
Volunteer Computing on Mobile Devices:

State of the Art and Future Research Directions

Cristiano Tapparello∗, Colin Funai∗, Shurouq Hijazi∗, Abner Aquino∗,

Bora Karaouglu, He Ba∗, Jiye Shi† and Wendi Heinzelman∗

∗Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
†UCB Pharma, 216 Bath Road Slough, SL1 4EN, United Kingdom

Abstract

Different forms of parallel computing have been proposed to address the high computational require-

ments of many applications, following the principle that large computational problems can often be divided

into smaller ones. Building on advances in parallel and distributed computing, volunteer computing has been

shown to be an efficient way to exploit the computational resources of devices that are available around

the world and that are under utilized for most of their time. The idea of including mobile devices, such as

smartphones and tablets, in existing distributed volunteer computing systems has recently been investigated.

In this chapter, we present the current state of the art in the mobile volunteer computing research field,

where personal mobile devices are the elements that perform the computation. Starting from the motivations

and challenges behind the adoption of personal mobile devices as computational resources, we then provide

a literature review of the different architectures that have been proposed to support parallel and distributed

computing and how these architectures have been adapted to use mobile devices for distributed computing.

Finally, we present some open issues that need to be investigated in order to extend user participation and

improve the overall system performance for mobile volunteer computing.

I. INTRODUCTION

In recent years, the computational requirements of various applications in domains ranging

from healthcare to finance have increased dramatically. Several computing infrastructures have

been proposed and, among them, parallel computing has been shown to be a viable solution to

meeting this increasing computational demand. Following the principle that large computational

problems can often be divided into smaller ones, various forms of parallel computing, from hardware

dependent solutions such as multi-core and GPU programming, to distributed computing, have been

proposed to provide a suitable parallel computing architecture.

1

Distributed computing is an important class of parallel computing, linking distant high perfor-

mance computing resources through the Internet. Such systems are essentially cooperative groups

of powerful computers that require both an initial investment in hardware and software as well as

significant operational costs (e.g., maintenance, direct power consumption and cooling infrastruc-

ture) that are mostly energy-related. Increasing operational costs [1], combined with the need to

reduce the related carbon footprint, have led researchers to explore energy-efficient alternatives for

high performance computing that decrease the overall energy consumption of computation, storage,

and communication. Several ideas have been explored, including PowerNap [2], which relies on

the hardware ability to switch to a low power state, and GreenCloud [3], which considers migrating

virtual machines between physical machines in order to reduce the total power load of a data

center. However, improving energy efficiency in large scale workstations is still considered a major

challenge in distributed computing [4].

Instead of using dedicated hardware for parallel computing, volunteer computing aims to use

underutilized personal computational resources. Many computing devices (e.g., personal computers,

tablets and mobile devices) under utilize their processing capabilities for the majority of their

operational time, during which they could be used for other tasks. Recent studies show that the

potential of these resources exceeds any centralized computing system [5]. Many systems have

been proposed with the objective to allow volunteers to dedicate the unused computing cycles on

their personal computers, such as the SETI@home project [6], JXTA [7], Xtremeweb [8], and the

Berkeley Open Infrastructure for Network Computing (BOINC) [5]. BOINC has been one of the

most popular volunteer computing platforms, with over 1,000,000 active computers for a large range

of application areas throughout the world [9].

These solutions attempt to provide a large scale, platform-independent computing infrastructure,

but most of them are limited to personal computers. However, the availability of wirelessly connected

mobile devices has grown considerably within recent years, creating an enormous collective un-

tapped computational power. The idea of integrating mobile devices into the computational grid was

proposed more then a decade ago [10], when mobile computing devices such as laptops and PDAs

were typically restricted by reduced processing power, memory, secondary storage, and bandwidth

capabilities. The authors in [10] recognized that, even if the individual mobile devices have limited

resources, considering them as an aggregated sum, they have the potential to play a vital role within

distributed computing.

Nowadays, with the recent advances in the area of low powered processors, mobile devices such

January 3, 2015 DRAFT

2

as smartphones and tablets are able to perform computationally intensive operations, so that they

are now considered as alternative computing platforms. For instance, a typical tablet such as the

Asus Nexus 7 [11] is equipped with a 1.5 GHz quad-core CPU and 2 GB RAM which, for standard

workloads, provides performance comparable to an entry-level laptop processor [12]. Although the

computing capabilities of mobile processors are not as powerful as the ones of a standard desktop

computer, they have been shown to be more energy efficient [13].

As a result, many traditional distributed computing platforms have attempted to extend their oper-

ation over mobile devices. For example, Hyrax [14] provides an Android application to execute jobs

for Hadoop Apache on smartphones and, following the same approach, the BOINC project released

an Android client [9] to include mobile devices in the volunteer computations. More recently,

several distributed system architectures and frameworks, such as GEMCloud [13], CrowdLab [15]

and Seattle [16], have been proposed to exploit the computational capabilities of mobile devices,

while trying to address the challenges that arise from their integration into a traditional distributed

architecture.

In this chapter, we present recent advances in the mobile distributed computing research field,

where mobile devices are the elements that perform the computation. This computation is either

assigned by a traditional remote server or a local device. In both cases, several studies show that

it is feasible and beneficial in terms of both energy and execution time to allow mobile devices

to participate in the distributed computation. Moreover, recent research shows promising results

toward a distributed computing architecture that opportunistically harvests the computational power

of volunteer mobile devices. In the remainder of this chapter, the term mobile device is used to

represent a small, handheld computing device, such as a smartphone or a tablet.

The rest of this chapter is organized as follows. In Section II, we provide a classification

of different parallel computing techniques, namely cluster computing, distributed computing and

volunteer computing, discussing how mobile devices can provide benefit to the parallel computation.

In Section III, we discuss the motivations and challenges behind the design of a mobile volunteer

computing architecture, while in Section IV, we present a comprehensive review of different

frameworks for parallel computing that incorporate mobile devices that are currently proposed in

the literature. Section V describes the current open issues and future research directions to support

mobile volunteer computing. Finally, Section VI concludes the chapter.

January 3, 2015 DRAFT

3

II. CLASSIFICATION OF PARALLEL COMPUTING

High performance parallel computing has been an approach used to increase the speed of

computation by dividing the computational problem into simultaneously computable sections and

processing each section on different processing units. Traditionally, these independent processing

units reside on the same device (multiprocessor computing), or even on the same chip (multicore

computing). On the other hand, researchers have explored new computational architectures where

the processors of multiple devices are connected by a communication network and cooperate in

the computational job. These architectures can be classified according to the geographical distance

between the devices that perform the computation: the parallel execution of computational jobs

using a group of co-located computers is typically called cluster computing, while the cooperation

among distant computers communicating over the Internet is typically referred to as distributed

computing. While the former relies on a reliable local area network and can be used to solve

distributed computing problems that require communication among the devices executing the tasks,

the latter, due to the unpredictability of the Internet, typically deals only with what are termed

“embarrassingly parallel problems,” where there exists no dependency (or communication) between

the parallel tasks. Both of these approaches consider that the computation is distributed across

dedicated devices that either require direct management or the payment of a fee for accessing the

processing power. As a result, the concept of volunteer computing has been proposed as an alternate

parallel computing system that exploits computing resources donated by general-purpose computer

owners.

In what follows, we first briefly describe these three classes of parallel computing, namely cluster

computing, distributed computing, and volunteer computing, and then discuss how mobile devices

can provide benefit to the distributed computation.

A. Cluster Computing

Computing clusters are built linking groups of computers through a high-bandwidth low latency

local area network. These computers each run their own instance of an operating system, but

work together to perform a common task so that they can be viewed as a single system. The

computing clusters are developed for a variety of purposes such as load balancing on web servers,

computationally intensive scientific calculations, and failure safe operation on critical commercial

applications.

January 3, 2015 DRAFT

4

Attached Resource Computer (ARCNET) [17] was the first commercial computing cluster, de-

veloped in the late 70s, supporting both parallel computing as well as sharing file systems.

Beowulf clusters utilize standard commodity grade computers with specialized libraries and

programs that allow job sharing among them. Beowulf clusters normally run Unix like operating

systems, such as BSD, Linux, or Solaris and, potentially, any PC capable of running a Unix like

operating system can be used in this configuration. The cluster is organized as multiple computers

serving as the worker nodes and one or more computers taking the responsibility of the server.

The server controls and coordinates the computing cluster and serves as a gateway between the

computing cluster and the outside world. Stone Soupercomputer1 [18] built by Oak Ridge National

Laboratory was one of the large scale successful applications of the Beowulf concept.

Due to the dependency of the physical location of the hardware, computing clusters are built

to serve a limited set of users located at a particular geographical region. Hence, the demand for

computational resources on these systems have a high variance due to the correlation between

usage patterns. Combined with the high cost of building computing clusters, this leads to both

underutilization and outage of computational resources.

B. Distributed Computing

Distributed computing overcomes the geographical limitation of cluster computing by allowing

distant computers to cooperate in the execution of computational tasks. By integrating geographically

diverse multiple computing clusters or individual computers, distributed computing architectures can

serve a larger group of consumers with less correlated usage patterns. Although distribution and

scheduling of the computing jobs across the distributed computing resources adds another layer of

complexity, with the introduction of the Internet, distributed computing systems provide a fairly

low cost and high performance solution to large computing problems.

Through distributed computing, computational capabilities can be offered to users as a service.

In this new model of computing, also referred to as utility computing, customers can acquire large

computing capabilities as needed. The computational tasks are offloaded to the service providers’

computing platform, and the results are downloaded back after completion of the tasks. Many

commercial instantiations of distributed computing exist today, including Amazon Elastic Compute

1The Stone Soup is an old folk story in which hungry strangers persuade local people of a town to give them food. It is usually

told as a lesson in cooperation, especially in situations of resource scarcity.

January 3, 2015 DRAFT

5

Cloud [19]. One intrinsic drawback of this approach is that the users’ performance is negatively

affected by the network delay, since the entire user data and the result of the computation need to

be exchanged back and forth with the distributed computing system.

More recently, a new subclass of distributed computing named cloud computing has also been pro-

posed, and it is receiving considerable attention. Distributed computing architectures have evolved

into cloud computing systems that not only undertake computational tasks but also serve as data

storage systems and provide online access to computer services or resources. These resources are

shared by multiple users but are usually dynamically reallocated per demand, thus maximizing the

effectiveness of the shared infrastructure. Microsoft’s OneDrive [20] and IBM Cloud [21] are two

of the many commercial examples of this paradigm.

C. Volunteer Computing

Although distributed computing systems increase the efficiency of parallel computing, they still

require a large investment for both hardware and software as well as incurring significant operational

costs (i.e., maintenance, direct power consumption and cooling infrastructure). Several studies have

shown that many computing devices (i.e., personal computers, tablets and mobile devices) under

utilize their processing capabilities for the majority of their operational time. The potential of these

resources exceeds any centralized computing system. This is the basis for volunteer computing.

The first volunteer computing project, Great Internet Marsenne Prime Search [22], was started

in 1996 with the objective of using freely available software on volunteers’ computers working in

parallel to find prime numbers. Starting from this project, volunteer computing emerged as a result

of the wide spread adoption of personal computers and the Internet. With volunteer computing,

volunteers can dedicate the unused computer cycles on their personal computers to the distributed

computation. This is made possible by middleware systems such as JXTA [7], XtremeWeb [8],

and Berkeley Open Infrastructure for Network Computing (BOINC) [5]. BOINC was originally

developed to provide support and increase security for the SETI project [6] and later extended as a

platform for other distributed applications. It is now one of the most popular volunteer computing

platforms with over 1,000,000 active participants [9].

D. Parallel Computing on Mobile Devices

The idea of connecting mobile devices into a parallel computing system was proposed in 2002 [10],

when both their computational capabilities and diffusion where still highly limited. With the increase

January 3, 2015 DRAFT

6

in mobile device computational capabilities, different system architectures have been proposed to

exploit their resources for parallel computing. The classification of parallel computing presented

in this section can be extended to the case in which the mobile devices are performing the actual

computations. In this regard, solutions that group nearby mobile devices using a device to device

communication technology such as Bluetooth [23] and WiFi Direct [24], and distributed systems

that link together distant devices through an Internet connection have both been investigated. Many

traditional distributed computing architectures have recognized the widespread usage, significant

computing capabilities and energy efficiency of mobile devices and have attempted to extend their

operation over mobile computing platforms. For example, Hyrax [14] ports Hadoop Apache, an

open-source implementation of MapReduce, to execute jobs on networked Android smartphones.

A client version of BOINC was ported to an ARM/Linux platform [25] to evaluate the processing

power of mobile devices, and an Android client [9] to include mobile devices in the distributed

computations has also been released by the BOINC project.

III. MOTIVATIONS AND CHALLENGES

There are several motivating factors that make personal mobile devices suitable for inclusion

in a distributed volunteer computing architecture. However, their integration with a traditional

system is not straightforward, and some important issues need to be addressed. In what follows,

we first describe the motivations behind utilizing personal mobile devices as part of the distributed

computing architecture, and then we present the main design challenges.

A. Motivations

The first motivating factor is the impressive rise in the number of smartphones and tablets across

the world. According to a report released by the International Data Corporation (IDC) [26], in

2013 the worldwide smartphone market shipped one billion units in a single year for the first time,

representing a 38.4% increase with respect to the 725.3 million units shipped in 2012. Smartphones

accounted for 55.1% of all mobile phone shipments in 2013, up from the 41.7% of all mobile phone

shipments in 2012. Moreover, IDC recently reported a new single quarter record of 301.3 million

shipments for the second quarter of 2014 and forecasts a 23% year increase from the 1.0 billion

units shipped in 2013. The progressive increase in worldwide shipments of smartphones, from the

first quarter of 2011 to the second quarter of 2014, is presented in Figure 1. A similar trend has

been reported for the worldwide tablet market, with a total shipment of 50 million units during the

January 3, 2015 DRAFT

7

 0

 50

 100

 150

 200

 250

 300

 350

2011 Q
1

2011 Q
2

2011 Q
3

2011 Q
4

2012 Q
1

2012 Q
2

2012 Q
3

2012 Q
4

2013 Q
1

2013 Q
2

2013 Q
3

2013 Q
4

2014 Q
1

2014 Q
2

S
m

ar
tp

h
o
n
e

S
h
ip

m
en

ts
 (

M
il

li
o
n
s

o
f

U
n
it

s)

Android
iOS

Symbian
BlackBerryOS

Linux
Windows Phone

Others

Figure 1. Quarterly worldwide shipments of smartphones and operating systems market share from the first quarter of 2011 to the

second quarter of 2014. Data source: IDC worldwide quarterly mobile phone tracker [26].

second quarter of 2014, resulting in an 11% year over year increase. These trends in smartphone

and tablet sales can be compared with the worldwide PC2 shipments, that totaled 74.4 million units

in the second quarter of 2014, with a year-on-year decline of −1.7% [26]. As a result, the global

number of smartphones and tablets is continuously growing at a fast pace, and the global number

of users outnumbers the users of conventional Laptop and Desktop PCs, reaching almost 30% of

the worldwide population [27]. Thus, the computing power offered by mobile devices disseminated

across the world is already substantial and is going to increase further in a dramatic fashion in the

coming years.

In addition to the large amount of aggregate computing power offered by these personal mobile

devices, their intrinsic energy efficient design makes them particularly suitable for the execution of

computational tasks. It has been shown that a mobile processor like the Qualcomm Snapdragon S4

that powers the Nexus 7, can be over 20 times more power efficient than a commercial PC CPU such

as the Intel Core i3 while, at the same time, achieving half the performance of a desktop processor

in standard benchmarking tests [12]. The computational power evolution of mobile processors from

2010 to 2014 is shown in Figure 2. In fact, even if specialized high performance server architectures

2PCs include Desktops, Portables, Ultraslim Notebooks, Chromebooks, and Workstations.

January 3, 2015 DRAFT

8

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Samsung Exynos 3110 1000 MHz
Qualcomm Snapdragon S2 MSM8255 1024 MHz
Qualcomm Snapdragon S2 MSM8255 1000 MHz
Qualcomm Snapdragon S2 MSM8255T 1400 MHz
Qualcomm Snapdragon S4 MSM8660 1200 MHz
ST-Ericsson NovaThor U8500 800 MHz
Qualcomm Snapdragon S3 MSM8260 1500 MHz
Qualcomm Snapdragon S3 MSM8260 1200 MHz
ST-Ericsson NovaThor U8500 1000 MHz
Qualcomm Snapdragon S3 APQ8060 1500 MHz
ST-Ericsson NovaThor U8500 1000 MHz
Ti OMAP 4430 1000 MHz
Qualcomm Snapdragon S4 MSM8660 1500 MHz
MediaTek MT6577 1001 MHz
Broadcom BC28155 1200 MHz
Marvell PXA988 1205 MHz
Ti OMAP 4430 1200 MHz
Qualcomm Snapdragon S3 MSM8260 1200 MHz
Qualcomm Snapdragon S4 Plus MSM8227 972 MHz
Samsung Exynos 4210 1200 MHz
Ti OMAP 4460 1200 MHz
Qualcomm Snapdragon S4 MSM8660 1500 MHz
MediaTek MT6577 1200 MHz
Samsung Exynos 4210 1400 MHz
Intel Atom Z2480 2000 MHz
Samsung Exynos 4210 1200 MHz
Qualcomm Snapdragon S3 MSM8260 1500 MHz
Qualcomm Snapdragon 400 1026 MHz
NVIDIA Tegra 3 AP37 1700 MHz
Qualcomm Snapdragon S3 MSM8260 1512 MHz
Samsung Exynos 4212 1500 MHz
NVIDIA Tegra 3 T30 1500 MHz
Rockchip RK3066 1608 MHz
Ti OMAP 4470 1500 MHz
Qualcomm Snapdragon S4 MSM8260A 1500 MHz
Intel Atom Z2560 1600 MHz
MediaTek MT8125 1209 MHz
Qualcomm Snapdragon S4 MSM8960 1512 MHz
NVIDIA Tegra 3 T30L 1300 MHz
Intel Atom Z2560 1600 MHz
NVIDIA Tegra 3 T30 1400 MHz
Qualcomm Snapdragon 400 1728 MHz
NVIDIA Tegra 3 T30 1500 MHz
NVIDIA Tegra 3 T30L 1300 MHz
MediaTek MT6589 1209 MHz
Qualcomm Snapdragon 400 1190 MHz
Samsung Exynos 4412 1400 MHz
HiSilicon K3V2 1400 MHz
Intel Atom Z2580 2000 MHz
HiSilicon K3V2 1500 MHz
Qualcomm Snapdragon S4 MSM8960 Pro 1728 MHz
Samsung Exynos 4412 1400 MHz
MediaTek MT6589 1508 MHz
Samsung Exynos 4412 1400 MHz
Qualcomm Snapdragon 410 1190 MHz
Qualcomm Snapdragon S4 Pro APQ8064 1500 MHz
Samsung Exynos 4412 1600 MHz
Qualcomm Snapdragon S4 Pro APQ8064 1500 MHz
Samsung Exynos 5250 1700 MHz
Qualcomm Snapdragon S4 Pro APQ8064 1512 MHz
Qualcomm Snapdragon 600 1700 MHz
Qualcomm Snapdragon S4 Pro APQ8064 1500 MHz
Qualcomm Snapdragon 600 1900 MHz
Exynos 5 Octa 5410 1600 MHz
Qualcomm MSM8975AC Snapdragon 801 2457 MHz
Qualcomm MSM8274AB Snapdragon 801 2265 MHz
Qualcomm Snapdragon 800 2265 MHz
NVIDIA Tegra 4 1810 MHz
Exynos 5 Octa 5420 1900 MHz
Qualcomm MSM8974AC Snapdragon 801 2457 MHz
Qualcomm Snapdragon 800 2265 MHz
Exynos 5 Octa 5420 1900 MHz
Qualcomm Snapdragon 800 1900 MHz
Qualcomm Snapdragon 800 2150 MHz
NVIDIA Tegra 4 1912 MHz
Qualcomm MSM8974AC Snapdragon 801 2457 MHz
NVIDIA Tegra K1 2218 MHz

B
en

ch
m

ar
k

Sc
or

e Intel Core i5-2520M @ 2.50 GHz

2014 Q2

2010 Q1

2012 Q1

2013 Q1

2011 Q1

Figure 2. Benchmark scores of different mobile processors released between the first quarter of 2010 and the second quarter of

2014. Data source: Primate Labs Geekbench 3 [28].

can provide better performance per consumed power ratios, such servers consume much more power

than a mobile device when they are in the idle state [13]. Moreover, a high performance server

requires additional supporting infrastructure for the installation and operational expenses for related

equipment (e.g., the cooling system and backup power) and maintenance, thus resulting in a higher

total cost of ownership compared to mobile devices. As pointed out in [29], mobile devices already

exist and thus, by using them in a distributed computing system, it is also possible to save the

cost, energy and material consumption required for the production and operation of new high

performance workstations. Finally, from an environmental point of view, the use of existing mobile

devices should be increased. The authors in [30] estimate that only 25% of the total energy budget

required for the production and operation of a mobile device is actually attributed to its usage (i.e.,

energy for charging the battery), while the remaining 75% is used during the manufacturing of the

device.

Another motivating factor is the rising costs required for running a distributed computing in-

January 3, 2015 DRAFT

9

frastructure using workstations, which are mainly due to maintenance costs and energy charges.

While the energy charges keep increasing [1], for a data-center they are based on the industrial rate,

which is much higher than the consumer rate at which the mobile devices owned by consumers will

operate. In addition, the authors in [31] estimate the cost for powering an Intel Core 2 Duo server to

be $74.5/year, compared to $1.33/year for a smartphone with the same computational performance.

Thus, using consumer smart devices for distributed computation results in significantly lower energy

costs.

B. Challenges

The first problem to consider when dealing with personal mobile devices is their availability. In

particular, smartphones and tablets have mobility as one of their major features, which makes them

volatile computing resources. Due to mobility, the devices are not physically available in a specific

location, and thus it is possible that most of them will not be available for computing purposes for

extended hours. Furthermore, since these devices are battery powered, battery life is also a major

concern, which can severely impact the user experience. However, in many cases, mobile devices

are unused and do not move for long periods of time during a working day and, especially, at night

when most users leave their devices idle while charging the battery. In the idle state, a mobile

device typically runs only lightweight background jobs (e.g., email download, data synchronization

and application updates) that require only minimal computation and intermittent Internet access.

Thus, it is important to devise intelligent algorithms for task scheduling and distribution that take

into account the device availability, relative power state (i.e., battery level and charging status) and

user utilization patterns in order to maximize computing capacity without negatively impacting the

standard mobile device operations.

A second challenge is the need for Internet connectivity, which is necessary for the distribution of

the tasks and for the transmission of the computation results. Internet connectivity is a highly limiting

factor due to both its cost and its impact on the energy consumption of the device. Moreover, even

when the devices are connected to the Internet, the stability and bandwidth of the wireless network

are also important elements that need to be considered. This is because channel fluctuations can

result in data losses or in reductions of the useful bandwidth, and the bandwidth will then impact

the total time required to distribute the computation and receive the results. While it is neither

advisable nor feasible for mobile devices to employ conventional wired networking, the current

wireless technologies are either limited in speed and require a substantial energy consumption

January 3, 2015 DRAFT

10

!
"

"

"

#$

!
" !

Mobile Devices

%
Job

&
Tasks

Job Coordinator

Figure 3. Example of a mobile distributed computing architecture where the job coordinator assigns tasks to the participating mobile

devices.

(e.g., 3G and 4G/LTE), or are limited in range (e.g., WiFi). Thus, devising techniques to reduce

the cost of communication, preserve the battery power and periodically monitor the availability

and relative bandwidth of different networking technologies, is a major requirement for an efficient

utilization of personal mobile devices as additional computational resources.

Another important challenge that needs to be considered when dealing with mobile devices is

their heterogeneity in processing capabilities and platforms. While the latter seems to be mainly a

problem of the past since, starting from 2012, more than 90% of the mobile device OS market is

dominated by Android and iOS [26] (during the second quarter of 2014, 84.7% Android and 11.7%

iOS [26]), the processing capability varies greatly among devices, especially for the Android market.

This makes the design of a general architecture that can leverage advantages of a vast majority of

software/hardware platforms very difficult. As an example, when assigning tasks to mobile devices,

the computing architecture needs to take into account the hardware resources available at the device

and assign computationally intensive tasks to more powerful devices.

IV. MOBILE DISTRIBUTED COMPUTING ARCHITECTURES

Modern mobile devices, such as smartphones and tablets, have become powerful and energy

efficient computing architectures, that are both widely available and underutilized for long periods

of time. As a result, multiple approaches for integrating mobile devices into a parallel computing

infrastructure have been proposed and are currently receiving considerable attention. These studies

can be broadly classified in two main categories, depending on the particular entity that is responsible

January 3, 2015 DRAFT

11

for the management of tasks that need to be executed by the participating devices. This element can

either be a remote specialized server that communicates with the mobile devices through an Internet

connection, or it can be a mobile device itself, that exploits the presence of other geographically

close devices to solve computationally intensive tasks. According to this division, we refer to the

first scenario as “Server Driven Mobile Distributed Computing,” while we call the latter scenario

“User Driven Mobile Distributed Computing.” We note that the server driven approach is, in fact, an

extension of a traditional distributed computing architecture, where mobile devices can participate in

the distributed computation alongside standard PCs. The user driven case, instead, represents a viable

way to perform intensive computing when an Internet connection is not available or it is undesirable

because of communication delay. For example, many applications in the area of tactical military

communications, search and rescue operations, and sensor network operations require computing

intensive algorithms, such as image and signal processing, at remote or isolated locations that

frequently neither have direct access to the Internet nor are in the vicinity of other devices with

Internet access. In both cases, the device that “drives” the computation is considered to be the job

coordinator, since it is in charge of the task distribution process and is responsible for the reception

and organization of the results of the tasks’ execution. An example of such a mobile computing

architecture is presented in Figure 3.

In what follows, we provide a literature review of the different frameworks that have been

proposed to use mobile devices for executing tasks in distributed computing. All of these systems

follow a similar architecture and communication protocol: a mobile device is connected through a

suitable radio communication technology to the job coordinator, it receives the tasks to be computed

and, after the execution is completed, the mobile device sends the result of the computation back

to the job coordinator. It is important to note that the idea of enabling the execution of rich

applications on mobile devices by offloading the computation (or part of it) and storage to a

distributed architecture composed of traditional computers has also been proposed. This type of

service is typically referred to as mobile cloud computing [32].

A. Server Driven Mobile Distributed Computing

1) Mobile OGSI.NET [33]: Mobile OSGI.NET was one of the first attempts to connect mobile

devices to a distributed computing architecture. The goal of this framework is to provide a way for

mobile and non-mobile devices to collaborate in the execution of resource-demanding applications.

The OGSI architecture consists of three components: the Mobile Web Server that handles the

January 3, 2015 DRAFT

12

message exchanges between the device and the remote server, the Grid Services Module that

implements the core processing necessary to execute applications, and the Grid Services, that

represent the particular applications that will be executed by the device. In addition, the Grid

Services Module monitors the resources of the mobile devices (like, e.g., the battery level) and

decides if the mobile device is able to perform the computation, or if it is better to pass the task

to another device. Experimental results show that the total time required to compute a set of tasks

decreases as the number of devices increases. Moreover, they show that the energy consumption

can be efficiently distributed between the devices.

2) Hyrax [14]: Hyrax is a platform derived from Hadoop Apache, an open source implementation

of MapReduce3, that supports distributed computing on Android devices. The basic idea behind

Hyrax is to allow a heterogeneous network of smartphones and servers to cooperate in the execution

of computing jobs. The framework has been designed to provide an abstraction of the available

resources, thus being able to scale with the number of devices and tolerating node connection and

departure. The performance of Hyrax in terms of both execution times and resource usage was

evaluated with a testbed of 12 Android smartphones. Although the performance of Hyrax is poor

for CPU-intensive tasks, it demonstrates the feasibility and scalability of the proposed framework.

In addition, the advantages of using Hyrax as an infrastructure for applications that use mobile data

have been investigated through the implementation of a distributed multimedia search and sharing

application. The authors of [14] stated that Hyrax had not been optimized for battery efficiency, but

in several tests it was shown to use significantly less power than a video recording and downloading

application.

3) Computing While Charging [31]: Computing While Charging (CWC) describes and evaluates

a scenario in which a company uses the mobile devices provided to its employees for the execution

of parallelizable tasks. The main idea behind CWC is that using mobile devices for work-related

computing can potentially reduce not only the capital investment in servers but also the cost of

energy, since a smartphone can be up to 20x more efficient than a standard server. Thus, the

authors of [31] propose a framework where the phones are used for the computation only while

being charged, so that the user is not disturbed by the computations. Moreover, while charging

the phone has a high probability of being connected to the Internet through a WiFi Access Point.

The application monitors the user interactions with the phone and, if a user uses the phone while

3MapReduce is a programming framework for data-intensive cloud computing on commodity clusters developed by Google.

January 3, 2015 DRAFT

13

it is computing a task, the task is interrupted and migrated to a different phone so that the task

computation does not have any impact on the user. Moreover, the application incorporates an

algorithm that monitors the charging patterns: a test performed on 15 volunteers showed that the

users charge their phones predominantly during the night and for an uninterrupted period of several

hours. They also ran other experiments to evaluate the impact of the network connectivity on the

task completion time, showing that simply accounting for the CPU clock speed results in poor task

completion times. CWC also includes an algorithm to predict the time it takes for the tasks to

be completed and three task distribution methods with different complexity. The main experiment

involved 18 Android phones with different CPU clock speeds and different network connectivity

technologies, and it showed that a greedy scheduler is approximately 1.6 times faster than the other

tested schedulers.

4) jUniGrid [34]: jUniGrid is a lightweight framework that allows the integration of mobile

devices into heterogeneous desktop distributed computing systems to solve high complexity compu-

tational problems. jUniGrid introduces two separate applications, that correspond to two functional

roles: the Task-Submitter (TS) and the Node-Application (NA). The node application is installed

on the devices that execute the tasks, while the task submitter runs on the device that creates the

tasks, stores them in a task queue and assigns them to the nodes according to a First In First Out

policy. Moreover, jUniGrid works based on a split/merge algorithm. It provides the user with the

flexibility to split the job and merge the results according to the requirement of the particular job.

This split and merge is accomplished by TS, that also implements all the functionalities for job

allocation, monitoring and result aggregation. Thus, the TS is installed on the device that creates

task queues and sends them to the nodes in a FIFO fashion, where the first device to be connected

receives the first task output, while the node application is installed on the devices that execute the

tasks. The paper shows the gains in term of job execution times that can be achieved by allowing

mobile devices to participate in the distributed computation. However, the focus of the paper is to

provide a basic generalized grid mechanism for cooperative multi-platform processing and does not

provide any detail about the specific implementation.

5) Ocelot [35]: Ocelot is a distributed mobile computing platform that leverages mobile devices

to execute lightweight computational tasks generated from a Wireless Sensor Network (WSN).

Ocelot is modeled after the Berkley Open Infrastructure for Network Computing (BOINC) with the

exception of employing smartphones and tablets rather than workstations and server machines, as

they reduce the maintenance costs and the power usage. For testing purposes, Ocelot was integrated

January 3, 2015 DRAFT

14

with a WSN that is deployed to monitor indoor environmental conditions in a building. More

specifically, Ocelot was used to monitor and analyze the electrical power consumption and the

environmental emissions within the building. In this setting, Ocelot’s clients (the mobile devices)

are attached to sensors that exchange data through WiFi Direct and/or Bluetooth. Although the

clients themselves cannot gather sensory data, they can partition and efficiently process the data

through parallel computing. Ocelot’s clients serve as nodes that request and receive tasks from a

server through XML files. One of Ocelot’s main features is having multiple servers to insure an

efficient task distribution, as one of the servers is consistently storing the battery status of the nodes

to make sure that the scheduling server sends tasks to only those nodes with sufficient power. Once

a node receives a task, it will execute the code, which is usually written in Java or C. Currently,

Ocelot allows the mobile devices to act only as clients that execute tasks, but allowing the mobile

devices to also become servers for the task distribution is considered as future work.

To prove its advantage in reducing energy consumption, Ocelot has been compared against

traditional computers. Results show that, while laptops and desktops were 5 times faster than

mobile devices, mobile devices consume up to 86% less energy. In addition, adding more devices

to the client pool dramatically lowers the total task completion time. As a result, Ocelot proves that

it is feasible to distribute tasks among mobile devices and provides considerable energy and cost

savings with respect to a system that uses standard computers.

6) CANDIS [29]: CANDIS is a framework that distributes computing tasks to mobile devices

as well as normal desktop or server hardware and provides an efficient method of reducing costs

by taking advantage of the fluctuating energy market prices. The authors in [29] recognized that

distributing computing tasks to mobile devices has been extensively studied. Thus, they focus on

devising a computational infrastructure that is able to further reduce the computation costs and

energy consumption. CANDIS is a Java-based framework and is thus able to run existing Java

code, and desktop, server and Android mobile devices that support Java can be easily connected

in the cloud. In such a hybrid cloud, the server compiles the tasks and constructs a scheduler to

allocate and distribute the tasks. The paper shows that, while equally dividing the tasks among

the available devices might be easier to implement, distributing much smaller tasks results in

faster execution times but increases the communication overhead. Thus, CANDIS implements a

more efficient allocation method where the server, before assigning the actual tasks, estimates the

capability of each client by assigning a benchmarking task and using the results to improve the

task allocation scheme. In addition, CANDIS uses information about the price of electricity, which

January 3, 2015 DRAFT

15

fluctuates dramatically throughout the day (on average, prices are usually much lower late at night

and early in the morning). The authors in [29] conclude that using CANDIS on a large scale not

only allow to save money but can also stabilize the electric energy consumptions.

7) ANGELS [36]: ANGELS is a framework that allows mobile devices and computers to

cooperatively participate in the computation of analytical data. This framework allows the parallel

execution of jobs on a set of nodes that can be either mobile devices or standard PCs. For the

evaluation of the framework, a “text search” application, in which mobile devices and servers had

to find a specific word in a large text file and an algorithm to estimate the value of π have been

considered. Experimental results show that the tasks’ latency can be substantially reduced when the

tasks are distributed among the mobile devices. The framework does not consider the impact of

the computation on the user experience. Moreover, the task distribution process considers a simple

distribution scheme, in which tasks are assigned as soon as a device becomes available.

B. User Driven Mobile Distributed Computing

1) Serendipity [37]: Serendipity enables a mobile computation initiator to use the computational

resources of nearby mobile devices to speed up the computation and preserve some energy. Serendip-

ity improves the mobile device’s computational experience by applying optimizing algorithms that

minimize local power consumption and/or decrease the computation completion time, while taking

into account the constraints of the intermittent communication links such as limited contact duration,

limited transfer bandwidth, and completion-time unpredictability. Serendipity follows what is called

a “PNP block paradigm”: the job is pre-processed and divided into n parallel task programs, and

the results of the execution of the tasks are finally merged by a post-process algorithm. The goal

of this design is to have an initiator disseminate a task (pre-process) to the computational nodes

(task programs) it encounters based on the estimated completion time or energy consumption, and

finally coalesce the data it receives (post-process).

To do so, three algorithms have been presented: 1) a WaterFilling method where the initiator

knows when to contact the nodes and has access to the nodes’ profiles in order to predict the

number of tasks a node can execute and the time required to process them; 2) a Computing on

Dissemination (COD) method, where the initiator does not know the contact time but has access to

the nodes’ profiles; and 3) the Unpredictable Computing on Dissemination (upCOD), where both

the contact time and the nodes’ profiles are unknown.

January 3, 2015 DRAFT

16

Name Year Contributions Task Distribution
Operating

System
Applications

Mobile OSGI.NET 2004
Porting of OGSI.NET to

mobile devices

Homogeneous tasks.

FIFO queue

Microsoft

PocketPC

2003

Prime numbers

search

Hyrax 2009
Porting of Hadoop to

Android devices

Homogeneous tasks.

FIFO queue
Android

Distributed

multimedia search;

Content sharing

Computing While

Charging
2012

Profiling charging

behaviors, scheduling

algorithm, migration of

tasks across phones

Heterogeneous tasks.

Greedy algorithm

based on the

Minimum Makespan

Scheduling problem

with task migration.

Android

Prime numbers

search; Word

searching; Photo

pixels blurring

JUniGrid 2013

Generic framework API

for developing grid

applications

Homogeneous tasks.

FIFO queue
JAVA

DNA sequence

matching

Ocelot 2013

Distributed computing

system that uses mobile

devices as computing

resources.

Homogeneous tasks.

FIFO queue.

Android,

iOS

Dynamic life cycle

assessment of a

building

CANDIS 2013

Distributed computing

system that uses mobile

devices and traditional

computer as computing

resources.

Heterogeneous tasks.

Scheduler based on the

device computational

capability and the

energy market prices.

Android

Distributed brute

force hash-cracking;

XML to JSON

conversion

ANGELS 2014

Framework that allows the

remote execution of

programs within mobile

devices. The focus is on

the processing of IoT

analytical data.

Heterogeneous tasks.

Tasks are assigned

according to the

device computational

capability.

Android
Text search; π value

estimation

Table I

SERVER DRIVEN MOBILE DISTRIBUTED COMPUTING IMPLEMENTATIONS.

January 3, 2015 DRAFT

17

Serendipity has been implemented on Android and showed substantial performance gains when

compared to executing tasks locally on the initiator’s mobile device. While in all the experiments,

the WaterFilling method performed better than COD and upCOD, experimental results show the

clear benefit of disseminating tasks on Serendipity rather than executing them locally, especially

when the number of tasks exceeds 100. Moreover, Serendipity was able to speed up computation up

to 3 times compared to local conventional computing. In addition, Serendipity increases the battery

life of mobile devices and allows the saving of a significant amount of energy by distributing the

computation between different devices.

2) Honeybee [38]: Honeybee is a framework that deals with both human and machine compu-

tation, where human computation represents a set of operations that require human interaction, like

filling out a personal survey form, while machine computation is a generic computer algorithm, like

word searching or number sorting. The Honeybee framework distributes a computational intensive

task, like a face detection algorithm, among several mobile devices. Honeybee’s focus is on keeping

the smartphone busy, in the sense that, as soon as one computation is completed, the device is

allowed to steal tasks from another slower device. The proposed implementation also focuses more

on getting as many tasks done as possible and does not provide a customizable, user friendly inter-

face. Moreover, to each task is assigned a deadline that the mobile device has to satisfy in order to

continue getting tasks. If the deadline is not met, the task is passed to another device. Honeybee has

been implemented on Android, using Bluetooth as a local communication technology. Experimental

results show that managing local connections severely impacts the delegator throughput. As future

work, the authors are planning to support different types of D2D communication technologies, e.g.,

WiFi Direct.

3) Unity [39]: Unity represents a system architecture that allows a group of mobile devices to

share the workload required to download a data file from the Internet. With this approach, each

device downloads small parts of the file and then shares those parts with the other members of

the group so that every device will eventually get the complete content. Leveraging short-range

technologies such as WiFi and Bluetooth, Unity allows a coordinator to communicate with its peers

to split the download as well as restarting it from the point where it stopped in case of a failure.

Unity has been implemented on Android smartphones that have either WiFi or Bluetooth capa-

bilities. Unity employs WiFi HotSpot, an Android utility that uses 802.11 infrastructure mode to

allow the coordinator to act as a WiFi AP and all other peers to be connected as clients. As a

result, the WiFi HotSpot functionality allows the coordinator to stay awake for the entire duration,

January 3, 2015 DRAFT

18

while peers are in power saving mode, consuming a negligible amount of energy. After an initial

connection phase, where the devices connect to the coordinator, the coordinator determines the size

of the file through an HTTP request, divides the load, and then sends a control message containing

the file URL to its peers. Subsequently, each peer starts to download its share of the file using its

own data connection and sends the data blocks to the coordinator, which collects all the blocks,

reconstructs the entire file and distributes it to all the peers. Unity also includes a task distribution

scheme that takes into account the variability of the peers’ cellular network conditions for better

distributing the workload between the mobile devices. Experimental results show an improvement

in download speeds up to 27%. In addition, a variations of Unity called Unity-Cloud has also been

presented. In Unity-Cloud, a remote server coordinates the formation of the peer to peer group

and assigns to each device the part to be downloaded according the relative cellular conditions.

As soon as the peers are geographically close, the cloud coordinates the local blocks sharing for

reconstructing the original file.

4) DRAP [40]: DRAP proposes a mechanism to group volunteer mobile devices into high per-

formance decentralized computing systems. The idea behind this work is to create an infrastructure

where mobile devices in close geographical proximity can form a cloudlet, and share resources with

each other and with other nearby devices. The concept of a cloudlet has been introduced in [41],

and represents a trusted, resource-rich computer or cluster of computers that is well-connected to

the Internet and available for use by nearby mobile devices. In DRAP, the cloudlet is represented

by a cluster of mobile devices that provides storage capability and computational resources to the

other devices in the network. The framework monitors the movement of the participating nodes

and implements all the functionalities required to connect the nodes in the network and enable

the communications. For routing the communications between the devices, DRAP uses a modified

version of the Ad Hoc Distance Vector (AODV) routing protocol. DRAP also includes an algorithm

that uses the mobile devices’ resources to determine the subset of nodes that should be selected to

become part of the cloudlet. Computer simulations prove the feasibility and performance gain of

the proposed architecture, for different types of applications. The implementation of DRAP in real

life mobile devices is considered as future work.

C. Mobile Volunteer Computing

The architectures presented in the previous sections can all be adapted to allow volunteer users to

participate in the parallel computation. However, architectures explicitly designed with the objective

January 3, 2015 DRAFT

19

Name Year Contributions Task Distribution
Operating

System
Applications

Serendipity 2012

Distributed computing

system that exploits

nearby mobile devices

Heterogeneous tasks.

Three schemes with

different complexity.

Simulations

on Emulab

Speech-to-text

application

Honeybee 2013

Framework API to support

job sharing and

crowd-sourcing among

mobile devices. Work

stealing to achieve load

balancing

Heterogeneous tasks.

Tasks assigned at

random. Scheduler that

attempts to minimize

the idle time

Android

Face detection;

Mandelbrot set

generation,

Collaborative

photography

Unity 2013

System architecture that

enables collaborative

downloading across

co-located mobile devices.

Heterogeneous tasks.

Tasks (data to be

downloaded) are

assigned according to

the cellular network

conditions

Android
Collaborative file

download

DRAP 2014

Cluster formation of

volunteer mobile devices

for distributed

computation. The focus is

on how to best group the

devices based on their

capabilities.

High level description

of a Cloudlet Manager

that handles task

distribution. The

details about the task

distribution process are

not provided

Simulations

on ns-3

Testing of the

cloudlet formation

algorithm

Table II

USER DRIVEN MOBILE VOLUNTEER COMPUTING IMPLEMENTATIONS.

of realizing a volunteer computing system by interconnecting personal mobile devices through the

Internet have also been developed.

1) BOINC on Mobile Devices: The first attempt to extend the participation in volunteer comput-

ing to mobile devices dates back to 2007 [25], with researchers working on getting the application

SETI@home [6] (and other scientific programs) to run efficiently on ARM processors [42]. Starting

from this feasibility study, different Android applications [9], [43]–[45] and a prototype implemen-

tation for iOS [46] have been proposed to extend the participation in BOINC projects to mobile

devices. In February 2014, the integration of Android devices into the BOINC system has been

extensively promoted with the campaign HTC Power to Give [47], an initiative that aims to create

January 3, 2015 DRAFT

20

a supercomputer by harnessing the collective processing power of Android smartphones. As of

September 2014, the HTC Power to Give application has been installed on 1.7 million devices [48].

2) CrowdLab [15]: The idea of creating testbeds by interconnecting volunteer mobile devices

has also received considerable attention [15], [49], [50]. In particular, CrowdLab [15] is a testbed

architecture that utilizes volunteer mobile resources to offer features common to infrastructure-

based testbeds. CrowdLab allows the execution of guest code on participating mobile devices

through hardware virtualization, it supports low-level access to the radio device and the concurrent

scheduling of co-located applications. Volunteers contribute resources to CrowdLab in the same

way that users contribute spare resources to BOINC. The CrowdLab architecture uses a centralized

remote server for tracking the experiments and the current available volunteer resource contributors,

and a decentralized local task coordinator that is responsible for the scheduling and task distribution

to nearby devices. CrowdLab includes an algorithm to limit the amount of energy that each

application can consume in a certain time period. According to this scheduling scheme, a device

will not participate in the distributed computation if the owner is actively using it, and it allows

the user to set a daily resource budget for running experiments as a percent of battery capacity or

as a period of participation.

3) Seattle [16]: Seattle [16] has been proposed as a distributed computing platform that exploits

heterogeneous volunteer devices for educational and research purposes, that supports different

operating systems and architectures. Seattle is a general purpose learning platform based on the

Python programming language that allows users to develop and test different types of applications

ranging from networking to cloud computing. The objective of this platform is to provide researchers

and educators the ability to create application prototypes and to evaluate their performance on a

wide range of devices distributed around the world. Seattle follows an open source philosophy, and

it embraces the heterogeneity of today’s end user environment, thus providing a unique environment

that is not available on other testbeds. A recent study showed that more than 20,000 devices are

currently contributing their resources to Seattle, with more than 500 being mobile devices [51].

4) GEMCloud [13]: More recently, GEMCloud (Green Energy Mobile Cloud) [13] has been

proposed as a distributed system that utilizes energy efficient personal mobile devices as computing

resources instead of desktop computers. Mobile devices are considered to be particularly appealing

because of their increasing computing capabilities, great popularity and diffusion as well as for

the fact that they can potentially provide energy savings with respect to standard computers. The

vision of GEMCloud is to adapt the traditional distributed computing infrastructure by shifting the

January 3, 2015 DRAFT

21

load of the computation to mobile devices. GEMCloud follows a traditional volunteer computing

architecture, where a remote server distributes the tasks to participating devices through an Internet

connection. The task distribution is based on the device characteristics and customizable user

preferences. In GEMCloud, the user experience is particularly important, and the user is allowed

to finely control how much and when to contribute to the distributed computation, including

settings on battery level, charging vs. not charging, WiFi vs. 3G/4G communication, and device

temperature. Experimental results show a comparison between the completion time and relative

energy consumption of different types of tasks and different computing devices. While the mobile

devices are always slower than a high performance workstation, GEMCloud shows that some mobile

devices have performance comparable to a standard computer, while always consuming much less

energy. The GEMCloud application is available for download in the Google Play store.

Starting from the GEMCloud implementation, the authors in [52] presented a computational

infrastructure that extends the ability of mobile devices to participate in volunteer computing through

ad hoc networking. The architecture presented in [52] overcomes the intrinsic requirement of Internet

connectivity to participate in volunteer computing by introducing decentralized job coordinators.

These job coordinators, referred to as task distribution points, are mobile devices directly connected

to the Internet that are able to invite other devices to join the computation via device to device

communication. Experimental results show that allowing for additional devices without Internet

connectivity to participate in the computation reduces significantly the overall time required for

the execution of the tasks, with only minor additional energy consumption at the decentralized job

coordinators.

V. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS

In Section IV we presented the current state of the art for distributed mobile volunteer com-

puting research. While the different implementations have shown the feasibility and highlighted

the substantial performance gains that can be achieved by exploiting personal mobile devices

as additional computational elements, there are still several issues that must be considered. The

main challenges arise from the intrinsic heterogeneity of resources involved in a distributed mobile

system. Addressing these challenges requires the design of an efficient and reliable middleware,

tailored to the requirements and challenges of a heterogeneous system. Moreover, for a successful

diffusion of volunteer mobile computing, it is necessary to promote the users’ participation and to

reassure the users that the application will not harm their devices nor compromise their privacy or

January 3, 2015 DRAFT

22

Name Year Contributions Task Distribution
Operating

System
Applications

Seattle 2009

Distributed computing and

general purpose learning

platform

Application specific

tasks

Maemo

Linux
Multiple applications

BOINC 2011
Porting of the BOINC

client to Android devices
Project specific tasks Android

Multiple scientific

research projects

CrowdLab 2011

Testbed architecture based

on volunteer mobile

resources

Application specific

tasks
Android Multiple applications

GEMCloud 2013

Distributed computing

system that uses mobile

devices as computing

resources. Evaluation of

computing power and

energy efficiency of

mobile devices

Heterogeneous tasks

assigned at random.

FIFO queue subject to

user preferences.

Android
Protein structure

predictions

Table III

MOBILE VOLUNTEER COMPUTING IMPLEMENTATIONS.

the performance of their device with regard to its primary purpose. In what follows, we describe

some open issues that require additional research in order to improve the overall experience of the

different elements of a distributed mobile volunteer computing system.

A. Incentive Model

Using mobile devices can provide a substantial gain in terms of both computational power

and energy consumption. However, a mobile volunteer computing architecture is based on the

assumption that the devices are distributed among different users that donate their spare cycles.

While there are philanthropic users that are willing to participate in research projects for major

causes in the fields of medicine, science and the environment, it is expected that many participants

would not allow the platform to utilize their personal devices without any limitation for free for

an extended period of time. Therefore, it is important to consider some form of compensation or

economic incentives that will motivate the user to participate in the distributed computation.

Traditional methods for grading and compensating users for their collaboration are based on the

absolute computational power of the device, thus preferring devices with high resources over users

January 3, 2015 DRAFT

23

with limited hardware. Effort-based mechanisms for resource sharing in collaborative applications

have also been proposed, and have been shown to increase fairness in heterogeneous systems [53],

[54]. An analysis of the strategies to pursue in order to improve volunteer participation and retention

rates has been presented in [55]. In particular, based on a qualitative study of users in a volunteer

computing project, the authors in [55] argued that a volunteer architecture should include a scoring

system that is easy to understand by the users and provides an accurate and reliable indication of

the user’s contribution to the project. Moreover, regular feedback about the distributed computation

progress should be made publicly available to reassure the volunteers that the computation in which

they are involved is worthwhile and is producing certified scientific results. As an example, positive

results for incentives in the form of social contracts for common goals and immediate benefits have

been presented in [39] and [56].

In order to further enhance participation in the volunteer computing system, researchers have also

moved from social mechanisms to monetary based schemes. In this regard, pricing has shown to be

effective in encouraging sharing of computing devices, and several solutions have been proposed,

such as Flat Rate [57], Auction-based [58], Stock-Market and Micropayment approaches [59]. The

integration of distributed credit-based schemes with the task scheduling policy has also recently

been investigated [60]. Positive indications on the usefulness of monetary incentives have been

provided in [61].

Several works have been proposed for increasing the participation of users in a traditional

volunteer computing system. However, when considering mobile devices, the users not only will

incur some cost during their contribution to the distributed computation, such as battery energy and

data transmission costs, but their normal use of the mobile devices may be affected when processing

tasks. Thus, it is important to revise the existing methods to evaluate the impact of the participation

in the distributed computation on the user experience and remunerate the users accordingly. These

incentives could form the foundation of a new business model and enhance the efficient use of

computational devices.

B. Device Heterogeneity and Task Distribution

When dealing with devices with different capabilities in terms of power, memory and processing

capabilities, it is particularly important to devise algorithms that can explore the available resources

and maximize the results that can be achieved through the distributed computation. As different

mobile devices have different capabilities and follow different user usage patterns, it is very difficult

January 3, 2015 DRAFT

24

to group these devices according to their potential contributions to the distributed architecture and,

at the same time, devise a task distribution method that is able to classify the mobile devices and

distribute the computational workload accordingly.

Moreover, the way in which mobile devices connect to the volunteer distributed architecture

creates additional challenges, starting from the availability of an Internet connection itself. Even

when available, the heterogeneity of the network services and communication technologies reflect

great variations in communication speeds and latencies that negatively affect the performance of both

the mobile devices and the distributed computation infrastructure. This is especially problematic

when dealing with time sensitive applications that require devices that are not only able to perform

the assigned computation in a short amount of time, but that can capitalize on a fast and reliable

connection to receive the task and reply with the results. As a result, scheduling tasks on an

unpredictable network requires complex rules, which makes it difficult to estimate the availability

and the response and transfer time of the mobile devices.

Given the above, identifying and classifying the total available resources are required for devising

an efficient task distribution process. As described in [62], the device attributes can be divided into

two categories, namely static and dynamic. The static attributes reflect the intrinsic characteristics

of the device and will not change over time like, for example, CPU frequency, number of cores

and memory. Dynamic attributes, instead, exhibit dynamic behavior and change over time like, for

example, available CPU or number of cores, network connectivity and battery level. We note that

the user usage patterns can be seen as a particular dynamic attribute that affects multiple device

specific resources. Clearly, static attributes are easy to retrieve because they do not change over

time. However, tracking the dynamic changes in resource availability requires a suitable protocol

that is able to gather this information with a certain accuracy and, most importantly, limit the impact

on the user experience. For an overview of existing resource discovery algorithms for distributed

computing systems, we refer the reader to [63] and references therein.

The task distribution policy uses the collected and analyzed mobile device attributes, as well

as the user usage patterns and preferences, to efficiently manage all the available resources. This

process represents the core of the entire volunteer mobile computing infrastructure. This is because

the task distribution dictates the performance of the entire system and can, in fact, determine the

success or failure of the adoption of mobile devices as computational devices. The task distribution

process is thus fundamental in determining how to divide the job into computational tasks and in

finding the best criteria for assigning these tasks to the different clients. Different solutions for a

January 3, 2015 DRAFT

25

traditional distributed computing system have been proposed, showing promising results in real life

testing. An extensive discussion of the existing task distribution policies can be found in [62].

While all the existing schemes for resource discovery and task distribution can be extended to sup-

port the presence of mobile devices, they have been designed focusing on standard computers. Thus,

as described earlier, the different characteristics of mobile devices when compared to traditional

computing devices can potentially require a substantial revision of the existing policies. Finally,

the need for more intelligent algorithms that are able to divide and distribute tasks with different

requirements, to predict the task execution times when using devices with different capabilities,

to distribute the load accordingly, and to adapt the start and stop of the computation according to

the user usage or the resource availability is considered an open problem even for a traditional

volunteer computing system [62].

C. Result Validation and Aggregation

A volunteer computing system relies on a divide and conquer approach in which the job is divided

into several computational tasks that can be processed in parallel, and the results of the distributed

computations are then merged to solve the initial problem. These types of algorithms are able to

determine the quality and validity of the results only a posteriori, most of the time even after the

actual merging of the results of the different tasks, potentially causing the loss of a large amount

of computation. Moreover, in a scenario with heterogeneous devices that are potentially executing

tasks with different complexity and requirements, it is even more difficult to aggregate and validate

the results. Thus, when dividing and assigning the tasks it is important to design a mechanism to

verify and, if necessary, discard erroneous intermediate partial results so that the entire computation

is not wasted.

Another limitation of the existing systems is that the mobile devices submit their results only

at the end of the computation. Most of the implementations presented in Section IV consider

the user experience as the most important design constraint, and propose different techniques to

stop or migrate the computation to other devices to limit the impact of the task execution on

the standard mobile device operations. In situations where the computation is terminated or the

migration fails, the partial computation done by the devices is lost. Thus, a framework that exploits

partially completed tasks would greatly improve the overall system performance.

Most of the existing volunteer computing systems, as well as the architectures described in

Section IV, consider a centralized system, with communication going through a single server

January 3, 2015 DRAFT

26

or coordinator that fulfills the role of job scheduler and handles the task distribution and result

validation. As a result, these systems either do not implement any result aggregation and validation

mechanisms or create a considerable overhead on the server and are thus limited to embarrassingly

parallel applications [64]. Recent solutions tolerate clients’ failures by assigning the same task to

multiple devices and by replicating the intermediate and final output of the computations across

different devices [64], [65]. Moreover, the validation of the task results is performed at the server

through replication and majority voting. According to this approach, each task has at least two

replicas, running on different devices and, upon reception of sufficient results for the same task,

the server is able to consider it valid if a strict majority of clients return the same output [64].

D. Security, Privacy and Data Confidentiality

Security is an essential factor for the success of the adoption of personal mobile devices as

computing elements in a distributed infrastructure. As a matter of fact, creating a secure and trustable

environment is an open issue even in traditional volunteer computing systems [62], both for the

tasks coordinator and for the devices that perform the computation. On one hand, the clients need

to trust the middleware of the distributed computing framework that it will not harm their devices

or compromise their privacy and that it is honest in the description of the credit, processing and

storage resources associated with the computation. Moreover, the task distributor needs to implement

appropriate security policies so that, for example, hackers may not gain access to the resources of

the mobile devices and use them for malicious activities. On the other hand, the task distributor

needs to implement some trusting policies in order to discriminate malicious users that are returning

false results, as well as mechanisms that prevent the users from gaining access to the content of

the assigned tasks and related data. Moreover, dealing with all these problems is complicated by

the fact that the devices involved in a distributed system communicate through the Internet, which

is intrinsically insecure.

Several security mechanisms have been proposed in the literature in order to reduce the vul-

nerability of distributed computing systems to malicious attacks. In particular, result validation

techniques based on voting [5], credibility [66] and spot-checking [67] have been proposed and are

now included in many architectures. In order to prevent malicious code distribution, many systems

integrate code signing techniques. As an example, each BOINC project periodically changes its

code signing key, and uses the old private key to generate a signature for the new public key [9].

Techniques for preventing the intentional or accidental abuse of participating hosts by the volunteer

January 3, 2015 DRAFT

27

architectures include account based sandboxing (that is, the middleware runs under an unprivileged

account and it is not able to access or modify any other data on the computer) and middleware

resources monitoring to detect if the resource usage is not in accordance with the application

specification [9], [68]. Most of the available systems still lack solutions to protect against users

accessing the content of the assigned tasks and related data, that both typically reside in cleartext in

memory [9], [62]. An extensive presentation of security threats for a distributed computing system

has been recently presented in [69] and [70].

While different security methods have been proposed for a general volunteer computing system,

security is still considered an open issue [9], [62], [68]. Traditional cluster and distributed com-

puting architectures, instead, represent more controlled systems and implement complex security

mechanisms [68]. The possibility of porting some of these methods to volunteer computing systems

and, consequently, the development of lightweight mechanisms for securing the communications

and to guarantee data integrity over a heterogeneous volunteer system of mobile devices is still

under investigation.

VI. CONCLUSIONS

In this chapter, we presented recent advances in the mobile volunteer computing research field,

where mobile devices are the elements that perform the computation. We described the motivations

behind the adoption of personal mobile devices as computing resources and the challenges that come

from their integration in a distributed system. In addition, we discussed some open issues that arise

in the integration of heterogeneous mobile devices into a distributed computing infrastructure, as

well as security issues and possible improvements to the task distribution process and the result

validation and aggregation.

This chapter provides the research community with a comparison of the existing architectures

and a description of the current open problems that will help in the design of future distributed

mobile volunteer computing systems.

REFERENCES

[1] “U.S. Energy Information Administration, Short-term energy outlook.” [Online]. Available: http://www.eia.gov/forecasts/steo/

pdf/steo_full.pdf

[2] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: Eliminating server idle power,” in Proc. of ACM ASPLOS, Washington

DC, USA, Mar. 2009.

[3] L. Liu, H. Wang, X. Liu, X. Jin, W. He, Q. Wang, and Y. Chen, “Greencloud: A new architecture for green data center,” in

Proc. of ICAC-INDST, Barcelona, Spain, Jun. 2009.

January 3, 2015 DRAFT

28

[4] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and research challenges,” Journal of Internet Services

and Applications, vol. 1, no. 1, pp. 7–18, May 2010.

[5] D. P. Anderson, “BOINC: A system for public-resource computing and storage,” in Proc. of IEEE/ACM GRID, Pittsburgh,

PA, Nov. 2004.

[6] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer, “SETI@home: An experiment in public-resource

computing,” Commun. ACM, vol. 45, no. 11, pp. 56–61, Nov. 2002.

[7] L. Gong, “JXTA: a network programming environment,” IEEE Internet Computing, vol. 5, no. 3, pp. 88–95, 2001.

[8] G. Fedak, C. Germain, V. Neri, and F. Cappello, “XtremWeb: a generic global computing system,” in Proc. of IEEE/ACM

CCGrid, Brisbane, Qld., May 2001.

[9] “BOINC,” BOINC’s Homepage, Last time accessed: October 2014. [Online]. Available: http://boinc.berkeley.edu/

[10] T. Phan, L. Huang, and C. Dulan, “Challenge: Integrating mobile wireless devices into the computational grid,” in Proc. of

ACM MobiCom, Atlanta, Georgia, USA, Sep. 2002.

[11] “Asus Nexus 7 (2013).” [Online]. Available: http://www.asus.com/Tablets_Mobile/Nexus_7_2013/

[12] “CPUBoss - Compare CPU to see which is faster.” [Online]. Available: http://cpuboss.com

[13] H. Ba, W. Heinzelman, C.-A. Janssen, and J. Shi, “Mobile computing - A green computing resource,” in Proc. of IEEE WCNC,

Shanghai, China, Apr. 2013.

[14] E. E. Marinelli, “Hyrax: Cloud computing on mobile devices using mapreduce,” Sep. 2009.

[15] E. Cuervo, P. Gilbert, B. Wu, and L. Cox, “CrowdLab: An architecture for volunteer mobile testbeds,” in Proc. of COMSNETS,

Bangalore, India, Jan. 2011.

[16] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and T. Anderson, “Seattle: A platform for educational cloud computing,” in

Proc. of ACM SIGCSE, Chattanooga, TN, USA, Mar. 2009.

[17] “Attached Resource Computer (ARCNET).” [Online]. Available: http://www.arcnet.com/

[18] “The Stone SouperComputer.” [Online]. Available: http://www.extremelinux.info/stonesoup/

[19] “Amazon Elastic Compute Cloud (Amazon EC2).” [Online]. Available: http://aws.amazon.com/ec2/

[20] “Microsoft OneDrive.” [Online]. Available: https://onedrive.live.com/

[21] “IBM Cloud.” [Online]. Available: http://www.ibm.com/cloud-computing/us/en/

[22] “Great Internet Mersenne Prime Search.” [Online]. Available: http://www.mersenne.org

[23] Bluetooth Group, “Specification of the Bluetooth system,” Jun. 2010.

[24] Wi-Fi Alliance, P2P Task Group, “Wi-Fi Peer-to-Peer (P2P) Technical Specification, Version 1.2,” Dec. 2011.

[25] J. R. Eastlack, “Extending volunteer computing to mobile devices,” Oct. 2011.

[26] “International Data Corporation (IDC).” [Online]. Available: http://www.idc.com

[27] “Kleiner Perkins Caufield Byers (KPCB) - Internet Trends 2014.” [Online]. Available: http://www.kpcb.com/internet-trends

[28] “Geekbench 3: Cross-platform processor benchmark,” Last time accessed: October 2014. [Online]. Available:

http://www.primatelabs.com/geekbench/

[29] S. Schildt, F. Busching, E. Jorns, and L. Wolf, “Candis: Heterogenous mobile cloud framework and energy cost-aware

scheduling,” in Proc. of IEEE GreenCom, Beijing, China, Aug. 2013.

[30] J. Yu, E. Williams, and M. Ju, “Analysis of material and energy consumption of mobile phones in China,” Energy Policy,

vol. 38, no. 8, pp. 4135–4141, Aug. 2010.

[31] M. Y. Arslan, I. Singh, S. Singh, H. V. Madhyastha, K. Sundaresan, and S. V. Krishnamurthy, “Computing while charging:

Building a distributed computing infrastructure using smartphones,” in Proc. of ACM CoNEXT, Nice, France, Dec. 2012.

[32] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud computing: architecture, applications, and approaches,”

Wireless Communications and Mobile Computing, vol. 13, no. 18, pp. 1587–1611, Dec. 2013.

January 3, 2015 DRAFT

29

[33] D. C. Chu and M. Humphrey, “Mobile OGSI.NET: Grid computing on mobile devices,” in Proc. IEEE/ACM GRID, Pittsburgh,

PA, Nov. 2004.

[34] K. B. Parmar, N. N. Jani, P. S. Shrivastav, and M. H. Patel, “jUniGrid: A simplistic framework for integration of mobile

devices in heterogeneous grid computing,” International Journal of Multidisciplinary Sciences and Engineering, vol. 4, no. 1,

pp. 10–15, Jan. 2013.

[35] H. Xu, M. Bilec, L. Schaefer, A. Landis, and A. Jones, “Ocelot: A wireless sensor network and computing engine with

commodity palmtop computers,” in Proc. of IGCC, Arlington, VA, USA, Jun. 2013.

[36] P. Datta, S. Dey, H. Paul, and A. Mukherjee, “ANGELS: A framework for mobile grids,” in Proc. of AIMoC, Kolkata, India,

Feb. 2014, pp. 15–20.

[37] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity: Enabling remote computing among intermittently

connected mobile devices,” in Proc. of MobiHoc, Hilton Head, SC, USA, Jun. 2012.

[38] N. Fernando, S. Loke, and W. Rahayu, “Honeybee: A programming framework for mobile crowd computing,” in Mobile and

Ubiquitous Systems: Computing, Networking, and Services, ser. Lecture Notes of the Institute for Computer Sciences, Social

Informatics and Telecommunications Engineering. Springer Berlin Heidelberg, 2013, vol. 120, pp. 224–236.

[39] P. Jassal, K. Yadav, A. Kumar, V. Naik, V. Narwal, and A. Singh, “Unity: Collaborative downloading content using co-located

socially connected peers,” in Proc. of IEEE PERCOM, San Diego, CA, USA, Mar. 2013.

[40] R. Agarwal, “DRAP: A decentralized public resourced cloudlet for ad-hoc networks,” Mar. 2014.

[41] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based cloudlets in mobile computing,” IEEE

Pervasive Computing, vol. 8, no. 4, pp. 14–23, Oct. 2009.

[42] “BOINC on Android,” Last time accessed: October 2014. [Online]. Available: http://boinc.berkeley.edu/trac/wiki/AndroidBoinc

[43] “Boincoid.” [Online]. Available: http://boincoid.sourceforge.net

[44] “AndroBOINC - BOINC manager for Android phones.” [Online]. Available: https://code.google.com/p/androboinc/

[45] “NativeBOINC.” [Online]. Available: http://http://nativeboinc.org

[46] M. Black and W. Edgar, “Exploring mobile devices as grid resources: Using an x86 virtual machine to run BOINC on an

iPhone,” in Proc. of IEEE/ACM Grid Computing, Banff, AB, Canada, Oct. 2009.

[47] “HTC Power to Give.” [Online]. Available: http://www.htc.com/us/go/power-to-give/

[48] “The 10th BOINC workshop - BOINC/Android status and plans,” Sep. 2014. [Online]. Available: http://boinc.berkeley.edu/

trac/attachment/wiki/WorkShop14/boinc_on_android_2014.pdf

[49] A. D. Zayas and P. M. Gómez, “A testbed for energy profile characterization of ip services in smartphones over live networks,”

Mob. Netw. Appl., vol. 15, no. 3, pp. 330–343, Jun. 2010.

[50] A. Nandugudi, A. Maiti, T. Ki, F. Bulut, M. Demirbas, T. Kosar, C. Qiao, S. Y. Ko, and G. Challen, “Phonelab: A large

programmable smartphone testbed,” in Proc. of ACM SENSEMINE, Roma, Italy, Nov. 2013.

[51] Y. Zhuang, A. Rafetseder, and J. Cappos, “Experience with Seattle: A community platform for research and education,” in

Proc. of GREE, Salt Lake City, UT, USA, Mar. 2013.

[52] C. Funai, C. Tapparello, H. Ba, B. Karaouglu, and W. Heinzelman, “Extending volunteer computing through mobile ad hoc

networking,” in Proc. of IEEE GLOBECOM, Austin, TX, USA, Dec. 2014.

[53] R. Rahman, M. Meulpolder, D. Hales, J. Pouwelse, D. Epema, and H. Sips, “Improving efficiency and fairness in P2P systems

with effort-based incentives,” in Proc. of IEEE ICC, Cape Town, South Africa, May 2010.

[54] D. Vega, R. Meseguer, F. Freitag, and S. Ochoa, “Effort-based incentives for resource sharing in collaborative volunteer

applications,” in Proc. of IEEE CSCWD, Whistler, BC, Canada, Jun. 2013.

[55] P. Darch and A. Carusi, “Retaining volunteers in volunteer computing projects,” Phil. Trans. R. Soc. A, vol. 368, no. 1926,

pp. 4177–4192, Sep. 2010.

January 3, 2015 DRAFT

30

[56] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider for mobile devices,” in Proc. of ACM MCS, ser. MCS

’10, San Francisco, California, Jun. 2010.

[57] C. Courcoubetis and R. Weber, “Incentives for large peer-to-peer systems,” IEEE J. Select. Areas Commun., vol. 24, no. 5,

pp. 1034–1050, May 206.

[58] A. Mondal, S. Madria, and M. Kitsuregawa, “An economic incentive model for encouraging peer collaboration in mobile-p2p

networks with support for constraint queries,” Peer-to-Peer Networking and Applications, vol. 2, no. 3, pp. 230–251, Mar.

2009.

[59] G. Tan and S. Jarvis, “A payment-based incentive and service differentiation scheme for peer-to-peer streaming broadcast,”

IEEE Trans. Parallel Distrib. Syst., vol. 19, no. 7, pp. 940–953, Jul. 2008.

[60] J. Rius, S. Estrada, F. Cores, and F. Solsona, “Incentive mechanism for scheduling jobs in a peer-to-peer computing system,”

Simulation Modelling Practice and Theory, vol. 25, no. 0, pp. 36–55, Jun. 2012.

[61] “Amazon Mechanical Turk.” [Online]. Available: https://www.mturk.com/

[62] M. N. Durrani and J. A. Shamsi, “Volunteer computing: requirements, challenges, and solutions,” Journal of Network and

Computer Applications, vol. 39, no. C, pp. 369–380, Mar. 2014.

[63] T. Ghafarian, H. Deldari, B. Javadi, M. H. Yaghmaee, and R. Buyya, “CycloidGrid: A proximity-aware P2P-based resource

discovery architecture in volunteer computing systems,” Future Generation Computer Systems, vol. 29, no. 6, pp. 1583–1595,

Aug. 2013.

[64] F. Costa, L. Veiga, and P. Ferreira, “Internet-scale support for map-reduce processing,” Journal of Internet Services and

Applications, vol. 4, no. 1, Nov. 2013.

[65] R. Bruno and P. Ferreira, “freecycles: Efficient data distribution for volunteer computing,” in Proc. of ACM CloudDP,

Amsterdam, The Netherlands, Apr. 2014.

[66] L. Sarmenta, “Sabotage-tolerance mechanisms for volunteer computing systems,” in Proc. of IEEE/ACM CCGrid, Brisbane,

Qld., Australia, May 2001.

[67] K. Watanabe and M. Fukushi, “Generalized spot-checking for sabotage-tolerance in volunteer computing systems,” in Proc.

of IEEE/ACM CCGrid, Melbourne, Australia, May 2010.

[68] F. Cappello, S. Djilali, G. Fedak, T. Herault, F. Magniette, V. NÃl’ri, and O. Lodygensky, “Computing on large-scale distributed

systems: XtremWeb architecture, programming models, security, tests and convergence with grid,” Future Generation Computer

Systems, vol. 21, no. 3, pp. 417–437, Mar. 2005.

[69] S. Subashini and V. Kavitha, “A survey on security issues in service delivery models of cloud computing,” Journal of Network

and Computer Applications, vol. 34, no. 1, pp. 1–11, Jan. 2011.

[70] D. Zissis and D. Lekkas, “Addressing cloud computing security issues,” Future Generation Computer Systems, vol. 28, no. 3,

pp. 583–592, Mar. 2012.

APPENDIX A

KEY TERMS AND DEFINITIONS

Android: Android is a mobile operating system (OS) based on the Linux kernel and currently

developed by Google.

Cloud Computing: Internet-based computing in which large groups of remote servers are net-

worked in order to allow sharing of data-processing tasks, centralized data storage, and online

access to computer services or resources. The term loosely define any system providing access via

January 3, 2015 DRAFT

31

the Internet to processing power, storage, software or other computing services, often via a web

browser. Typically these services will be rented from an external company that hosts and manages

them.

Cluster Computing: Cluster Computing consists of a set of two or more computers connected

into a local area network that work together so that, in many respects, they can be viewed as a

single system. Usually, computer clusters have each node set to perform the same task, controlled

and scheduled by software.

Distributed Computing: The use of multiple computers networked throughout a wide geographical

area, or the world via the Internet, in order to solve a single computational problem. In distributed

computing, a problem is divided into many tasks, each of which is solved by one or more computers,

which communicate with each other by message passing.

Embarrassingly problems: In parallel computing, an embarrassingly parallel workload, or embar-

rassingly parallel problem, is one for which little or no effort is required to separate the problem

into a number of parallel tasks. This is often the case where there exists no dependency (or

communication) between those parallel tasks.

GPU: Graphics processing unit (GPU) is a specialized electronic circuit designed to rapidly

manipulate and alter memory to accelerate the creation of images in a frame buffer intended for

output to a display. Modern GPUs are very efficient at manipulating computer graphics and image

processing, and their highly parallel structure makes them more effective than general-purpose CPUs

for algorithms where processing of large blocks of data is done in parallel.

iOS: iOS (previously iPhone OS) is a mobile operating system developed by Apple Inc. and

distributed exclusively for Apple hardware. It is the operating system that powers many of the

company’s iDevices.

Middleware: Software that acts as a bridge between an operating system or database and appli-

cations, especially on a network.

Mobile Device: A mobile device (also known as a handheld computer or simply handheld) is

a small, handheld computing device, typically having a display screen with touch input and/or a

miniature keyboard and weighing less than 2 pounds (0.91 kg). Example of mobile devices are

ultra-portable computers, smartphones and tablets.

Mobile Computing: Mobile Computing refers to the process of performing computation on a

mobile device. In addition, mobile computing is used as a generic term describing the ability to use

the technology to wirelessly connect to and use centrally located information and/or application

January 3, 2015 DRAFT

32

software through the application of small, portable, and wireless computing and communication

devices.

Network Simulator 3 (ns-3): ns-3 is a discrete-event network simulator for Internet systems,

targeted primarily for research and educational use. ns-3 is free software, licensed under the GNU

GPLv2 license, and is publicly available for research, development, and use.

Parallel Computing: Parallel computing is a form of computation in which many calculations are

carried out simultaneously, operating on the principle that large problems can often be divided into

smaller ones, which are then solved concurrently (“in parallel”). In the simplest sense, parallel

computing is the simultaneous use of multiple computing resources to solve a computational

problem.

Smartphone: A smartphone (or smart phone) is a mobile phone that runs an operating system.

Smartphones typically combine the features of a phone with those of another popular consumer

device, such as a personal digital assistant, a digital camera, a media player or a GPS navigation

unit. Later smartphones include all of those plus a touchscreen interface, broadband internet, web

browsing, WiFi, 3rd-party apps, motion sensors and mobile payment mechanisms.

Tablet: A tablet is a mobile computer with touch-screen display, circuitry and battery in a single

unit. Tablets come equipped with sensors, including cameras, a microphone, an accelerometer and a

touchscreen, with finger or stylus gestures substituting for the use of computer mouse and keyboard.

Task Distribution Algorithm: In parallel computing, the task distribution algorithm represents a

set of rules that are used to determine how to divide the job into computational tasks, and to find

the best criteria for assigning these tasks to the different clients. The task distribution algorithm can

collect and analyze different informations and attributes of the clients, as well as the user usage

patterns and preferences, to efficiently manage all the available resources.

Volunteer Computing: Volunteer computing is a type of distributed computing in which computer

owners donate their computing resources (such as processing power and storage) to one or more sci-

entific computation projects. More recently, volunteer computing has moved to middleware systems

that provide a distributed computing infrastructure independent from the scientific computation.

January 3, 2015 DRAFT

