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We propose a novel method for obtaining the maximum a posteriori (MAP) prob-
abilistic segmentation of speckle-laden ultrasound images. Our technique is multiple-
resolution based, and relies on the conversion of speckle images with Rayleigh statistics
to subsampled images with Gaussian statistics. This conversion reduces computation
time, as well as allowing accurate parameter estimation for a probabilistic segmentation
algorithm. Results appear to provide improvements over previous techniques in terms of
low-contrast detail and accuracy. o 1995 academic press, Inc.
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1. INTRODUCTION

The first step toward automatic analysis or evaluation of a given image type is gen-
erally considered to be a successful segmentation. In the field of biomedical imaging,
this step has been accomplished using a variety of approaches including adaptive or non-
adaptive k-means type clustering algorithms for imaging modalities such as MRI [1-3].
These techniques, however, are not effective for the segmentation of ultrasound images.
The primary reason for this has to do with the statistical nature of speckle-laden images.
Images produced by modalities such as radiography and MRI may be characterized by
Gaussian statistics, i.e. these images may be modeled as connected regions of slowly
varying intensity corrupted by additive white Gaussian noise. Ultrasound images, how-
ever, are generally characterized by Rayleigh statistics [4, 5]. A Rayleigh probability
density function is described by only one parameter, ¢, as follows:

p(z) = (z/a’)ezp(—2*/20%) (1)

The mean of a given region and its standard deviation are linearly dependent, with a
constant ratio of approximately 1.91 [4].

This signal-dependent noise property makes parameter estimation for ultrasound im-
ages extremely difficult. Simple clustering algorithms like k-means fail, because the true
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means are not, in fact, the minimum mean squared error (MMSE) solution. Much of
the literature on segmentation of images demonstrating Rayleigh statistics has focused
on nonlinear filtering and morphological operations. Sperry {[GT has proposed an algo-
rithm that makes use of successive iterations of threshholding followed by morphological
filtering for the segmentation of ultrasound B-scans. Taxt et al. [7} have presented an in-
teractive segmentation technique involving nonlinear noise reduction filtering followed by
manual threshholding. More recently, Herlin and Ayache [8] have proposed a multi-step
algorithm that operates on video data in polar coordinates. This technique requires me-
dian filtering, followed by edge detection and segmentation using 2-D deformable models.
All these techniques share a common difficulty: they require that nonlinear operations
be performed on the data prior to or during segmentation. For this reason, it is difficult
to prove that they reach any sort of statistically optimal solution.

This problem is avoided by Rignot and Chellappa [9], who have proposed a seg-
mentation algorithm that makes use of a Markov random field (MRF) model for region
distribution and a two-step approach to the energy minimization problem. They make
use of the iterated conditional modes (ICM) algorithm of Besag [10] to maximize the pos-
terior probability density of the region labels, followed by a maximum posterior marginal
(MPM) algorithm which maximizes the posterior marginal density of the region labels
at each pixel location. This technique has been shown to be applicable to complex-
amplitude SAR segmentation. However, like the Herlin algorithm, it is not designed
for operation on the intensity data that is most commonly stored in ultrasound B-scan
images.

A more applicable algorithm has been proposed by Muzzolini et al. [11]. Their
approach calls for a quadtree-structured multiresolution texture segmentation, making
use of the Metropolis algorithm {12] to obtain an optimum labeling of image blocks
at each level and then splitting and merging blocks among levels to reach the lowest
energy configuration. Difficulties with this algorithm include the assumption that region
boundaries should fall along arbitrarily assigned block divisions, the ad hoc nature of
the image modeling, and the use of the computationally-intensive Metropolis algorithm.
Use of Besag’s ICM for energy minimization would improve the applicability of this
algorithm. However, ICM requires accurate initial parameter estimation, which is very
difficult under Rayleigh statistics.

We propose avoiding these difficulties by taking advantage of the Central Limit The-
orem, which tells us that the average of a large number of random variables must tend
toward a Gaussian distribution around their collective mean. This leads us to a multiple-
resolution segmentation algorithm, making use of local-average filtering and decimation,
with each coarse-resolution segmentation used to estimate the parameters of the next
finer resolution. This accurate parameter estimation allows us to make use of the com-
putationally efficient ICM energy minimization algorithm. It should be noted that, while
the filter-and-decimate process would appear to obscure small details, the target reso-
lution of this algorithm is ultimately limited by the pulse characteristics of the imaging
system, which determine the “speckle spot size,” assumed to be known in our analysis.
Note here that although speckle characteristics are subject to variation within an image
due to beam diffraction and attenuation, our algorithm is effective as long as the “worst
case” is considered.

2. MODELING
Ideally, we would like a segmentation algorithm to be able to separate an vltrasound

image into large contiguous regions, each of which would represent a particular tissue
type or structure. We would therefore like to incorporate a spatial constraint into our
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segmentation process. This may be accomplished by using a random field model. Bouman
[13] and others use the MRF. However, this model is defined in terms of local properties,
making the derivation of a global joint distribution difficult. We therefore make use of
the similar but more mathematically tractable GRF.

Assume that a random field z is defined over an NxN lattice (square array) of sites
denoted by S, with the individual sites (pixels) denoted by s, ,,s12,813,...88n. For
segmentation purposes, each site on xr may take on any integer value from 1 to k, where
k is the number of classes (tissue types) into which the image is being segmented. Let w
be a realization of z. In order to define the random field, it is necessary first to define a
neighborhood system G, on the lattice S. The neighborhood system determines which
pixels on the lattice will directly affect the classification of site s. In this work, a first
order, or four-point, neighborhood system is used, so that only pixels which share a side
with site s will be considered its neighbors.

A clique is defined as a set of sites on S such that all points are mutual neighbors. In a
four-point neighborhood system, there are four two-point cliques, given by (snm, Sn—1,m),
(Snymi8nt1,m)s (Snym, Snm-1) and (Spm, Spm+1). There is also a single one-point clique,
(Snm). However, as this adds no information, it is disregarded.

The random field z is an MRF with respect to G, if

Plzx=w)>0 for all w (2)

and
P(X,IIII_,|X,-=I,-,T763)=P(X,=I,|X,~—_—.'L',-,T€G,) (3)
i.e. all configurations must have a non-zero probability, and the conditional probability of
a particular site must depend only on its immediate neighbors as defined by G,. Note that
in the above equations, z is a particular realization of the random field X. This model
has been used in a number of applications, including [9, 13]. However, it has certain
difficulties which make the Gibbs distribution more attractive. Primary among these is

that the MRF is defined only in terms of local characteristics, making the calculation of
a global joint distribution very difficult.

In contrast, the GRF provides a global model for an image, specifying a probability
density function of the form:

PX=z)=e"®/z (4)

where U(x) is the Gibbs potential, or Gibbs energy, given by the summation over all
cliques C :

Uz) =Y Velz), {5)
C
Ve(z) is the clique potential, given by

VC(-’E;;I]) - { -{-ﬂ otherwise (6)
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and Z is a normalizing constant, called the partition function, given by
Z =Y e UX=w) (7)
w

Since Z is the sum of the numerator exponents over all possible vectors z, it is
extremely difficult to compute. This intractability prevents realization of a GRF using
direct calculation, thus requiring the use of stochastic relaxation methods.

Using the Gibbs formulation, it is possible to calculate the global probability of a
given image configuration based on the clique potentials, which depend solely on the
local properties of the pixels.

Additionally, it should be noted that a unique GRF exists for every MRF as long as
the Gibbs field is defined in terms of cliques on a neighborhood system [14]. In other
words, it is possible to uniquely specify an MRF by specifying Gibbs potentials. This
means that nothing is lost through making use of the more mathematically tractable
Gibbs model.

Dubes and Jain have shown that it is possible to achieve dramatic image recon-
struction results using multiparameter GRF modeling and algorithms such as the Gibbs
sampler [15] if all parameters of the Gibbs distribution and degrading noise are known.
However, there is currently no algorithmic method for deriving these parameters from an
arbitrary data set. We therefore assume a simple pairwise interaction model. This model
stipulates only that there should be a dependence in classification between neighboring
pixels, and requires only a weighting constant, 3, which determines the relative impor-
tance of the two terms in the Bayesian formulation. Unfortunately, # must be optimized
experimentally for a class of images. In this work, § = 1.0 was used for all segrnentations.

One possible drawback to the choice of the pairwise interaction model for this appli-
cation is the model’s symmetry in the vertical and horizontal directions. It is known that
ultrasonic images have better spatial resolution parallel to the ultrasound propagation
direction than perpendicular to it. It is reasonable to suppose, therefore, that a model
which takes this effect into account might provide improved results. The formulation and
testing of such a model is one possible direction of future research.

A more detailed examination of random field models may be found in [10, 15, 16].

3. CLUSTERING ALGORITHM

The core of our algorithm is a modification of the adaptive clustering algorithm of
Pappas [17]. The Pappas algorithm as implemented in [1] is useful because it considers
class average to be a local rather than a global property, which allows for variations in the
mean of a given class from region to region, compensating for the fact that the intensity
of ultrasound echo signals tends to vary with depth due to non-uniform attenuation.
However, this algorithm assumes that pixel intensities are given by a slowly varying class
mean corrupted by globally-uniform additive white Gaussian noise. Clearly, this 1s not
an accurate model for an image which is characterized by Rayleigh statistics.

We would like to be able to find a more accurate image model while still retaining

Gaussian statistics, which are far more mathematically tractable and separable than the
Rayleigh statistics which actually characterize ultrasound images. Therefore, we assume
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the pixel values within a given region to be Gaussian distributed about the slow1y~var¥ing
mean p, with variance o2,, where z is the classification of the pixel at site s. oy, is
estimated independently for each class, and is proportional to the local class mean. This
assumption is reasonably accurate for low-pass filtered (locally averaged) and decimated
speckle images that were originally governed by Rayleigh statistics. We rely heavily on
this model for parameter estimation. As Rayleigh statistics begin to dominate at finer
resalutions, we increase our reliance on the previously mentioned Gibbs Random Field

model with a strong neighborhood constraint.

3.1 Modified adaptive clustering
We would now like to find a global maximization of the probability of segmentation
field z, given the observed image data field y. Using Bayes’ rule, it may be shown that,
Pz | y) x P(y | z)P(x) (8)
In this equation, P(z) is the a priori probability of the segmentation. This is given
by the GRF model, as described in Section 2.1.

We also require a functional form for P(y | z). This will be dependent upon our model
for the image data. Under the previously stated assumptions, the conditional probability
may be written as

Ply | ) x TT(-) exp = Xl

(¥s — l‘za)Z] (9)

2
Ta
where o, is the overall noise variance for class z,.

Substituting into Eq. (8), and summing the exponentials, we obtain

Py o) e (Xl

(ys — 12,)] + EC: Ve(z)] (10)

2
L7

We wish to maximize this function, or, equivalently, to maximize its natural logarithm,
given by

tn(P(e | 9)) & = Tlin(e) + 5 = )] = 2 Volo). (11)

This is achieved in an iterative fashion, using ICM. We assume an initial segmentation
and an initial estimation of the parameters y,, and o,,. Because the ICM algorithm is a
local minimization only, mathematically equivalent to simulated annealing with instan-
taneous freezing [10], it is important that these estimations be reasonably accurate.

An IxJxM matrix is formed, where [ is the width of the image, J is the height of
the image, and M is the number of classes into which the image is to be segmented.
Each point (z,j,m) in that matrix then stores the average of all pixels of class m within
a rectangular window of width W centered at point (i,7). W begins as the size of the
image, and is iteratively reduced to some final value W;n.

Direct calculation of the local class averages at each point in the image is computa-
tionally prohibitive, particularly in the case of a large window size. For this reason, it
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is assumed that the class averages vary smoothly and slowly. Under this assumption,

it is an acceptable approximation to directly calculate the class averages at a regularly-

spaced grid of points in the image and fill in the remainder of the points through bilinear

interpolation. The maximum spacing of the grid points will depend upon the expected

smoothness of the class averages. In this work, as in the Pappas paper, a spacing of W/2

'}is used. An illustration of the sample grid with sliding estimation window is given in
gure 1.

At each window size, Eq. 10 is maximized on a point-by-point basis, with u,, re-
estimated after each iteration. When a local maximum is reached, o, is re-estimated,
and the estimation window is reduced. Eq. (10) is then remaximized. This process
is repeated until the smallest desired estimation window is reached. A more detailed
examination of the ICM energy minimization process may be found in [10].

3.2 Multiple resolution segmentation

The most obvious problem with this algorithm is the assumed initial segmentation.
As has been mentioned, standard clustering algorithms such as k-means or the closely
related LBG algorithm !18] fail under Rayleigh statistics. However, we have claimed
that, through low-pass filtering and decimation, we are able to force our image statistics
toward Gaussian. This leads us to a multiple resolution segmentation scheme, which is
summarized below.

1. Lowpass filter the original image using an FIR filter of support 2n x 2n. Optimization
of n is discussed in the following section. Decimate by a factor of n.
2. Obtain initial cluster estimate using k-means algorithm.

3. Set the GRF weighting 8= 5

o o o @
> < > o
o @ P o
§
O o < @
w

Fig. 1. Sampling grid for local class average estimation. All pixels in the window defined
by W are used to estimate mean and variance at site s. Values for sites between the grid
points are filled in using bilinear interpolation.
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4. Apply clustering algorithm.

5. Expand cluster matrix (the matrix containing class assignments) to next larger size
by replicating by n, then decimating by n -1.

6. Let n=n-1.

7. Lowpass filter the original image using an FIR filter of support 2n x 2n . Decimate
by a factor of n.

8 Ifn>1let f=5+4d3. Gotod.
9. Apply clustering algorithm to original image.
10. STOP.

The parameters of interest in this algorithm are n, which determines the maximum
coarseness of resolution, 3, which determines the low-resolution weighting of the GRF
model, and 63, which determines the rate of increase in the reliance on the GRF model
at finer resolutions. As has been mentioned, there is at present no algorithmic means
for optimizing these parameters. They must therefore be optimized experimentally. For-
tunately, our experiments, as well as the many applications of the GRF model in the
segmentation literature, indicate that the 3 parameters may be optimized a single time
for application to a broad class of images. All experiments described below were carried
out with # = 1.0 and §3 = 0.55. Details of the optimization of n, which is not well
covered in the literature, will be given in the following section. '

0.01334

0.01000

probability of occurrence
0.00500

0.000 Q.050 Q.100 0.1%0 0.200 D.25%
pixel value (10e3)

]

]

3

o I T I [ 1
O

Rayleigh  ----eeo- Gaussian

Fig. 2. Normalized histogram of a 512x512 Rayleigh speckle field, together with a
Gaussian curve with identical mean and variance. Clearly, Gaussian assumptions are not
well suited to Rayleigh statistics.
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4. EXPERIMENTAL PROCEDURES AND RESULTS

We first wished to confirm that our filter-and-decimate procedure did, in fact, force
our Rayleigh-type images toward Gaussian statistics. To this end, a histogram was taken
for a 512x512 artificially produced single-level speckle field. This image, like all other
artificial images described below, was produced by convolving a white noise field with
a pulse of support 7x7 pixels. The pulse had a Gaussian profile in the z dirction with
0% = 3.0, and a sinusoidal profile in the y direction with frequency 7 /3 radians/pixel. See
[18] for a more detailed discussion of this method of speckle generation. The envelope of
the resultant image was then taken using the Hilbert transform. A plot of this histogram,
together with a normalized Gaussian curve created using the mean and variance found
in the image, is given in figure 2. Clearly, the Gaussian distribution is a poor model
for a Rayleigh-distributed image. This speckle image was then blurred and decimated
with filter support ranging from n = 1 to n = 8. Histograms of the resulting images
were taken, and these were compared to normalized Gaussian curves. A plot of the mean
squared error between the two curves at each decimation level is given in figure 3. A
plot of the histogram of the image created with n = 6, together with the appropriate
Gaussian curve, is given in figure 4.

The curve given in figure 3 was used in the optimization of n. Higher values of n
produce more nearly Gaussian statistics. However, they also result in coarser resolution
and loss of fine detail. We therefore chose the point at which the error curve begins to
flatten, and thus the lowest value of n that would not incur serious estimation error. All
experiments described below were carried out with an initial value of n = 6.

In order to test the efficacy of this algorithm against known results, four artificial,
multilevel speckle fields were created. figures 5(a) and 5(b) are three-level fields. figure
5(c) is a five-level field, and figure 5(d) is a five-level decreasing contrast and target-

0.0060 C.0074
J

0.0040
|

MSE

0.00z20
|

0.0000

Fig. 3. Mean squared error between histograms of the filtered and decimated images and
normalized Gaussian curves for filter support of n =1ton = 8.
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Fig. 4. Histogram of a 512x512 Rayleigh speckle field which has been blurred and
decimated with filter support n = 6. Note that the histogram is accurately modeled by
an ideal Gaussian curve with identical mean and variance.

Fig. 5. Artificial test images.
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Fig. 6. Segmentations of test images in figure 5.

Fig. 7. (a) One slice of our three dimensional ultrasound phantom. (b) Ideal volume-
rendered reconstruction of the full phantom. (c) Reconstruction using noise-reduction
filtering followed by ideal thresholding. (d) Reconstruction using our multiple resolution
segmentation algorithm.
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size test pattern. We tested the segmentation algorithm on all four test images, and
compared the results to the known region distributions. Note that in these cases the
correct number of classes was known a priori. Segmentations are given in figures 6(a)
- 6(d). Percentages of misclassified pixels were 5.94 percent, 2.98 percent, 3.13 percent
and 6.31 percent, respectively.

We next wished to compare our algorithm to previous techniques, particularly with
respect to low-contrast accuracy. A multiple slice two level artificial speckle field was
created, each slice of which resembled a circular lesion on a uniform background. The
slices were segmented using our technique, and by noise-reduction filtering followed by
ideal thresholding [7]. The results were then volume-rendered for comparison to an ideal
.recf(i)nstru’(;tion created from the original phantom. Results of this experiment are given
in figure 7.

The algorithm was then tested against an ensemble of 110 two-level artificial speckle
fields, each of which resembled a lesion on a uniform background, with varying contrast
levels and lesion sizes. Contrast ratio, which is defined here as the ratio of the mean
value of all pixels in class 2 to the mean value of all pixels in class 1, was varied from
1.2 to 2.0. The lesions were circular and centered in the images, and lesion radius varied
from 6 pixels to 36 pixels. Image size was 128 by 128 pixels. A representative sampling
of these images and their segmentations is given in figure 8. A plot of contrast ratio vs.
percent pixel error for each lesion size from 6 to 21 pixels is given in figure 9. The results
at larger lesion sizes were nearly identical to those at r = 21. The results of this analysis
are important in that they demonstrate that accurate segmentations can be made under
the most demanding conditions — small target size and low contrast. For example, with
a pulse length of 7 pixels and contrast ratio of 1.5, lesions of radius 26 to 36 pixels are

resolved with percent pixel error less than 5 percent. In contrast, Sperry [6] has reported
low levels of accuracy in segmentation at contrast ratios exceeding 2.0.

Finally, we wished to confirm that this technique was applicable to actual ultrasound
data. We segmented a transesophageal echocardiogram (TEE) scan of a human heart
(figure 10a), and a standard ultrasound scan of a human gallbladder (figure 11a). In
these cases, where the correct number of classes is not necessarily known, selection of £
becomes an issue. Our experiments have shown that good results are usually obtained in
the range of k = 3 to k = 5, depending on the complexity of the image and the features
which are of interest. Segmentations are given in figures 10(b) and 11(b). The image in
figure 10 was segmented with k¥ = 4. The image in figure 11 was segmented with k = 3.
Note that the gradual loss of intensity with depth of figure 10(a) is successfully segmented
by our algorithm. figure 10(b) demonstrates that the top two (brightest) classes encircle
the left ventricular chamber despite the loss of intensity. In comparison, abrupt shadows
such as those caused by the gallstone in figure 11 result in boundaries between segmented
classes.

5. DISCUSSION

Our experiments indicate that this technique provides an accurate and reproducible
method for segmentation of multilevel speckle fields. Pixel misclassification was minimal
in all test images other than those with very low contrast. High errors in the small size
lesion tests are attributable not to the minimum target resolution of the algorithm, but
rather to the fact that when a very small proportion of all pixels are in the lesion class
and contrast is low, the algorithm achieves a lower MSE between data points and cluster
means by dividing the background class. Sensitivity and contrast discrimination were
both better than results given in [6], and although the “correct” segmentation of the
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Fig. 8. Low-contrast lesion images, with segmentations. Each image contains a centered
circular lesion. Contrast ratios vary from 1.40 in (a) to 1.92 in (f). Note that previous
techniques have had difficulty with contrast ratios exceeding 2.0.
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Fig. 9. Percent misclassified from low-contrast lesion test for lesion radius ranging from
= 6 to r = 21. Note that the pulse length used in forming these images was 7 pixels.
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Fig. 10. (a) TEE scan of a human heart. (b) Segmentation of (a).

actual data given in figures 10 and 11 is somewhat subjective, our segmentations seem
to agree with visual separation of distinct regions. Additionally, our algorithm is only
moderately computationally intensive, requiring approximately 6 minutes of CPU time
on a Sun SPARC 1 workstation for the segmentation of a three-class, 256 x 256 image.

The primary assumptions required for the use of our algorithm are that a speckle
spot size for the imaging system is known, that approximately Gaussian statistics are
generated by our filter and decimation steps, that shading of intensity by attenuation or
depth varying gain is smoothly varying, and that a limited number of classes of tissue
exist within an image. These assumptions appear to be valid for a wide range of imaging
situations, and the results show that the new algorithm is tolerant of deviations from
these assumptions. We believe the results should be useful in assisting with 2-D mea-
surements of anatomical structures, and in 3-D reconstructions of complex geometries
from ultrasound B-scan images.

Fig. 11. (a) Ultrasound scan of a human gallbladder, with gallstone. (b) Segmentation
of (a).
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