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Abstract—Vibration sonoelastography has been developed for the detection of hard lesions in relatively soft
tissue. The basic concept is to propagate low-amplitude and low-frequency shear waves (with displacements
below 0.1 mm and frequencies typically below 1000 Hz) through deep organs, and displaying the vibration
response in real-time using advanced color Doppler imaging techniques. A hard inhomogeneity, such as a tumor,
will produce a localized disturbance in the vibration pattern, forming the basis for detection even when the tumor
is isoechoic on B-scan images. This paper focuses on the important quantitative issues concerning the detect-
ability or inherent contrast of lesions. The specific factors of lesion size, relative stiffness and vibration frequency
are studied using theoretical models, finite element methods and experimental measurements on tissue-mimick-
ing materials. The results indicate that detectability increases with vibration (shear wave) frequency; however,
loss mechanisms ultimately limit the penetration of higher vibration frequencies (in the kHz range). © 1998
World Federation for Ultrasound in Medicine & Biology.
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INTRODUCTION

Vibration sonoelasticity imaging has been proposed for
detection of hard lesions (Lerner et al. 1988, 1990;
Parker et al. 1990; Yamakoshi et al. 1990; Gao et al.
1995, 1997) and also for the study of tissue viscoelastic
properties (Levinson et al. 1995). In these methods, the
amplitude and/or phase of vibration of the tissue is
estimated and displayed using ultrasound pulse echo
techniques specially designed for the Doppler signal of
vibrating targets (Huang et al. 1990, 1992; Yamakoshi et
al. 1990).

Other independent work has centered on estimating
tissue properties using incremental compression of tis-
sues (Ophir et al. 1991; O’Donnell et al. 1994; Sko-
voroda et al. 1994). The literature in this field has been
reviewed in recent articles (Gao et al. 1996; Ophir et al.
1997), and is rapidly growing. Extensions to other mo-
dalities and many anatomical structures, such as the eye,
are described in one review (Gao et al. 1996).

A theoretical framework has been established for
the detection of inhomogeneities in a vibrating medium
(Gao et al. 1995, 1997) with application to the liver, the
prostate and other organs. Here, this framework will be
extended to include a detailed treatment of lesion detect-
ability. This paper examines theoretical relationships,
along with new finite element models and experiments
using tissue-mimicking materials, to establish the funda-
mental concepts and quantitative results pertaining to the
issue of detectability of a lesion in an otherwise homo-
geneous elastic tissue medium. Specifically, we examine
the localized change in vibration that is produced in a
tissue-mimicking material as a function of the relative
lesion elasticity, the vibration frequency and the lesion
size. This localized change in vibration is quantified and
forms the basis for a discussion of detectability and
lesion contrast. These results provide guidelines for, and
establish a relationship between, increased vibration fre-
quency and increased detectability. However, in practical
systems, the losses associated with higher vibration fre-
quencies (in the kHz range) will place a practical limit on
the choice of vibration frequency and, hence, the detect-
ability of a small elastic inhomogeneity.
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THEORY

For a linear viscoelastic and isotropic 3-D structure,
solutions for the wave motion cannot be obtained ana-
lytically, except for the simplest geometry and boundary
conditions. These problems are often made tractable by
incorporating some assumptions and simplifications. Gao
et al. (1995) have formulated a mathematical model for
vibration amplitude sonoelastography. A lesion is mod-
eled as an elastic inhomogeneity inside a lossy homoge-
neous elastic medium. The homogeneous medium has
constant stiffnessE0, and the small inhomogeneity has
stiffnessE 5 E0 1 DE. The vibration patterns of the
medium, with and without the inhomogeneity, are de-
rived from the vector displacement equations.

The wave motion equation can be expressed in term
of the displacements as:

E

2~1 1 v!~1 2 2v!
¹¹ z u# 1

E
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¹2u# 5 r

­2u#

­t2 ,

(1)

whereE, v, r andu# are the Young’s modulus, Poisson’s
ratio, mass density and displacement vector, respec-
tively. The above motion equation can be decomposed
into two decoupled motion equations, one governing
longitudinal wave motion, and the other governing shear
wave motion. Only the shear wave equation is chosen for
consideration, for the following reasons. First, the lon-
gitudinal waves have wavelengths much larger than or-
gans of interest at the frequencies used in sonoelastog-
raphy (Parker et al. 1992). In addition, biological tissue is
nearly incompressible, so the Poisson’s ratio approaches
0.5 (Fung 1981; Parker et al. 1990). At this Poisson’s
ratio, the wave dilatation that represents the longitudinal
wave motion is close to zero; thus, the shear wave
motion u# T dominates the wave propagation. In a homo-
geneous medium, the shear wave component is governed
by the wave equation (Gao et al. 1995):

E
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The shear wave eqn (2) for the medium with inho-
mogeneity is expressed as:
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and
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E0 is Young’s modulus of the homogeneous background
material whereg 5 0. E is Young’s modulus of the
inhomogeneous material whereg Þ 0. g . 0 indicates a
hard lesion andg , 0 indicates a soft lesion. Biological
tissue is lossy and typically modeled as a viscoelastic
material (Fung 1981). Therefore, a relaxation term
should be included in eqn (3) (Kinsler et al. 1982).
Assuming that the external vibration has a harmonic time
dependenceu# T 5 U# exp(ivt), eqn (3) with a loss term
becomes:

¹2U# 1
K2

~1 1 g!
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iK 2

Q0~1 1 g!
U# 5 0, (6)

whereK 5 v/C0 andQ0 is theQ factor of the system at
the frequencyv.

There is no closed form solution to eqn (6). To gain
insight into the effect of the inhomogeneity on the wave
fields, the “elastic-Born” approximation is used to rear-
range the governing equations (Gao et al. 1995). The
motion field is decomposed into an incident wave and a
scattered wave:

U# 5 U# i 1 U# s. (7)

The incident wave satisfies the homogeneous wave equa-
tion:

¹2U# i 1 K2U# i 2
iK 2

Q0
U# i 5 0, (8)

and the given boundary conditions. The scattered wave
due to the inhomogeneity satisfies:

¹2U# s 1 K2U# s 2
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i
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where the functionb is defined as:

b 5
g

1 1 g
5

E 2 E0

E
. (10)

This source termb governs the strength of the perturba-
tion from an otherwise homogeneous solution. Thus, for
a point inhomogeneity in an infinite medium, the scat-
tered wave increases proportionally to the termb( x, y).
The relation between the two parametersb andE/E0 is
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shown in Fig. 1. Note the leveling off ofb asE/E03 `;
that is, as the inhomogeneity becomes extremely stiff.
However, the assumptions involved in deriving the “elas-
tic-Born” equation limit the range of applicability of the
equations to some limited range ofE/E0 near unity. Gao
et al. (1995) obtained solutions for simplified geometry,
and showed that a small hard lesion produced a localized
reduction of displacement in a vibration pattern. This
concept will be quantified in the following sections.

FINITE ELEMENT ANALYSES

The finite element method (FEM) is a numerical
procedure for analyzing structures and continua. In our
work, the FEM is adopted as a tool to obtain a discrete
approximation to the 2-D and 3-D viscoelastic vibration
problems with arbitrary boundaries. Equations that gov-
ern the dynamic response of a medium are derived by
requiring the work of external vibration forces to be
absorbed by the work of internal, inertial and viscous
forces for any small admissible motion. For a single
element, the equilibrium equation for the harmonic mo-
tion case is expressed as (Cook et al. 1989):

2v2@m#$d% 1 iv@c#$d% 1 @k#$d% 5 $r ext%, (11)

where [m], [c] and [k] are the element mass, damping
and stiffness matrices, respectively, and {d} and { rext}

are the element grid displacement amplitude vector and
the element external force amplitude vector, respec-
tively, and v is the angular vibration frequency. The
damping matrix is proportional to the structural damping
coefficientb. The damping ratioj is related to damping
coefficientb at the vibration frequencyv by the expres-
sion:

j 5
vb

2E
. (12)

After assembly of elements, the governing equation in
the FEM is derived from eqn (11):

2v2@M#$D% 1 iv@C#$D% 1 @K#$D% 5 $Rext%, (13)

where [M], [C] and [K] are the assembled mass, damp-
ing and stiffness matrices, respectively, and {D} and
{ Rext} are the assembled grid displacement amplitude
vector and the assembled external force amplitude vec-
tor, respectively. Solution of eqn (13) results in the grid
displacements of the structure due to a known external
harmonic excitation.

In this section, we describe use MSC/NASTRAN
(MacNeal–Schwendler Corporation, Los Angeles, CA),
a commercial FEM package, to systematically investi-

Fig. 1. The relation between the two parametersb andE/E0 (b is the strength of the source term in the derivation of
the “elastic-Born” equation).
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gate the lesion detectability. Effects of parameters, in-
cluding lesion stiffness, vibration frequency, lesion size
and material damping on the resulting wave motion were
investigated. A 2-D model was first considered to obtain
systematic results for the parameter studies. Later, a 3-D
phantom was modeled to observe lesion visibility and to
compare with the experimental results for a tissue-mim-
icking phantom.

2-D FEM model
A 2-D domain is shown in Fig. 2. For simplicity, it

is assumed that the domain is symmetric about they axis
and the shape of the lesion is square. A time-harmonic
point vibration source with displacements in they direc-
tion is applied on the top surface in the plane of sym-
metry. The bottom boundary is fixed in all directions and
the other boundaries are free. The 2-D domain shown in
Fig. 2 is uniformly meshed using 2500 bilinear isopara-
metric elements with a 1-mm grid spacing. The resulting
vertical (y direction) displacement fields are compared
with and without the lesion.

The following parameters are defined for explana-
tion of the results:

d—The average vertical displacement amplitude
within the lesion region.

d0—The average vertical displacement amplitude
within the region corresponding to the lesion, but in a
homogeneous model.
The average displacement amplitude is calculated by
averaging the displacement amplitudes of all the grids
within the region considered.

The ratioE/E0 represents the relative stiffness of
the lesion with respect to the homogeneous medium. The
ratio d/d0 represents the relative displacement amplitude
of the lesion with respect to the otherwise homogeneous
medium. The value ofd/d0 will be used in this paper as
a measure of the lesion detectability in sonoelastography,
and is the key parameter of interest throughout this
paper. Results show generally thatd/d0 , 1 for hard
lesions,d/d0 5 1 in absence of a lesion andd/d0 . 1 for
soft lesions. In the following, we investigate the depen-
dence of lesion detectability on lesion stiffness, vibration
frequency, lesion size and material damping coefficients.
Both the amplitude and phase are considered in the
following analyses. The grey-scale images of the abso-
lute vertical displacement amplitudes were used to pro-
vide visual representation of the predicted motions. Each
image uses 8 bits dynamic range.

Figure 3 shows the relationship betweend/d0 and
E/E0 for different vibration frequencies, where the lesion
size is 6 mm3 6 mm, E0 5 20 kPa, and the damping
ratio j 5 0.02. The general trend of each curve is similar
to that forb given in Fig. 1, except in the regionE/E0 ,,
1; in this region, the “elastic-Born” approximation would
no longer be valid. The results indicate that the detect-
ability increases with the increase of relative lesion stiff-
ness whenE/E0 . 1 and with the decrease of relative
lesion stiffness whenE/E0 , 1. When the elasticity of
the inhomogeneity is 3 times that of the surrounding
homogeneous medium, the decrease of the tumor dis-
placement is over 20% for a frequency greater than 400
Hz. Figure 4 displays and compares the vibration pat-
terns at 400 Hz for a soft lesion withE/E0 5 0.2, a
homogeneous medium and a hard lesion withE/E0 5 5.
Compared with the homogeneous medium in Fig. 4
(center), the soft lesion region is brighter in the grey-
scale amplitude image (left) and the hard lesion region is
darker (right). The lesion causes the localized distur-
bance of the vibration pattern and identifies itself in the
image. Note that the six distinct bright dots in Fig. 4
(left) show the vibration pattern with a shorter wave
length in the soft lesion region, as expected.

Figure 3 also shows the trend of lesion detectability
when the vibration frequencies change. Theory, eqn (9),
predicts that the strength of the inhomogeneous source
term increases asbK2, thus increasing with frequency.
Figure 3 demonstrates that the change ind/d0 increases
as frequency increases. The grey-scale images for visu-
alization of the vibration patterns are presented in Fig.
5a, b, c, d. For 300-Hz, 400-Hz and 600-Hz vibration, the
tumor is clearly visible in the images, and the detectabil-
ity increases with the vibration frequency in this fre-
quency range. For the frequency 100 Hz, the lesion
cannot be easily identified.

There are no discontinuities in the displacement

Fig. 2. Diagram of 2-D model for the FEM simulation.
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field, even at the lesion boundaries, although the lesion
and the background material have different elasticities.
Therefore, the vibration amplitude imaging technique is
not suitable for small lesion detection at very low fre-
quencies (below 200 Hz). Instead, strain imaging may be
useful in this case. Given the external forces, the strain is
proportional to the material elasticity because the stress
is continuous at the boundary between the lesion and the
homogeneous medium. Thus, the strain in the lesion
region differs from that in the background media. Figure

6 compares the strain images for a homogeneous and
inhomogeneous (E/E0 5 5) medium at 100 Hz, where
the brightness is proportional to the vertical strain com-
ponent. At this low frequency, the lesion in the strain
image is much more evident than that in the displace-
ment amplitude image in Fig. 5a. However, because
strain estimations require derivative operators, the strain
image will be sensitive to noise. Although the strain
image is promising, this paper concentrates on the dis-
placement image technique.

Fig. 3. Relative displacement amplituded/d0 vs. relative lesion stiffnessE/E0 from the FEM study (1260 Hz, circle5
100 Hz; diamond5 300 Hz; square5 400 Hz). The lesion size is 6 mm3 6 mm. Note that the general trend follows

the theoretical derivation of theb term as shown in Fig. 1.

Fig. 4. Grey-scale images of the vertical displacement amplitudes at 400 Hz vibration. Each image is 40 mm width by
40 mm height, and is a region of interest within the domain shown in Fig. 2. The lesion size is 6 mm3 6 mm. (left)

Soft lesionE/E0 5 0.2; middle 5 no lesion; right5 hard lesionE/E0 5 5.
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So far, only the amplitude of the vibration motion
field has been considered. The phase may also be useful
in determining the viscoelastic properties of a material
(Yamakoshi et al. 1990; Levinson et al. 1995). The phase
color maps at 600 Hz for the homogeneous and for the

hard lesionE/E0 5 5 are sketched in Fig. 7. It is a visual
representation of spatial changes of phase of the vibra-
tion motion field. The color model of intensity, hue and
saturation (HIS) is converted to RGB color model. Here,
both the intensity and saturation are set to 1, and the hue

Fig. 5. Grey-scale images of the vertical displacement amplitudes forE/E0 5 5 at various vibration frequencies. Each
image size is the same as those in Fig. 4. The lesion size is 6 mm3 6 mm.

Fig. 6. The strain images at 100 Hz vibration frequency: (left) homogeneous; (right) inhomogeneous. The inhomoge-
neous case was derived from the displacement amplitude image of Fig. 5a withE/E0 5 5.
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represents the phase, which has a range from 0 to 360°.
The lesion can be identified in the center of the static
image of Fig. 7, but is much more clearly visualized in
the animation of a phase color-map sequence.

The detectability of a lesion also depends on its size
or volume. Figure 8 shows how the detectability depends
on lesion size for an excitation frequency of 400 Hz. The
detectability increases dramatically when the lesion size
increases. The grey-scale vibration images for different
lesion sizes are displayed in Fig. 9 for the caseE/E0 5
5. The lesion size is (left) 4 mm3 4 mm; (middle) 6
mm 3 6 mm; and (right) 8 mm3 8 mm. A large lesion
causes a large disturbance region, so the lesion visibility
is better. A small lesion with size 4 mm3 4 mm is
thought to be detectable because the darker lesion region
in the image can be identified.

The exact amount of loss and its frequency-depen-
dence in tissue at these frequencies is unknown. How-
ever, we can predict the effect of damping by numerical
simulation. Figure 10 shows that the lesion detectability
decreases with increasing damping ratio. For a purely
elastic case, the average lesion displacement is 80%
below the corresponding average displacement in a ho-
mogeneous medium. Even for a small damping ratio
equal to 0.02, there is a decrease in lesion detectability.
In vivo measurements will be required to determine the
damping ratios of tissues and how they increase with
vibration frequency.

From the above observations and analyses of the
2-D FEM simulation results, the recommended frequen-

cies for lesion detection range from approximately 200
Hz to 600 Hz, assuming a lesion withE/E0 . 3 and a
characteristic dimension (e.g., diameter) of at least 4
mm.

3-D FEM model
The above analyses for the 2-D model present some

quantitative results pertaining to lesion detectability.
These systematic results verify the theory discussed in
the preceding section and provide insight into sonoelas-
tography. In this section, a more complex 3-D FEM
model is used to simulate a tissue-mimicking phantom
experiment.

The phantom model for 3-D FEM simulation is
shown in Fig. 11. The actual phantom has four spherical
lesions at different locations. To establish a computable
simulation model, some simplifications and assumptions
are made. First, only one lesion is considered for the
mesh simplicity of the model, as indicated in Fig. 11.
Because the sizes of the lesions are very small compared
with the phantom, and the four lesions are well sepa-
rated, the results due to the simplification will not cause
a large error. Second, the vibration surface source is
applied along the plane of symmetry; thus, only half the
phantom including half the lesion needs to be modeled.
The lesion shape is assumed to be a cube for easier
meshing with the FEM. The volume of the simulated
lesion is set equal to the volume of the actual spherical
lesion. The measured Young’s modulus and damping
coefficient are used in the FEM model. The stiffness of

Fig. 7. Phase color map at 600 Hz for the homogeneous case on the left and for the 6 mm3 6 mm hard lesion with
E/E0 5 5 on the right.
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the lesion is 7 times that of the homogeneous material of
the phantom. The model is adaptively meshed with ap-
proximately 15,000 3-D hexahedral isoparametric ele-
ments, where the mesh is finer in the region close to the
lesion and coarser elsewhere. The lesion is meshed by 16
elements. The FEM mesh model provides adequate res-
olution over the vibration frequency range of interest.

The grey-scale images obtained from the simulation
data in the region of interest are shown in Fig. 12a and b
for 248 Hz and 318 Hz, respectively. The cubic spline
interpolation is performed on the FEM data before dis-

playing the image, so that the images have higher spatial
sampling. The shape of the phantom and the boundary
conditions are complicated, so the vibration pattern is not
simple. However, the lesion regions are readily located.
The images will be compared with the experimental
results.

EXPERIMENTAL RESULTS

The tissue-mimicking phantom in our experiments
was manufactured by Computerized Imaging Reference

Fig. 8. Relative displacement amplituded/d0 vs. relative lesion stiffnessE/E0 at vibration frequency 400 Hz for
different size lesions: circle5 4 mm 3 4 mm; diamond5 6 mm 3 6 mm; square5 8 mm 3 8 mm.

Fig. 9. Grey-scale images of the vertical displacement amplitudes at a vibration frequency 400 Hz for different size
lesions whereE/E0 5 5: left 5 4 mm 3 4 mm; middle5 6 mm 3 6 mm; right5 8 mm 3 8 mm.
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System Inc. (CIRS, Norfolk, VA). The specifications for
the phantom were that the phantom materials reproduce
the ultrasonic appearance of liver tissue and the simu-
lated tumors are isoechoic on B-scan images. It was also
specified that the lesions be 7 times stiffer than the
background materials. CIRS successfully made a phan-
tom consisting mainly of Zerdine that contains 4 lesions.
The half phantom shape is sketched in Fig. 11.

Measurement of elasticity and viscosity
The numerical simulations assumed viscoelastic

material properties to approximate the mechanical prop-
erties of biological tissue. We measured the values of the
elasticity and viscosity of the tissue-mimicking phantom.
In practice, Poisson’s ratio is difficult to measure accu-
rately. A value of 0.495 is assumed because tissue is
nearly incompressible (Fung 1981; Parker et al. 1990).
Small hard and soft circular cylindrical samples were
ordered together with the phantom. The hard and soft
samples have the same mechanical and acoustical prop-
erties as the hard lesion and background material in the
phantom, respectively. Two experiments were used to
measure the Young’s modulus for each sample. A simple
load cell was first used to statically compress a small
circular cylindrical sample. Both the top and bottom
surfaces of the sample were lubricated with vegetable oil
to approximate a free slip boundary to create a uniform
stress state within the sample. Young’s modulus in a
certain strain range can be calculated from the slopes of
plots of stress vs. strain. Measured values of Young’s
modulus for different strain levels are given in Table 1
for both the homogeneous background material and the
lesion material. The ratio of elasticities of the two ma-
terials is approximately equal to 7 at various strains,
which corresponds to the manufacturing specification.

Fig. 10. The relation between the lesion detectability and material damping ratio forE/E0 5 5 at 400 Hz.

Fig. 11. Diagram of the phantom model for the 3-D FEM
simulation.
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The small strain range was chosen so that the basic linear
elastic equations were satisfied. The viscosity cannot be
obtained from the static measurement. Both elasticity
and viscosity were measured using a sensitive dynamic
measurement instrument (Solids Analyzer RSA-II). Be-
cause of equipment limitations, data could be obtained
only from 1 Hz to 15 Hz. The Young’s modules and the
damping ratio measured for the background material
were about 21 kPa and 0.02 at the strain 0.05 within this
vibration frequency range.

Sonoelastography experiments
The spherical lesions imbedded in the phantom re-

sult in the boundary between the lesion and the back-
ground material. Because the lesion is isoechoic, the
boundary is barely detectable. However, the high-reso-
lution GE Logiq 700 scanner used in the experiments can
sometimes display a very faint trace of the boundary in
B-scan mode. This is used to confirm the lesion position
for the experiment setup.

The experiment setup is consistent with the simu-
lation model in Fig. 11. Vibration Test System Corpora-
tion (VTS, Cleveland, Ohio) supplied a point vibration
source system. A 9-MHz linear transducer probe (a 739L
GE Medical) was used to locate the lesion of interest in

the phantom. The lesion corresponding to the 3-D FEM
model was selected for detection. Once this lesion was
located, the transducer position was adjusted such that its
orientation was in the symmetry plane. The point vibra-
tor was applied at the center of the bottom surface. The
color Doppler mode of the GE Logiq 700 ultrasound
system was used to perform the experiment. A Doppler
spectral variance estimator was utilized to determine
vibration amplitudes (Huang et al. 1990, 1992). After the
color-flow parameters were set appropriately, the vibra-
tor was turned on and adjusted to increase the vibration
amplitude until the color Doppler signal covered the
background. Then a void or vacancy occurred over the
region of the lesion. In this way, a sonoelastogram of the
isoechoic lesion was produced.

The phantom experiments were performed at vibra-
tion frequencies 248 Hz and 318 Hz, respectively. The
color Doppler data were obtained by data transfer from
the GE Extend program. The results are shown in Fig.
13a, b. The void in the images indicates the existence of
the hard lesion. The phantom experimental results in Fig.
13 agree well with the vibration pattern of the FEM
simulation in Fig. 12.

CONCLUSIONS

In this paper, lesion detectability in vibration sono-
elastography was investigated, using theoretical equa-
tions, finite element analyses and experimental tests on a
tissue-mimicking phantom. The theoretical equations es-
tablished the basic concepts and mechanisms for sono-
elastography. The 2-D FEM model was used to study the
lesion detectability as a function of lesion size, vibration
frequency, material elastic properties and damping, and
the results were consistent with the predictions of the

Fig. 12. Grey-scale images of the vertical displacement amplitudes for from the 3-D FEM simulation: (a) 248 Hz; (b)
318 Hz. The 1-cm lesionE/E0 5 7 is located at the center of the region of interest shown.

Table 1. The measured Young’s modulus for various strain
levels

Strains 0.02 0.03 0.04 0.05

BackgroundE0 (kPa) 13 17 18 19
LesionE (kPa) 94 120 130 132
Ratio E/E0 7.2 7.1 7.2 6.9
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theory. The systematic and quantitative 2-D results
showed that detectability increases with lesion stiffness
and size. For the cases considered, detectability in-
creased with the vibration frequency in a certain range.
However, the damping mechanism ultimately limits the
penetration of high-vibration frequencies. Small lesions
are not easily detected at very low frequencies (below
200 Hz) using the vibration-amplitude imaging tech-
nique. Instead, the strain imaging technique may be used
for lesion detection at very low-frequency vibration. A
tissue-mimicking phantom was numerically simulated
with the 3-D FEM model. The experiments were per-
formed on the phantom using advanced Doppler imaging
techniques. The experimental results corresponded well
with the predictions of the 3-D FEM simulations. The
results presented in this paper provide guidelines for
clinical application of vibration sonoelastography or for
any coherent imaging system capable of measuring vi-
bration within tissue.
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Fig. 13. Real-time sonoelastography images of the vertical displacement amplitudes from the phantom experiments: (a)
248 Hz; (b) 318 Hz. The 1-cm diameter stiff lesionE/E0 5 7 was located slightly to the right of center of the region

of interest shown.
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