sin(k_{(2J-1)q}y) \right) \right)^2 \right]^{1/2}. \tag{56}
\]

G. Examples

To visualize the vibration solutions derived above, we simulated some solutions to the different cases (refer to Fig. 3). The first three are for the case of a homogeneous, lossy medium with a Gaussian source. The last three are the case of an inhomogeneous, lossy medium with a Gaussian source, using the same parameters as the first three, except for the inclusion of a discrete inhomogeneity. The parameters are selected to coincide with phantom experiments given in Sec. II of this paper.

A rectangle with dimensions \(L_a \times L_b = 5 \text{ cm} \times 4.5 \text{ cm} \) is considered. On the boundaries \(x = 0, y = 0, \) and \(y = L_b, \) the boundary condition is \(\xi = 0. \) The fourth boundary \(x = L_a \) satisfies \(\xi = e_0 \exp(\alpha \theta t) \exp\left(-\left(y - \frac{L_b}{2}\right)^2/2(\alpha L_b)^2\right), \) where \(\alpha = 0.06. \) The medium is lossy, where \(Q_0 \) of the system is 4.0.

For the inhomogeneous case, the inhomogeneity is located at \(x = 1.9 \text{ cm}, y = 3.3 \text{ cm}, \) and it has a area of \(L_a' \times L_b, \) which is 0.013 of \(L_a \times L_b. \) The tumor stiffness \(E' \) is 8 times of \(E_0, \) the stiffness of the surrounding tissue. The source frequencies are 60, 100, and 200 Hz, respectively.

For the homogeneous cases, the simple eigenmodes are clearly seen to be a function of frequency, and the damping results in a loss of amplitude away from the source (on the right-hand side). We could see very clearly that for the inhomogeneous cases, the "tumor" region has a localized distur-
FIG. 3. Shear wave vibration (amplitude) in a lossy elastic medium with Gaussian source. Vibration is applied at the right-hand boundary. (a)–(c) are the modal patterns in a homogeneous medium, with the vibration frequencies of 60, 100, and 200 Hz, respectively. (d)–(f) are vibrations in a similar medium with a hard tumor (discrete inhomogeneity) located in the lower middle region. This inhomogeneous medium is vibrated at the same three frequencies as in the homogeneous examples. Note the distinct circular defect produced by the tumor.

II. EXPERIMENTS AND COMPUTER SIMULATIONS

A. Phantom experiments

Phantoms were used to study the possibility of tumor detection by sonoelasticity. As the theory given earlier is two dimensional, we constructed long rectangular phantoms. The dimension of the phantom was about 5 cm\times5 cm\times30 cm (width\timesheight\timeslength). Two kinds of experiments were conducted. The first employed a homogeneous phantom; the second included an inhomogeneity. The homogeneous phantom was constructed using 500 g of water, 500 g of ethylene glycol, 70 g of gelatin, 100 g of glycerol, 100 g of formalin, and 10 g of barium sulfate. A gel phantom (1.5% agar, 1.5% gelatin, 0.1% barium sulfate) was used for the second experiment. A harder gel tube (3% agar, 3% gelatin, 0.1% barium sulfate) was buried in the phantom as the inhomogeneity. The Young’s modulus of the hard gel tube was about 4\times that of the phantom (Huang, 1990). The diameter of the hard gel tube was 0.6 cm. Figure 5 shows a sketch of the inhomogeneous phantom.

A sketch of the experiment setup is drawn in Fig. 6. The ultrasound transducer, a linear array 7.5 MHz (L738) from Acuson (Mountain View, CA), was positioned at 45° with respect to the top (Y=0 cm plane) boundary, and so was able to detect the vibrations of the X-Y plane along the Z axis. The vibration was applied by a minishaker type 4810 (Briel & Kjær, Denmark) from the side of the phantom (the X=5 cm face in Fig. 6). The vibration direction was along the Z axis. The diameter of the tip of the vibrator was about 0.5 cm, and the contact area extended 2 cm in the Z axis. Rigid surfaces covered the phantom to ensure a rigid boundary condition, except for the location of the imaging transducer (center of Y=0 cm plane) and the vibration source (center of X=5 cm plane). The amplifier was a power amplifier type 2706 (Briel & Kjær, Denmark).

The real-time images on the Acuson machine are conventional B-scan, but with the addition of specially modified green scale overlay. The green scale represents the standard
deviation of spread of Doppler spectrum, theoretically related to vibration amplitude (Huang, 1990). For any point on the image, if the green is on, it means that the vibration there is above threshold; if the green is off (normal speckle), it means that the vibration at that position is below threshold, which is approximately 0.02-mm displacement. Also, the brightness of the green scale is proportional to the amplitude of the vibration. For printing reproducibility, we converted the green images to black and white images for all the experiment results shown with normal B-scan speckle suppressed (lowered to dark gray values). Thus the brightness of the gray scale is proportional to the amplitude of the vibration. Some filtering with a small kernel has been applied to remove small artifacts due to noise. This gives a similar impression as watching a real-time image, where the noise tends to be averaged over sequential frames.

For the homogeneous phantom, the results of three different vibration frequencies, 59, 83, and 191 Hz, are given in Fig. 7. Clearly the 59-Hz excitation produces a 1:1 modal pattern; the 83-Hz excitation produces a 2:1 mode modal pattern; the 191-Hz vibration results in finer mode modal pattern.

For the inhomogeneous phantom, we show the images of two different vibration frequencies: 37 and 201 Hz (see Fig. 8). Notice the black middle upper part is just where the inhomogeneity was located, and that region shows a visible deficit of vibration.

B. Computer simulations

To check the validity of our theory, computer simulations were compared with the experiment results. The vibration plunger for the experiment was cone shaped; however, in computer simulations the boundary condition for that boundary was approximated as a Gaussian source. We assume this Gaussian source falls essentially to zero at the ends. The other three boundaries are rigid. The idea is demonstrated in Fig. 1.

1. Homogeneous case

The theory of the case two, a homogeneous, lossy medium, was used to calculate the vibration patterns for the homogeneous case study.

As the dimensions of our homogeneous phantom were 5.1 cm × 4.5 cm × 30 cm (width × height × length), so $L_n = 5.1$ cm and $L_h = 4.5$ cm. The lossy factor Q_0 was empirically set to 6.0. The speed of sound was set to 2.8 m/s, similar to the measured values found by Huang (1990). As the diameter of the tip of the vibration source was about 0.5 cm, and the homogeneous phantom had a width of 4.5 cm, the Gaussian source half-width parameter σ was set to $0.5/4.5 = 0.11$ (see case four in Sec. I for the definition of σ). The results of the simulation at three different source frequencies are shown in Fig. 9. These modal patterns demonstrate a reasonable correspondence to those from the experiment in Fig. 7 over the vibration frequency range of 59–191 Hz.

2. Inhomogeneous case

The theory of case four, an inhomogeneous, lossy medium, was used to calculate the vibration patterns for the inhomogeneous phantom study.

As the dimensions of our inhomogeneous phantom were 5.1 cm × 5.0 cm × 30 cm (width × height × length), so $L_n = 5.1$ cm and $L_h = 5.0$ cm. The diameter of the inhomogeneity tube was 0.6 cm, so the tumor area L_nL_h (defined in Eqs. (38) and (39)) was 0.283 cm². The inhomogeneity location...
FIG. 8. Inhomogeneous phantom vibration pattern. The source vibration is located on the right-hand side of the images. The inhomogeneity is located on the middle upper part of the images, which shows little or no vibration (black area). Source vibration frequency is (a) 37 and (b) 201 Hz.

\((x_0,y_0)\) was \((3.0 \text{ cm}, 2.3 \text{ cm})\). As the Young’s modulus of the inhomogeneity was 4x that of the phantom, the \(\gamma\) in Eq. (13) was 3. The lossy factor \(Q_0\) was empirically set to 3.0. The speed of sound was set to 2.8 m/s, and the Gaussian source width parameter \(\alpha\) was set to 0.1. Equation (56) was used to generate the vibration amplitude. Notice that in Eq. (56) there are summations over \(p\) and \(q\). These series were truncated at \(p=q=30\). Looking at the expressions for \(A_{pq}\) and \(B_{pq}\) given by Eq. (39), the denominators are proportional to the fourth power of \(k_p\) and \(k_q\), and the numerators are proportional to the square of \(k_p\) and \(k_q\). When \(p\) and \(q\) are large enough so that \(k_p\) and \(k_q\) are <<1, also, \(k_p^2\) and \(k_q^2\) > 1, we could treat \(A_{pq}\) and \(B_{pq}\) as zero. In our case, \(K\) is always less than 660, while \(k_p\) and \(k_q\) are around 1800, when \(p=q=30\); also \(k_p^2\) and \(k_q^2\) are greater than \(10^6\), so it is reasonable to approximate \(A_{pq}\) and \(B_{pq}\) as zero when \(p\) and \(q\) are above 30.

The theoretical results are shown in Fig. 10 for the same two frequencies as used in the Fig. 8 experiment. The inhomogeneity appears as a dark region, which indicates low vibration amplitude. The patterns are similar to those shown in the experiments.

C. Energy curve

In the phantom experiments, we varied the vibration frequency from 20 to 400 Hz, while keeping the amplitude of the vibration source constant. We noticed that the vibration response of the phantom was frequency dependent. At some frequencies, the phantom showed greater response to the applied vibration, producing an increase in the brightness and extent of the green scale overlay. In a homogeneous phantom the two strongest response peaks were observed at source frequencies of 37 and 56 Hz. Referring to the energy curve subsection of Sec. I, we calculated the theoretical energy response for the conditions of this experiment. Figure 11 shows the energy curve for the case where \(L_a=5.1 \text{ cm}\) and \(L_b=5.0 \text{ cm}\); the lossy factor is \(Q_0=3\), the speed of sound is 2.8 m/s, and the Gaussian source half-width parameter \(\alpha\) is 0.1. We can see that the highest two peaks are predicted to be at 35 and 59 Hz, which closely matches the two peaks observed in the experiment.

D. Applications to in vivo imaging

To further examine the ability of our theory, we conducted a liver scan experiment on a volunteer from whom informed consent had been obtained. Low-frequency (about 20 Hz) vibration was applied to the right side of the midabdomen. The vibration was conducted into the liver. The vibration of the liver was sensed by a 3.5-MHz ultrasound transducer (V328) from Acuson (Mountain View, CA). The vibration image is shown in Fig. 12, where the sensitivity of the color imaging system was turned down so as to eliminate breathing and cardiac motion color.

The simulation model for the liver used the homogeneous model, case two in Sec. I, with a Gaussian source. \(L_0\) was taken to be 30 cm, and \(L_a\) was 10 cm. The lossy factor \(Q_0\) was empirically set to 3.0. The speed of sound was set to 2.8 m/s. The Gaussian source half-width parameter \(\alpha\) was set to 0.1. The simulation result is shown in Fig. 13. Although this model neglects the layered abdominal wall, the irregular liver shape, and ill-posed boundaries, comparing the results
Theoretical inhomogeneous vibration pattern. The source vibration is located on the right-hand side of the images. The inhomogeneity is located on the middle upper part of the images, which shows little or no vibration (black area). Source vibration frequency is (a) 37 and (b) 201 Hz.

with Fig. 12, the patterns are similar and display simple modal patterns that are indicative of vibration within a relatively homogeneous medium.

III. CONCLUSION

A basic model for sonoelasticity imaging is presented, using a “sonoelastic Born approximation” for shear waves in tissue with a small stiff tumor. Solutions are presented for two-dimensional cases with regular geometries. The results are encouraging for successful exploration and clinical application of sonoelasticity imaging. First, for the geometries and parameters given above, “tumors” with area as small as 0.005 of the surrounding tissue are detectable in ideal imaging circumstances assuming the tumor stiffness is at least a factor of 3 times greater than the surrounding “tissue.” That is, the presence of the small tumor produces an approximate 20% drop in vibration amplitude. This is easily detectable in the “ideal” case where quantization noise from an 8-bit imaging system is the dominant noise. This assumption is well justified by previous studies such as Parker et al. (1990) and Huang (1990). This implies that, under ideal imaging conditions, a 3-mm stiff tumor can be visualized in a 5-cm organ such as the prostate. Second, the “energy curve” shows that low-order modes (which are easy to visualize and interpret) are easily produced by simple sources. Higher-order modes are more damped but have a very regular response over a range of frequencies. Both features may be useful in characterizing properties of the breast, liver and other organs using sonoelasticity imaging.

Sonoelasticity imaging was performed on phantoms and liver in vivo. Results were compared against theoretical predictions. The theory was found to satisfactorily predict the essential features of sonoelasticity imaging. These include...
the production of large well coupled modes at low vibration frequencies. Also, the disturbance produced by a discrete inhomogeneity is confirmed by theory and experiments. The whole liver has sufficiently homogeneous regions that can exhibit broad, low-frequency modal patterns. Both theory and phantom experiments might be useful in optimizing vibration and imaging systems such that small, discrete, hard tumors can be routinely identified in clinical applications of sonoelasticity imaging.

ACKNOWLEDGMENTS

The authors gained insight from discussions with Professor R. Waag, Dr. D. Rubens, and Dr. S. Huang. Loan of equipment from Acuson is gratefully acknowledged. The work was supported in part by the Department of Electrical Engineering, University of Rochester, and the NSF Center for Electronic Imaging Systems.

Von Gierke, H. E., Oestreicher, H. L., Frankle, E. K., Parrack, H. O., and Von...

