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Abstract—Discrete wavelet transform (DWT) provides an ad- I. INTRODUCTION

vantageous framework of multiresolution space-frequency rep- HE id d | f high ¢ .
resentation with promising applications in image processing. The rapid development of high performance computing

challenge as well as the opportunity in wavelet-based compression and communication has opened up tremendous opportu-
is to exploit the characteristics of the subband coefficients with nities for various computer-based applications with image and
respect to both spectral and spatial localities. A common problem jideo communication capability. However, the data required

with many existing quantization methods is that the inherent . . . L
image structures are severely distorted with coarse quantization. to represent the image and video signal in digital form would

Observation shows that subband coefficients with the same mag- continue to overwhelm the capacity of many communication
nitude generally do not have the same perceptual importance; and storage systems. Therefore, a well designed compression
this depends on whether or not they belong to clustered scene glement is often the most important component in such visual
structures. We propose in this paper a novekceneadaptive and communication systems.

signal adaptive quantization scheme capable of exploiting both o h . f ks h b d
the spectral and spatial localization properties resulting from ver the years, various frameworks have been propose

wavelet transform. The proposed quantization is implemented as t0 deal with image and video compression at different bit
a maximum a posterioriprobability (MAP) estimation-based clus- rates. JPEG is a discrete cosine transform (DCT)-based coding
t"l"”“tg process in WQ.iChtSt”bFa”‘lj Coetf.ﬁ‘iiems ae qt”a”Ttheq tto th?tir standard for still images [1]. Video coding standards, such as
cluster means, subject to local spatial constraints. The intensi )

distribution of eachJ cluster withinpa subband is modeled by any H_'261 [2] and MPEG _[3]’ are_ a's‘? DCT-baset_j coding SChemeS
optimal Laplacian source to achieve the signal adaptivity, while With block-based motion estimation and motion compensation
spatial constraints are enforced by appropriate Gibbs random capabilities. However, at low bit rates, such block DCT-
fields (GRF) to achieve the scene adaptivity. Consequently, with pased standard coding schemes generally suffer from visually

spatially isolated coefficients removed and clustered coefficients ; “ : yo :
retained at the same time, the available bits are allocated to annoying “blocking effect” originated from the simple but

visually important scene structures so that the information loss Unnatural rectangular block partition. They are also limited
is least perceptible. Furthermore, the reconstruction noise in the by the performance and the complexity of motion estimation
decompressed image can be suppressed using another GRF-basednd motion compensation in video coding. Therefore, an
enPar;_celmeP:h_algonthtm. tI_Experlkr:]enta:‘ relsu't%_tha‘;e shown ”ée alternative coding scheme free of the “blocking artifact,”
potentials of this quantization scheme for low bit-rate image an . ; . . 2
video compression. and WIthOU't or Wlth' less demandl_ng motlon esfumatlo'n and
_ S ) compensation requirements for video coding, is desired at
Index Terms—Adaptive quantization, image and video com- oy it rates. A multidimensional subband coding scheme has
pression, le_)bs random field, spatial contraints, subband coding, been proposed [4], [5] which generally employs no estimation
wavelet coding. . P .
or compensation of interframe motions. Subband or wavelet
coding is especially advantageous at low bit rates when
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into multiscale representations. Moreover, wavelets have gdogl a vector from the codebook could alter the position,
localization properties both in space and frequency domaiogentation, and the strength of the structures within the block,
[11]. These two features provide excellent opportunities tch as edge segments. As a result, at low bit rates, vector
incorporate the properties of the HVS and devise appropriatgantization often produces visible blocking artifacts which
coding strategies to achieve high performance image aselverely degrade the image quality. Moreover, the codebook
video compression. In general, for a target bit rate, highgeneration and the searching against the codebook in vector
compression ratio in high frequency subbands, where thgeantization are usually computationally expensive. Some
distortion becomes less visible, allows the low frequenguboptimal implementations are often adopted in practice
subbands to be coded with high fidelity. Although this imainly to reduce the computational complexity [18]. These
not unique to subband schemes, prioritized coding is linproblems would adversely affect the coding performance.
ited in a DCT-based scheme because of the sole use ofherefore, both conventional vector quantization and tradi-
frequency representation. Decomposed subbands providéoaal scalar quantization schemes have very limited adaptivity
joint space-frequency representation of the signal. Therefovdth respect to the scene structure and the characteristics of
one can devise a coding scheme to take advantage of bathindividual decomposed subband. It is also difficult for VQ
the frequency and spatial characteristics of the subbands.stihhemes to accommodate the properties of the HVS, which
other words, one can determine the perceptual importarisevital in evaluating the reconstructed images, in particular at
of the subband coefficients based on not only the frequenoyv bit rates. In other words, these schemes have limitations in
content, but also the spatial content, or scene structuresploiting the unique spatial and spectral localities of wavelet
The combination of high compression ratio for perceptualigecomposition as well as the psychovisual redundancies in
insignificant coefficients and high fidelity for perceptuallthe subbands are therefore not amenable to achieve high
significant coefficients provides a promising alternative to higierformance coding.
quality image and video coding at low bit rates. The proposed adaptive quantization with spatial constraints
For high frequency subbands, where the correlation higs intended to resolve the aforementioned problems. The
already been reduced by subband decomposition, varionsorporation of Gibbs random fields as spatial constraints
scalar and vector quantization schemes have been proposed clustering process enables the quantization to be both
including: PCM (scalar quantization) [5], finite state scalasignal adaptive and scene adaptive. Such a quantization con-
guantization [12], vector quantization [13], edge-based vectstitutes the major distinction of this scheme from the existing
guantization technique [14], geometric vector quantizatiames because it is designed to exploit both the speatrdl
(GVQ) based on constrained sparse codebooks [8], and a scafmtial localitiessimultaneouslylIn this scheme, an adaptive
quantization that utilizes a local activity measure in the baststering with spatial constraints is applied to the sparse
band to predict the amplitude range of the pixels in the uppand highly structured high-frequency bands to accomplish the
bands [15], etc. All these schemes have been proposed to tqkantization. The incorporation of localized spatial constraints
advantage of the characteristics of the high frequency subbarglgustified and facilitated by the existence of good spatial
in order to increase the coding efficiency. locality in the subbands decomposed using wavelets. Upon
However, a common problem with many existing quantizaiustering, the representation of each pixel by its cluster mean
tion methods is that the inherent image structures are sevelslgquivalent to a quantization process. However, such quanti-
distorted with coarse quantization. An apparent drawback zdition enables us to preserve the important scene structures and
the conventional scalar quantization schemes is the inefficieraliminate most isolated nonprominent impulsive noises which
in approaching the entropy limit. Therefore, image fidelithave negligible perceptual significance. The compression ratio
cannot be properly maintained when the quantization becontdsthese quantized high-frequency subbands can be greatly
very coarse at low bit rates. Vector quantization (VQ), on thHacreased because the entropy has been reduced due to the
other hand, would generally achieve better coding efficiencymoother spatial distribution of each cluster within these
In general, VQ is performed by approximating the signal teubbands. In addition, the reconstructed images from these
be coded by a vector from a codebook generated from a geantized high-frequency subbands can also be enhanced in
of training images based on minimizing the mean square ertbe postprocessing stage using an enhancement algorithm
(MSE) [13]. In the case of GVQ, the structure and sparsendsased again on a Gibbs random field so that the reconstruction
of the high frequency data is exploited by constraining th@ise can be suppressed while the image details are well
number of quantization levels for a given block size. Thpreserved.
number of levels and block size determine the bit rate, andWe implement the clustering as a Bayesian estimation
the levels and shape adapt for each block [8], [16], [17hrough optimal modeling of the intensity distributions and
In general, the creation of a universal codebook for arefficient enforcement of various spatial constraints in different
image is impossible. The performance of vector quantizatisnbbands. We use the terminology of “scene adaptive” and
applied to a particular image largely depends on a codebdtsignal adaptive” to emphasize two different aspects of our
generated in advance and is not adaptive to a given sigralgorithm. First, the signal adaptive property refers to the
This inability of signal dependent adaptation will limit themodeling and exploitation of the intensity distribution of the
exploitation of the individualized correlation in an arbitrarilycoefficients. This is accomplished by using a Laplacian model
given image. Moreover, to form vectors, rectangular blodk model the intensity distribution of each cluster in the
partitioning of images is usually adopted. At low bit rates, sudBayesian estimation framework. Second, the scene adaptive
block partitioning often destroys the inherent scene structyseoperty refers to the modeling and exploitation of the spatial
of a given image, since the approximation of a given bloakedundancies in a given high frequency subband. This is
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Fig. 2. Template for displaying the 11-band decomposition scheme.
— LPt HPv 5
HPy 4 are then upsampled to form images of original size and passed
LPn HPh through the corresponding bank of synthesis filters, where they
LPy 3 are interpolated and added to obtain the reconstructed image.
LPv Three-dimensional subband coding was originally proposed
in [5] as a promising technique for video compression. It
o 1 | 2 has shown comparable performance to other methods, such
h . . . . .
pe ' as transform coding and vector quantization. The video signal

is decomposed into temporal and spatial frequency subbands
using temporal and spatial analysis filterbanks. In the fol-
lowing, the procedure for spatio-temporal decomposition and

: . . ' .reconstruction of video signal using the 3-D subband scheme
accomplished by using Gibbs random fields tuned accord'idescribed. A 2-D scheme for image signal is a special

Fig. 1. The 11-band tree-structured decomposition for video signal.

fo the orientation and_the resolu_tl(_)n of each subband. T se in that only spatial analysis and synthesis are involved.
scene adz_‘;lpt!wty and signal adgpt|V|ty are ge”efa”y r_ele_xted recognize the difference between the temporal frequency
the exploitation of the psychows_ugl redundancies within tr}%sponse and the spatial frequency response of the HVS
framework of wavelet decomposition. the filterbanks used for temporal decomposition are often

This paper is organized as follows. Section |l briefly dedifferent from those for spatial decompositions. After subband

scribes the subband analysis and synthesis scheme for M4 8omposition, each subband would exhibit certain distinct

and video g:_odlng. I.n partl_cular, we discuss the spatio-tempog tures corresponding to the characteristics of the filterbanks.
decomposition of video signals and the characteristics of e ose features are utilized in the design of compression
of

_subband and the Coffespond'f‘g godmg strategies. _Segnon ategies in order to fully exploit the redundancy in the
introduces the adaptive quantization algorithm and its |mpI8—

) ) . . . ecomposed subbands.
mentations. In particular, detailed discussions are devoted to
optimal Laplacian modeling of the cluster distributions, the ef-
fective enforcement of various spatial constraints using Giblds Three-Dimensinal Subband Spatio-Temporal Decomposition
random fields (GRF), and an efficient noniterative implemen-

. , o ) To minimize the computational burden of the temporal filter-
tation of the clustering-based quantization. In Section 1V, b b

in decomposing the video signal, temporal decomposition

sented in Section V. Section VI concludes this paper wi mporal decomposition results in two subbands: the highpass

some discussions. temporal (HPT) band, i.e., frame difference (FD), and the
lowpass temporal (LPT) band.
Il. SUBBAND SCHEMES FORIMAGE AND VIDEO CODING In the case of spatial analysis and synthesis, longer length

Subband coding was initially developed for speech codifdfers can be applied since these filters can be operated in
by Crochiere in 1976 [19] and has since proved to be parallel and the storage requirements are not affected by the
powerful technique for both speech and image compressidiiter length. Therefore, spatial decomposition, both horizontal
The extension of the subband coding to multidimensionahd vertical, is often based on multitap filterbanks. With
signal processing was introduced in [4], and the application $eparable filters, multidimensional analysis and synthesis can
image and video compression has been attempted with mieh carried out in stages of directional filtering. To achieve
success [6], [20], [21]. In image compression, the subbah@dyh compression, the lowest frequency band can be further
decomposition is accomplished by passing the image daecomposed in a tree structure fashion. The high frequency
through a bank of analysis filters. Since the bandwidth of eashbbands contain structures approximately aligned along hori-
filtered subband image is reduced, they can be subsampledattal, vertical, or diagonal direction. Fig. 1 shows an 11-band
its new Nyquist frequency, resulting in a series of reducdtee-structured decomposition scheme for video signals. The
size subband images. These subbands are more tractable thanplate for displaying the decomposed 11-band subband
the original signal in that each subband image may be codetages is shown in Fig. 2.
separately, transmitted over the communication system, andn this research, wavelet filterbanks, namely, the
decoded at the destination. These received subband imaDeasbechies’ 9/7 biorthogonal wavelets [13], are employed
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to decompose and reconstruct the signal. The regulariig incorporated in the design of coding algorithms [8], [14],
and orthogonality of the wavelet filterbanks ensure tH&5], [16], [22]. One characteristic of the high frequency
reconstruction of image and video signals with higkubbands is their less significant perceptual responses. They
perceptual quality. Moreover, it has been shown [10], [13¢an often afford coarse representations that would result in
[22] that the wavelet transform corresponds well to thiewer bits needed to code the image without introducing
human psychovisual mechanism because of its localizatiouch visible distortion in the reconstructed images. Another
characteristics in both space and frequency domains. Natgortant characteristic of the high-frequency subbands is the
that the choice of wavelets also corresponds well to tlpatial structures in these subbands. These structures appear as
proposed quantization scheme. First, the good localizatisparse “edges” and “impulses” that correspond mainly to a few
of wavelet decomposition in frequency domain offers goastrong intensity discontinuities in temporal or spatial domains.
frequency separation that facilitates efficient compressidn.general, strong and clustered “edges” and “impulses” are of
Second, and more important, the good localization of wavekdgnificant visual importance and need to be preserved in the
decomposition in spatial domain justifies and facilitateguantization. On the other hand, there are some nonstructural
the incorporation of spatial constraints in the quantizatiomeak impulses corresponding to the noise that has much less
Appropriate spatial constraints can then be efficiently enforcetual importance but would need considerable amount of
to identify and preserve perceptually important componentits to code. Removal of the noise would lead to significant

in the process of quantization. coding gain with perceptually negligible distortion in the
reconstructed image. In addition, these sparse “edges” and

B. Characteristics of Subbands and “impulses” exhibit well defined directional arrangement in

Corresponding Coding Strategy accordance with the filtering direction in the subband analysis.

. i, T hieve th ir imultan n ivi n
After the spatio-temporal decomposition, the resultant sup- 0 achieve the desired simultaneous scene adaptivity and

bands exhibit quite different characteristics from one to anotﬁpﬂa][éziz%';ygnvgbgfdpsoizgegogil ?#snégr?ég);?t s(;h:(rjn:p{i?/re

and ha_\ve different perce_ptual responses. The_ quantizatg stering with spatial constraints. This scheme utilizes Gibbs
strategies neeq to be deS|gned. to suit |nd!v!duallze_(j .S“bb‘.i? dom fields to enforce neighborhood constraints in order to
to achieve optimal representation with minimum visible dISr-

tortions. For the 11-band decomposition of the video Sign%&move those isolated "impulses” and weak local variations

the characteristics of each band ed in the T ose contributions to the reconstruction are negligible. The
. _and are summarized n the gllhoothing of the perceptually insignificant pixels is accom-
lowing. For the decomposition of 2-D still images, simila

characteristics exist E)Iished in a scale-dependent way similar to the perception of
. ’ . ) ~ the HVS. As visual psychophysics states, the HVS is sensitive
1) Band 1 s a low resolution representation of the origingh not only the frequency contents, but also several spatially
image and has similar histogram characteristics, but Wigcalized characteristics, including the background luminance
much sm(_)other spatial distribution. It can be efficientlynq contrast, the proximity to edges, texture masking, and
coded using DPCM. scale [22]-[24]. As will be shown, the entropy of the subband
2) Bands 2-7 contain spatial high frequency componentsigfages after the proposed adaptive quantization is reduced
the LPT band. They consist different amount of “edgesjithout significant perceptual distortions in the reconstructed
and “impulses” corresponding to different directions anghages. It is the principle of scene adaptive and signal adaptive
resolution levels. Since the signal power and the percegnantization as the result of the exploitation of the HVS, and
tual importance in general decreases as the resolutipR spatial and spectral localities of wavelet transform, that
level increases, the bit allocation should be adjuste@nstitutes the fundamental difference between this quantiza-

accordingly. . tion scheme and the existing ones.
3) Band 8 is the low pass spatial band of the HPT band

and contains most motion energy. It needs more bits or . o .
finer quantization when the moggn activity is high. R Adaptive Quantization Algorithm

4) Bands 9-11 represent spatial high-frequency compo-The proposed adaptive quantization of high frequency sub-
nents of the FD. They usually contain very low signabands is accomplished through an adaptive clustering process.
energy and are of low perceptual sensitivity. In this clustering-based quantization, each pixel is quantized to

The quantization and coding algorithm should be developé8 cluster mean according to its intensity and its neighborhood
based on these characteristics. In general, the strategiesC@Rstraints modeled by a Gibbs random field. Such a clustering
summarized as follows. Subbands at the lower resolution levEf®Cess results in an adaptive quantization in two aspects.
(with smaller index in Fig. 2) contain most signal energy anfirst, the quantization isignal adaptivesince the number of
are of higher visual significance. They require higher qualijuantization levels needed and the value of these quantization
coding and hence, finer quantization. Subbands at the higlels are determined according to the statistical characteris-
levels are quantized coarsely or may be discarded. tics and the perceptual frequency response of each subband.

Second, through enforcing spatial constraints, isolated pixels

or pixels representing local noisy variations are quantized to

Ill. ADAPTIVE QUANTIZATION the mean of the cluster to whom majority of their neighbors
OF HIGH-FREQUENCY SUBBANDS belong and therefore, are absorbed by the neighborhood. With

Many attempts in low bit-rate subband coding have beatuch a constrained clustering, the spatial distribution of the
concentrated in the study of characteristics of the high freubband, especially the noisy background, becomes rather
quency subbands so that the features of these subbandssrtaaoth. However, the prominent structures and details with
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significant perceptual importance are preserved mimickir@gbbs distribution can then be defined as

the HVS perception. In the perceptual literature, the Gestalt

psychologists of the 1920’s and 1930'’s investigated questions p(z) o exp {_ Z Vc(a:)} (2)
of how the human visual system groups together simple visual -

patterns. More recently in computer vision literature [25 r|1erch(a:) is called the cligue potential. Associated with the

these Gestalt investigations have inspired work in percept iqhborhood svstem are cliaues and their potentials. A clique
grouping, an area championed by Lowe [26] and Witkin andt'9 >y d pot i q
is a set of sites where all elements are neighbors [34]. In

Tenenbaum [27]. In particular, Lowe [26] defines perceptugl. . . . .
grouping as a basic capability of the human visual syste S stody, Wde cogsﬁer thatt]; 2h-D ém?ge IS (Ijefme(_j on fthe
to derive relevant grouping and spatial structures from goirrte:;?ei? 'i>;<iglst e neighborhood of & pixel consists of its
image without prior knowledge of its contents. As expecte | | Ft) N trained by Gibb d fields i

and will be shown later, the adaptive quantization is able to mage clustering constrained by ©51bbs rancdom TEIds 1S

group together the subband coefficients likely to have Conqgcomphshed_ by assigning .Iabels. to each pixel in the given
Image according to its own intensity value and the properties

from intrinsic objects in the original scene, without requmn%f its neighbors. A labelz, — i indicates that the pixek

specific object models [28]. The quantization depends on t glongs t0 theith class of thek classes. According to the

%sential property of a Markov random field, the conditional
robability p(y | =), and thus the clustering, depends only
n the local neighborhood constraints. A two-point clique
tential function suitable for clustering can be defined as

local scene structure and is therefemene adaptivdJpon the
completion of such an adaptive clustering and quantization, i
highpass subbands contain mainly refined “edges” or “clumpg
over a much cleaned background. Since the “noise” is Iargecf
removed and the “edges” are redefined using only a few level )
the images are significantly less busy with greatly reduced Vi(z) = {—/3, if z, =2, ands,t € ¢ 3)
entropy. T T4, if s £ 3y ands,t € ¢

We have tailored the clustering algorithm proposed in [29 L . .
and [30] to develop an enhanced adaptive clustering algorithhPte that the maximization of the overall posterior probability
It has been shown in [29] and [31]-[33] that images can pplies the pursuit of the lowest potential state. Therefore, by

modeled by a Gibbs random field and image clustering cRgnalizing inhomogeneous clustering Wi'[h. positive_poterﬁiial_
be accomplished through a maximuaposteriori probability and rewarding homogeneous clustering with negative potential

(MAP) estimation. Using Bayes’ theorem and the log likeli=8 Within local neighborhoods, this potential function can be

hood function, the Bayesian estimation that yields MAP of tHé&S€d to enforce desired spatial constraints to achieve homoge-
clusteringz given the imagey can be expressed as neous clustering if an appropriate neighborhood systemd
a proper parametef are selected.

& = argmaxp(z | y) We have developed four types of clique for the parame-
z terization of the Gibbs random field according to the char-
Iargmjx{logp(y | z) +logp(z)} (1) acteristics of the high frequency subbands. In Fig. 4, the

solid lines indicate strong connections with largealong

where p(z) is the a priori probability of the clusteringe, the nonpreferential directions to enforce strong smoothness
and p(y | z) represents the conditional probability of theonstraints, while the dashed lines represent weak constraints
image datay given the clusteringe. There are two com- with small 3 along the preferential directions. The preferential
ponents in the overall probability function. The conditionatlirection of a subband is defined as the direction along which
probability corresponds to the adaptive capability that forcéise structures are aligned, and is perpendicular to the filtering
the clustering to be consistent with intensity distribution of thdirection. Within each subband, the image details along the
corresponding cluster. The prior probability corresponds to thashed line direction can be preserved and the smoothing is
spatial smoothness constraints which will be characterized bg@ane mainly along the nonpreferential direction. The cliques
Gibbs random field. There are several distinctions between @lmown in Fig. 4, from left to right, are suitable for the
adaptive quantization algorithm and the GRF-based clusteringrizontal, vertical, diagonal high frequency subbands, and the
algorithms in [29] and [30]. First, we have different models folowest frequency subband, respectively. Note that the proposed
the a priori probability p(x). The Gibbs random field, i.e., theadaptive quantization may not be suitable for the lowest
parameter3, is adjusted according to the orientation and thieequency subband in the cases where the letter which needs
resolution of each subband in our algorithm. Second, we havtoabe coded with high fidelity to ensure overall high quality
different model for the conditional probabilip{y | ). We use reconstruction. In this band of the lowest resolution, each pixel
a Laplacian model, as opposed to a Gaussian model, to moet®iresponds to manifold pixels in the original image and small
the intensity distribution of each cluster. Finally, we develoguantization error will be magnified in the reconstruction. Only
a noniterative implementation suitable for quantization, whevehen it is necessary to apply the adaptive quantization to
the means are not obtained iteratively, but obtained in advaribe baseband at a very low bit rate, relatively weaker spatial
using a Lloyd—Max quantizer. These aspects of differences walbnstraints can be enforced using a normal clique as illustrated
be elaborated in detail in the following. in Fig. 4. Furthermore$ can be adjusted to the resolution level

1) Modeling of Spatial ConstraintsGibbs random fields, of each subband to reflect different neighborhood constraints
the practical equivalences of Markov random fields, have been the grid at different scales. In general, largeiis used
widely used to represent various types of spatial dependencyon the subbands at the higher resolution levels in accordance
images [29], [31]. A Gibbs random field can be characterizeudth the increase in resolution and scale. For examplean
by a neighborhood system and a Gibbs potential function. @ doubled every time moving to the next higher resolution
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with meany and variances

o Rt = | . .
2
) X —=expy — ——(y — . 4
l ‘ Pyl @) = p{ ;2(0)2@ u)} (4)
“I 1 With a Gaussian model, we can derive the overall probability
mr density as
N P(wIy)aZ{ln;—L(y—u)Q}—ZVc(w)-
. 210 2(0)? -
I 1 o 5)
40 p It 1 However, for a clustering-based quantization, such an assump-
o} ‘;"gi'-. i tion would not lead to an optimal modeling. It is natural to
. SN T e model the individual cluster conditional density as a Laplacian

process considering that the overall intensity distribution can

Fig. 3. Typical histograms of the subbands ( the lowpass band, - P€ optim_ally approximated by a Laplacian source. For a given
a highpass band). The horizontal axis is the intensity axis, and the verticduster, if we assume

axis is the histogram count axis. \/_
1 2

T) X —— exp{ — — |y - 6

Py | o) > p{ ES:UIy ul} 6)

? R © ?

i 1 then the overall probability density becomes
Om =|= =0 O—F—0 O= == =0

6 O O

X 1 V2
T x In— - —|y— - Ve(z). (7
p(x | y) Z ;i ] Ec:c() (7)
Horizontal Vertical Diagonal Normal To examine the validity of the modeling of the cluster distri-
Fig. 4. Cliques for subbands with different preferential directions. bution p(y | ), we construct the overall distribution based

on cluster distributions such that the actual distribution of the
coefficients in a given subband is modeled as the superposition

level. # can also be related to bit allocation in progressivgf individual cluster distributions whose statistical parameters
coding in that largers is used for the subbands on highegre obtained from the optimal clustering. As clearly shown
levels to reduce the bit stream when bits are running out. SughFig. 5, the superposition of multiple Gaussian distribu-
flexible parameterization of the Gibbs random field allows ufons is unable to yield a satisfactory approximation to the
to preserve the most significant structures in a given subbasgrall histogram. Not only can individual Gaussian modes
under the bit rates constraints. be identified, but the characteristics of the distribution, e.g.,

2) Modeling of the Cluster Intensity Distributionit has first-order and second-order derivatives of the distribution,
been shown that the overall distribution of a high frequencyte also quite different. This is due to the fact that the
subband, as shown in Fig. 3, can be optimally modeled byegponent term in a Gaussian distribution is quadratic, while
Laplacian with zero mean. Such modeling yields the best cad- a Laplacian distribution it is essentially linear. On the
ing performance under optimal bit allocation [10]. Within eacbther hand, the composite distribution of multiple Laplacian
high frequency subband, nonzero coefficients are basicalligtributions is very consistent with the overall Laplacian
clustered into “edges,” i.e., oscillating positive or negativeistribution, especially in the tail parts where perceptually
“strips” over the fairly uniform zero background, or appear a@sportant information usually resides. Goodness-of-fit tests
isolated “impulses.” For a quantization scheme that is scesgn also show the superiority of the multimodal Laplacian
adaptive, it needs to preserve those critical positive, negativ@odeling of the cluster distribution with less fitting error [36].
and zero values which are of perpetual significance in the the case of clustering-based adaptive quantization, as a
reconstruction. PCM was first introduced to quantize thesesult of the optimal modeling of the cluster distribution, we
subbands and a “dead zone” technique [35] was proposedate able to obtain optimal quantization and therefore achieve
suppress visually insignificant noise around zero by settipptimal reconstruction from the quantized high-frequency sub-
a relatively larger quantization interval around zero. Thisands. Comparison of the quantized subbands using different
technique allows finer quantization of the tails of the Laplacianodeling is given in Fig. 12.
distribution because the pixels of larger amplitude are often ofNote that the reconstruction levels are global for the entire
greater visual importance [5], [8], [35]. However, the noissubband, and therefore, only labels need to be coded and
suppression using this technique is limited to smoothing onfsansmitted. However, this quantization scheme is indeed
the noise close to the zero background and leaves noiseadaptive for the following reasons. The local neighborhood
the rest of the range of the intensity distribution unaffected.of each pixel sites changes from one location to another,

There are several possible models for the individual intetlerefore, two coefficients with the same intensity value are
sity distributionp(y | ) of each cluster: in (1), including not necessarily quantized to the same level. Depending on
Gaussian, generalized Gaussian, and Laplacian probabithe quantization (or clustering) of the local neighboring co-
density functions (PDF’s). In the case of clustering [30], thefficients, a coefficient is quantized according to a local
conditional density is typically modeled as a Gaussian proceBayesian estimation based on 1) its own intensity value, 2)
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Fig. 5. Modeling of the intensity distribution in high frequency subbands (blowup in log scale). The horizontal axis is the intensity axis (shifted by
127), and the vertical axis is the histogram count axis.

its neighboring coefficients, and 3) the orientation and tlemapable of suppressing noise in the entire range of the intensity
resolution of the subband it belongs to, as if spatially adaptigéstribution, instead of being limited to the zone around
“local quantization tables” were utilized. Virtually, there exitzero. As illustrated in Fig. 6, without spatial constraint, the
a “local quantization table” according to the local spatigdartition of clusters is such that the zones of clusters are
configuration of each site. Therefore, using just one set séparated. With the incorporation of the spatial constraints,
cluster means, we are able to achieve a spatially adaptihhe zones of clusters are actually overlapped with each other.
guantization under the framework of Bayesian estimation. This overlapped partition allows us to achieve an overlapped
With the GRF-based spatial constraints, how a pixel guantization, which is fundamentally different from all existing
quantized is not only determined by its intensity, but alsguantization schemes. Therefore, it enables the suppression
by its neighborhood spatial constraints. It is noteworthy thaf noise in the entire range of the distribution. The actual
this adaptive quantization scheme cannot be achieved by thmantization intervals are essentially enlarged, not just for the
combination of scalar quantization and noise filtering, sudaentral zone around zero, but for all the quantization intervals.
as median filtering. Seemingly, median filtering can be used3) Implementations:The original adaptive{-mean cluster-
to remove impulsive noise while preserving edges. Howevéng based on (7) can be implemented using a local optimization
median filtering is appropriate for normal images containingchnique called ICM [37]. The ICM is efficient to enforce
regions. It is the existence of regions that generates tlogal spatial constraints [38]. At first, an initial clustering
necessary majority votes so that edges of the region danobtained through the simpl&-mean algorithm. In this
be preserved. The subband images are essentially compagtady, an oddK is chosen for the total number of levels
of thin “edges” and isolated “impulses,” with literallpo for each subband since the histograms of the high frequency
regions, over the zero background. While median filtering canibbands are approximately symmetric around zé&focan
remove “impulses,” it would also remove those thin and lonige assigned according to the perceptual importance of each
structures, such as meandering edge segments. A promirgritband, i.e., the characteristics of the HVS [22], and the
spike of large amplitude would also be removed by mediginciple of optimal bit allocation. The subbands of lower
filtering, but it can be preserved by the adaptive quantizatioesolution often have larger dynamic range. Therefore, they
because the first energy term in (7) would be large enough@®@ assigned more levels since they carry more perceptually
that it is not absorbed by the neighborhood. Furthermore, timportant information. Then, the overall probability function
spatial information within a median filtering window is notis maximized in a site-by-site fashion, with the mean
preserved in the median filtering. The reason being, mediand the variance of each cluster being updated after each
filters (and other order-statistics filters) seek to obtain onlteration. The optimization is accomplished through alternating
one good representative among tNeneighboring pixels, and between the MAP estimation of the clustering and the iterative
this median can be any of th€ values. Therefore, the spatialupdate of the cluster means and variances. Such a alternating
localization of the thin edges can be altered, though withinpaocess is repeated until no pixels change classes. The result is
local window, during the median filtering process. the adaptive clustering of the given high-frequency subband.
The incorporation of a Gibbs random field in the MARFinally, the quantized subband is obtained by replacing each
estimation allows us to achieve a similar but better “deguxel with its cluster mean.
zone” effect, originally proposed in [35]. Unlike the original There are still some problems with the ICM implementation
approach which generates “dead zone” simply by intensitf this clustering-based adaptive quantization. First, the inten-
thresholding, we achieved an improved “dead zone” whidity distribution and the spatial constraints are coupled in an
suppresses noises according to both the intensity and loitatative process in the ICM process. Even a small parangeter
spatial constraints. Moreover, the adaptive quantization dan impose very strong constraints of the Gibbs random field
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Fig. 6. Dead zone effect.

over large distances through clique interactions in successofethe clustered subbands and a runlength coder to code their
iterative processes. Therefore, some edge enhancing effectaamesponding locations [20]. Different scanning schemes can
occur, which is not desired in the case of quantization if imadee used for individual subband to increase the runlength since
fidelity is the concern. Second, the iterative implementation tisese clustered high-frequency subbands are composed of well
still considered time-consuming although the ICM is one of thefined “edges” whose directions correspond to the direction
computationally least expensive optimization techniques [29f the highpass filtering used to obtain the decomposition. Be-
In the case of video communication where large amounts cduse of the smoother background in the quantized subbands,
subbands are generated in the spatio-temporal decompositehiilbert—Peano scan [39] can also be very effective. Another
it cannot afford an expensive computation since real-tinseheme of increasing the runlength is to partition the subbands
processing is often required. into nonoverlapping blocks [35]. Through such partitioning,
For the clustering-based adaptive quantization, we decal area of zero values can be better exploited to improve
veloped a two-step noniterative implementation. At firsthe runlength coding efficiency.
a Lloyd—-Max scalar quantizer is found whose optimal In our experiments, we will use the directional scan schemes
reconstruction levels are used as the means of clustdodlowed by a runlength coding. The horizontal and vertical
MAP estimation of the clustering is then accomplished isubbands are scanned accordingly. We also use horizontal
virtually one iteration because the cluster means and variansean for diagonal subbands for simplicity since we found
have been predetermined. The spatial constraints are otlgt the gain margin is rather small by using a diagonal
used to eliminate those nonprominent impulsive pixels whildgzag scan. Recently, zerotree-based coding algorithms have
preserving the important structures. In our experiments, thehieved great success in wavelet-based coding [40], [41]
cluster means (i.e., the reconstruction levels in quantizatiat)e to the efficient symbol coding techniques which exploit
obtained using iterative implementation turned out to be vetlge intrinsic parent-descendent dependencies in the wavelet
close to those obtained using a Lloyd—Max quantizer. Thikecomposition. We will adopt the zerotree coding technique
observation is not surprising because both implementatiom®posed in [40] to code the quantization level indexes in
optimize similar objective functions. However, the noniterativithe experiments where more levels of wavelet decomposition
implementation not only is computationally efficient, but morare selected. Upon the adaptive quantization, the subband
importantly, produces better reconstruction results because toatains very few “clustered edges,” which consist of nonzero
local spatial constraints are more appropriately enforced. coefficients, over a very clean zero background. Therefore, the
zerotree coding can be very efficient.

IV. BEYOND QUANTIZATION
B. Enhancement Algorithm

A. Coding of the Quantized High Frequency Subbands There are some artifacts in the reconstructed image due

Coding of an image generally includes two distinct opete the quantization in different frequency subbands. These
ations: quantization and symbol coding. The adaptive quaartifacts generally appear as ringing effect around sharp edges,
tization with spatial constraints is capable of removing thess of fine details, and blotchiness in the slowly-varying
“noise” of low perceptual significance, which would otherwiseegions. While the loss of fine details is difficult to recover,
need considerable bits to code. The quantized high frequeniog other typical artifacts in wavelet-based coding are not as
subbands are then coded by a symbol coder, which generailyually annoying as the blocking effect, and some of them
includes an entropy coder. With the reduction of entropy upaan be removed or reduced. A Gibbs random field is again
the adaptive quantization, a lower bit rate is expected froapplicable as a spatial constraint to remove these artifacts and
the entropy coding. The entropy coder consists of a varialdehance the reconstructed image. The enhancement is also
word length coder to code the labels of the nonzero valuEsmed as a MAP estimation.
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Fig. 7. A four-band decomposition of the “Lena” image: (a) original subbands and (b) quantized high frequency subbands.

The conditional probability of the quantizatiangiven the function imposes least mean square smoothing of the artifacts
original dataz can be written as when the local variation is belo@'. On the other hand, the
linear segment of the Huber minimax function enables the
1, y=Q[W(z)] preservation of the image detail by allowing large disconti-
ply|z) = {07 y £ QW(z)] () nuities in the image with a much lighter penalty. The overall
enhanced image is given by

where Q stands for the quantization anW denotes the

wavelet transform. The conditional probability states that th = arg min Z Ver(@man —2r1), 1<m, n<N.

estimated image should conform to the quantized data. This wey EJAEN

constraint can be enforced by projecting the estimated image (11)

back to the transform domain, i.e., decomposing the image$ince the projection to the constraint spage = {z

the same way as before, and adjusting the pixels so that the= Q[Hz]} requires a full cycle of subband analysis and

same quantized subband image is maintained. synthesis, a suboptimal solution with the least computation
We use a specific Gibbs random field, the Huber—Markavould be the unconstrained noniterative estimation of (11).

random field model to model tha priori probability. Its The Huber—Markov random field model also results in very

potential functionV, r(x) is in the form of (9). The Huber low computational complexity. To compute the derivative of

minimax function has been successfully applied to the removie function for performing local gradient-descent in an ICM-

of block effect in low bit rate transform coding [42], [43]. Itlike scheme, only linear operations are involved.

can be written as

5 V. EXPERIMENTAL RESULTS
Vor(z) =479 el s T ) imental results have b btained using th
¢, T2+2T(|a:| -T), |z|>T. Experimental results have been obtained using the test

image “Lena” and the test video sequence “Salesman.” As

The desirable property of this minimax function is its abilityiscussed previously, the temporal filterbank is the two-tap
to smooth the artifacts in the image while still preserving thdaar filterbank. Daubechies’ wavelet 9/7 biorthogonal filter-
image detail, such as edges and regions of textures. If W@ank [10]is selected for the spatial analysis and synthesis. The
define the gray level differences between the current pix@¢composition, quantization, reconstruction, and enhancement

Zm.n and the pixels within its neighborhoay,,, ,, as of “Lena” and a typical frame of “Salesman” sequence are
’ ’ shown in Figs. 7-13. To examine the quantization results,

{Zmn — Tk thicNm,., 1<m, n<N (10) the quantized subbands are displayed with midgray cluster

corresponding to the zero value, darker clusters to the negative

then these differences can be used as the argument of the Huladwres, and brighter clusters to the positive values, as shown
minimax function. The quadratic segment of the minimak Figs. 7 and 11. The spatial distribution of the quantized
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Fig. 8. Reconstruction of “Lena” using the EZW algorithm [40]: (a) the original “official” “Lena” image and (b) the reconstructed image.

(@) (b)

Fig. 9. Reconstruction of “Lena” with the adaptive quantization and the EZW algorithm: (a) the reconstructed image and (b) the enhanced image.

subband is made much smoother because of the incorporatiompose, histogram equalization has been performed on those
of spatial constraints. Using the adaptive quantization, veebband images. The numerical results on entropy reduction
remove those perceptually negligible noisy contents and ordye presented in Tables | and II.

preserve those visually important components in the highin terms of the modeling of the intensity distribution, mul-
frequency subbands (see Fig. 7). To boost the contrast dipde Laplacian modeling is able to produce the most coherent
emphasize the effect of the adaptive quantization for displagyantization. In terms of the implementation, the noniterative
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Fig. 11. The quantized subbands of the "Salesman” frames.

guantization enforces the spatial constraints more rigorouslybband is obtained using DPCM and is included in the overall
than the quantization through the ICM. This may need soneatropy.

explanation. It is clear that the interaction between the spatialTo demonstrate the effectiveness of the proposed adap-
constraints and the image force is desired for a image sdige quantization, Shapiro’s state-of-the-art embedded zerotree
mentation problem. However, in the adaptive quantization, weavelet (EZW) coding algorithm [40] is adopted. Compression
consider that both the elimination of nonstructural coefficientssults are obtained using six-level wavelet decomposition for
and the preservation of original image scene structures #ne following cases: 1) using the original EZW algorithm
important. We found that the adaptive quantization through thed 2) cascading the adaptive quantization with the EZW
ICM sometimes altered the original image structure or creatatfjorithm. The comparison is done using the 5%2512
some nonexistent structures. The reason is that the higbfficial” “Lena” image [40]. Higher peak signal-to-noise ratio
frequency subbands contain mostly thédge-like structures (PSNR) and better visual quality is obtained at a low bit rate
rather thanregionscontained in normal images. Overall, theof 0.25 b/p by combining the proposed quantization with the
noniterative implementation (NICM) with Laplacian modelingerotree coding. Noticeably, the rim of the hat, the shoulder,
outperforms the other two combinations. This is clear fromnd the face are reproduced much better in Fig. 9 than in
Fig. 12(d), where the adaptive quantization eliminates ttg. 8. The reason being, the available bits are concentrated
noises without altering those important scene structures. Suehthe scene structures in high-frequency subbands that cor-
a combination also yields the highest PSNR as is shown riespond to these important edges in the original image. If the
Table I. In Table Il, the entropy of the “Salesman” subbanenhancement technique is applied, visually aesthetic recon-
images before and after the quantization shows significaituction can be produced with slight PSNR improvements.
entropy reduction in the high-frequency bands. Because Whe remaining minor ringing artifacts and blotchiness are
use directional scan and runlength coding, the entropy admpletely removed while the image details are preserved.
these high-frequency subbands is calculated using the firBhe PSNR of the reconstructed image in Fig. 9 obtained using
order entropy of appropriate direction instead of the zero-ordise proposed adaptive quantization is 33.52 dB, compared to
entropy, which is solely based on the histogram. In gener83.17 dB by the EZW reported in Fig. 8. The final PSNR
the first-order entropy is smaller than the zero-order entromfter the enhancement is slightly higher at 33.91 dB because
Some insignificant subbands are discarded and therefore, theeimprovements occur at only a small portion of the image
not listed in this table. The entropy of the lowest frequenggixels, such as around sharp edges. However, corresponding
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Fig. 12. Quantization of a high-frequency subband (blowup). (a) Lloyd—Max quantizer without spatial constraints, (b) adaptive quantizatianssigin G
modeling, (c) adaptive quantization with Gaussian modeling and ICM, and (d) adaptive quantization with Laplacian modeling and NICM.

(@) (b)

Fig. 13. Reconstructed frame of the “Salesman” sequence: (a) original frame and (b) overall reconstruction.

visual improvements are of significant importance. For thtee two-tap Haar filter for temporal decomposition and only

“Salesman” sequence, we achieved the 40:1 compressa@tompose the LPT band into two levels (we therefore cannot
required for videoconferencing. The compression ratio of 40 tdke advantage of the efficient zerotree coding). Nevertheless,
for a common intermediate format (CIF) sequence meatise good visual quality of these reconstructed images suggests
the luminance signal is coded at 304 kb/s, which leaves @#at the proposed quantization approach is very promising
kb/s for the chrominance signal and 16 kb/s for the audio image and video compression because it is capable of
in a 384 kb/s video conferencing application, similar to thpreserving those visually significant components at low bit

scheme adopted in [8], [17]. The PSNR of our results mtes through its signal adaptive and scene adaptive quanti-
33.97 dB and is lower than H.261. However, the perceptuzdtion. Recently, Pearlman’s group reported a 3-D subband
quality of our coded video is better. Note that we only usédeo coding scheme using improved zerotree coding [44]
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TABLE |
PSNRoOF THE RECONSTRUCTION AND OVERALL ENTROPY REDUCTION IN HIGH-FREQUENCY (HF) SUBBANDS
Quantization scheme PSNR | PSNR (dB) after Average HF | Average HF entropy
(dB) enhancement entropy after quantization
“"lena", Gaussian 35.53 35.57 3.46 0.320
modeling, ICM
"lena", Gaussian 35.54 35.62 3.46 0318
modeling, NICM
"lena", Laplacian 36.29 36.32 3.46 0.316
modeling, NICM
"salesman", Gaussian 32.01 32.16 . 2.58 0.132
modeling, ICM
"salesman", Gaussian 31.92 32.07 2.58 0.131
modeling, NICM
“"salesman", Laplacian 32.97 33.15 2.58 0.129
modeling, NICM

TABLE I
ENTROPY REDUCTION AFTER QUANTIZATION FOR “SALESMAN” SEQUENCE
Subbands Before Quantization After Quantization Quantization levels
LLLL 6.66 2.85 stepsize A=8
LLHL 3.98 0.70 7
LLLH 4.18 0.66 7
LPT LLHH 2.83 0.16 5
HL 3.65 0.29 3
LH 3.61 0.27 3
HPT LL 1.70 0.07 3

which is able to match the PSNR performance of the motiatructures from less important ones. Within the high-frequency
compensation-based schemes, such as H.261 and H.263. subbands, those strong and clustered edges correspond to
important scene structures and are retained, while those weak

VI. DiIscUsSION AND CONCLUSIONS and isolated impulses correspond to perceptually negligible

It is well known [24] that the HVS tends to be attentiveeomponents and are discarded. To identify these clustered

to the major structured discontinuities within an image, rathEf9es: ne_|ghborhood coefficients need to be bound to_get_her
than intensity changes of individual pixels. Therefore, a di2 determine the presence of scene structures. The binding
sired property for a quantization scheme is the capability 8f Scene structures is accomplished by the introduction of
high fidelity representation of major scene structures. Unlifgturally defined Gibbs neighborhood systems in the pro-
the DCT-based schemes in which spatial information is loBPSed adaptive quantization, while in vector quantization it
after the transform, the wavelet transform preserves both spa-@ccomplished by artificial block partition, which is often
tial and frequency information in the decomposed subbandficonsistent with the natural boundaries of objects. It is
Since the nature of image scene structures is nonstationa@feworthy that a Gibbs neighborhood system is of dynamic
and varies for each individual image, a simple statisticBfture since the ne|ghbo'rs of each individual coefficient are
model, as adopted by many existing quantization schem@gferent from one location to another. Such a dynamic,
is often inadequate for individual scene representation. THglividualized neighborhood system is consistent with the
combination of a scene structure model and a conventiom@tural representation of spatial dependencies and is therefore
statistical model will be more appropriate to characteriZble to overcome the potential scene distortions caused by
both the random and deterministic scene distributions with@ly artificial partitioning.
an image. Because scene structures of objects can often bé@ summary, this novesceneadaptive andsignal adaptive
represented by edges, a primitive candidate for scene structdg@ntization scheme is able to resolve the common problems
description will be the location, strength, and orientation ofith some existing quantization methods were designed for
edges. In wavelet coding, such edge information is alreadfavelet-based compression. The novelty of the proposed quan-
available in the high-frequency subbands. The issue is howttzation lies in the way we exploit the both the spatial and
combine such information with statistical models to achievefeequency redundancies in the subbands, which are generally
scene adaptive and signal adaptive quantization. related to the psychovisual redundancy of the HVS. The
The proposed quantization scheme has provided us inciple of the scene adaptive and signal adaptive quantiza-
effective way of distinguishing perceptually more importartion is fundamentally different from existing scalar or vector
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quantization schemes in that we combine a scene struct{i® C. Podilchuk, N. S. Jayant, and P. Noll, “Sparse codebooks for the
model with a conventional statistical model. This quantization
scheme has the individuality of scalar quantization in that
each coefficient is inspected with regards to its perceptyat)
importance, but in a more efficient way than traditional scalar

guantization. It also exploits the local spatial correlation in inl‘-
ages as in the case of vector quantization, but in an essenti

different way such that it is able to preserve inherent imageo]
structures even at low bit rates. Both algorithmic analysis and

experimental results have shown that the proposed adaptﬁ%/%1

guantization provides a promising way of achieving efficiernti)
image and video compression at low bit rates. In addition,
such adaptive quantization has many refreshing impacts
the subsequent coding and transmission in such aspects astransform,” IEEE Trans. Image Processingol. 1, pp. 244-250, Apr.
coding efficiency, coding artifacts reduction, transmission loss
concealment, and transmission noise reduction, which afél
currently under investigation.
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