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Abstract—As the number of mobile devices that natively
support ad hoc communication protocols increase, large ad hoc
networks can be created not only to facilitate communication
among the mobile devices, but also to assist devices that are
executing computationally intensive applications. Prior work has
developed computation offloading systems for mobile devices, but
this work has focused exclusively on offloading to single hop
neighbors, due in part to the practical challenges of setting
up multi-hop networks using existing ad hoc communication
protocols. However, limiting the offloading of computation to
one-hop neighbors inherently restricts the number of devices
that can participate in the distributed computation. In this
paper, we propose and evaluate the performance of computational
offloading within a multi-hop cooperative network, where mobile
devices are able to share the computational load with all other
nodes in the network. Additionally, we present an iterative task
assignment algorithm that can optimize the assignment of compu-
tational tasks to devices in such a multi-hop cooperative network,
taking into account the communication overhead of the multi-hop
network. Experimental results, obtained from an implementation
on Android devices, are integrated with an analytical model that
enables the evaluation of system performance under a variety of
conditions. These experimental and analytic results demonstrate
the benefit of enabling computation offloading to all devices in a
multi-hop cooperative network.

I. INTRODUCTION

Recent advancements in VLSI and MEMs have allowed for

increasingly complicated processors to become cheaper and

more accessible to a variety of applications. For instance, these

processors have become so accessible that manufacturers are

even offering ruggedized devices that use these processors [1],

while still holding certification for certain environmental con-

ditions, such as low pressure or extreme temperature [2].

With devices that can withstand such harsh conditions, it

is not hard to imagine that when encountering hazardous

situations, a first responder would benefit greatly from having

the ability to take in data from the field, process it, and

make an informed decision based on the result. For example,

first responders might be equipped with ruggedized smart

devices and deployed to the site of an earthquake to aide in

relief efforts, or a military patrol might be able to perform

a Signal Intelligence (SIGINT) application for finding im-

provised explosive devices (IEDs) [3]. Typically, these kinds

of applications require immense processing capabilities and
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consume large amounts of the device’s battery, if the device

is even able to perform such computations.

One potential solution is for the mobile device to offload

these computationally intensive tasks to a remote server [4],

[5], either by setting up relay points throughout the area

of interest or using satellite communication [6]. System like

MAUI [4] and CloneCloud [5] are based on a remote execu-

tion scheme, where devices offload computationally intensive

portions of an application to a remote server that returns the

computed result. Although the aforementioned remote execu-

tion systems exhibit potential for massive performance gains,

oftentimes military or disaster relief scenarios do not allow for

the luxury of being able to permit high latencies associated

with offloading computation to remote servers, either due to

bandwidth or environmental constraints. Additionally, in these

scenarios, the devices may not be connected to a remote server

at any given time.

The concept of cyber foraging, where devices use nearby

shared computing resources, was presented to provide an

alternative to the high latencies associated with offloading

computation to remote servers [7]. While cyber foraging is

presented in the context of public, untrustworthy and unman-

aged computing resources, this practice could be translated to

military or disaster relief scenarios provided that the resources

are deployed over an area of interest a-priori.

On the other hand, Hyrax [8] proved the benefit of utilizing

all of the nodes in a network. By porting Hadoop Apache to

mobile devices, the authors were able to create a distributed

computing file system and enable distributed computing on

mobile devices. Hyrax achieves this by utilizing a central

server and infrastructure based communications.

Starting with the work presented in [8], several works

presented solutions that are able to offload computation to

other nearby mobile devices in a complete ad hoc manner [9]–

[11]. Honeybee, for example, provides a programming frame-

work to aide mobile to mobile computational offloading, using

Bluetooth to facilitate the communication between devices [9].

More recently, the authors in [10], [11] proposed and im-

plemented a mobile computational offloading system using

Android’s implementation of WiFi Direct.

While these works have shown the feasibility of offloading

to mobile devices in an ad hoc setting, their implementations

are limited to a single hop ad hoc network. The next step in

the evolution of mobile computation offloading is to consider

all the computational resources available in a multi-hop ad hoc



network. In this regard, Serendipity enables remote computing

among mobile devices over intermittently connected ad hoc

networks [12], using a technique similar to those used in

disruption tolerant networks [13]. By utilizing a modified

version of Dijkstra’s routing algorithm, the authors presented

a water filling based task assignment scheme, that uses an

estimate of the time required to transfer data between two

nodes to calculate the number of tasks to assign to a particular

node. Serendipity’s performance has also been verified through

an implementation on Android devices.

Given the above, our work aims at overcoming the limita-

tions of the previous work by exploiting all the computational

resources available in a multi-hop ad hoc network. In partic-

ular, our contributions in this paper are:

• Using an implementation on Android devices, we demon-

strate the benefit of expanding the number of computa-

tional resources that can be utilized for task completion,

and show that in a real application, a simple Greedy

task distribution is able to reduce the total time of the

distributed computation.

• We develop a provably optimal algorithm for distributing

tasks to nodes within a multi-hop network that can be

used to estimate the performance of offloading the com-

putation over a multi-hop ad hoc network under different

settings.

Hence, the overall conclusion of this paper is that not only

is it feasible to offload computation to nodes that are multiple

hops away, but there is also a measurable performance gain

that can be achieved by doing so.

The rest of the paper is organized as follows. In Section II,

we describe our mobile to mobile computational offloading

system, and motivate the need for an intelligent task as-

signment. In Section III, we present an analytical model for

calculating the amount of time and energy that is required

to assign tasks to different nodes in a multi-hop network. In

Section IV, we define an objective function representing the

cost to compute some number of tasks, as well as a prov-

ably optimal iterative algorithm for optimizing this objective

function. Section V presents measured and analytic results for

computation offloading in a multi-hop WiFi Direct network.

Section VI concludes the paper.

II. MOTIVATION

Our mobile to mobile computational offloading system is

composed of a set of N mobile devices, organized into a

network through ad hoc communications. The devices are

cooperative, meaning that we do not consider the presence

of any selfish user. Moreover, we assume the existence of a

global routing protocol, and each node has knowledge of all

other available nodes within the network.

At a certain point in time, one of the devices needs to

run a complex application, which can be divided into clearly

defined homogenous tasks, as is the case for a military SIGINT

application [3], or non-invasively determining the structural

integrity of a building during disaster relief efforts [14]. These

tasks are independent from each other, and their computation
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Fig. 1. Experimental measurement of the percent gain over offloading to only
a single neighbor of a simple greedy and uniform task distribution scheme.

can be parallelized by offloading the tasks to different devices.

The results of all the tasks’ execution is then merged in order

to complete the initial complex application. As a result, assign-

ing a task to a device requires the transmission and reception

of the task and the results of the task execution over the ad

hoc route. This requires communication energy consumption

on all the nodes along the routing path, and incurs a time delay

due to the propagation of the data throughout the network.

In order to determine the benefit of utilizing multi-hop

mobile to mobile computation offloading, we implemented a

computational offloading system on Android devices, utilizing

the WiFi Direct protocol [15]. We note that the functionalities

for creating multi-group networks using WiFi Direct are not

natively implemented in Android [16]. Nevertheless, the work

presented in [16], [17] provide different solutions (e.g., time

sharing between groups, broadcasting and multicasting data

between groups and modifications of the Android OS) to

seamlessly enable multi-group communication using stock and

non-stock Android devices.

Given the above, we developed a testbed by interconnecting

several 2013 Nexus 7s (N7), using the modified version of

Android presented in [16]. The 2013 N7 has 16 GB of stor-

age, 2 GB of memory, and a 1.5GHz quad-core Snapdragon

CPU [18]. For all the results presented in this paper, we limited

each device to compute only one task at a time, and the device

could not request the next task until it returned the result. Each

of the presented data points are an average of thirty trials.

All of the measurements were taken in an indoor workspace,

and the nodes were stationary during these experiments. We

acknowledge that in real scenarios, nodes are generally mobile,

and may enter or leave a network. However, to accurately

determine the impact of the task assignment and to limit the

variability across different experiments, we kept the nodes

stationary. Moreover, all the results of this paper have been

obtained with the screen turned off.

To evaluate the performance of the envisioned multi-hop

mobile to mobile computation offloading system, in Figure 1

we compare the experimental performance gain to complete a

set of 50 tasks relative to a task distribution that only utilizes

one additional device with extending the computation to a

larger network (see Figure 1). For assigning the tasks, we

implemented both a simple Greedy task distribution, where



each device in the network requests a new task as soon as it

has completed the previous task, and a Uniform task distri-

bution, where the tasks are uniformly distributed throughout

the network. While both task assignments provide substantial

performance gain compared to offloading to a single neighbor

when the computation time is much larger then the time

required to assign the tasks and receive the results, extending

the computation to the multi-hop network can be detrimental

when the communication time is greater than the computation.

As a result, it is not straightforward to determine how to best

assign the tasks due to the communication costs of distributing

the tasks. Moreover, while both the Uniform and the simple

Greedy task distribution already provide gains in some cases,

it is not possible to directly determine the performance of a

Greedy distribution before assigning the tasks and, at the same

time, it is not clear if further performance improvements are

even possible. Thus, in the next sections we first model the

different elements of the system under consideration and then

present an iterative algorithm that is guaranteed to return the

optimal task assignment.

III. SYSTEM MODEL

In this section we present the details of the different com-

ponents of the system described in Section II, which are then

used to derive the optimal task distribution policy presented

in Section IV.

A. Task Time Model

We start by considering the total time Di required to

compute a given task at a particular device i. We define this

total time as the time between the task assignment and the end

of the transmission of the result of the task execution. Thus,

in order to determine the time required to assign, compute

and then receive the results of the task execution we need to

consider two main components, namely the communication

time required to distribute the task and receive the results,

and the time actually spent for the task execution. In order to

derive the communication time, we consider that each task is

characterized by three parameters, namely the task data size t,
the relative result data size r and the task complexity c. Thus,

according to this definition, assigning a task (t, c, r) to a device

requires the transmission/reception of t bits, while the result

of the task execution to be reported back to the task generator

entails the transmission/reception of r bits. The time required

to execute a single task depends on the CPU of the mobile

device and on the complexity c of the task to be executed,

which, without loss of generality, can be considered as a

function ei(c). Therefore, the total time required to compute a

single task at device i depends on the device’s computational

capabilities, and on the characteristics of the radio technology

used for the data exchange, as well as on the number of hops

Hi between the device that generated the tasks and device i.
Given the above, the total delay Di(t, c, t) experienced by

a task (t, c, r) assigned to device i is given by

Di(t, c, r) =

Hi
∑

l=1

(

t

T tx
l

+
r

T tx
l

)

+

Hi−1
∑

l=1

2T sw
l + ei(c), (1)

where T tx
l represents the transmission throughput of the l com-

munication hop, l represents the communication hop l in the

reverse path, and T sw
l accounts for additional switching time

when routing the data between two subsequent communication

links as can be the case, for example, with the WiFi Direct pro-

tocol (see, e.g., [16]). We note that the transmission throughput

also accounts for parallel use of the same communication link

(by, e.g., the simultaneous assignment of different tasks) and,

since the throughput on wireless networks fluctuates due to

the signal strength and channel impairments, assigning values

to the transmission throughput only serves as an example of

the achievable performance of a network.

B. Task Energy Model

In most cases, the system described in this paper will consist

of battery operated mobile devices. As a result, it is important

not only to characterize the delay experienced by the compu-

tation of each task, but also to determine the impact in terms

of energy consumption of the task distribution. Therefore, in

what follows we define the total energy consumption required

to assign a task to a particular device.

Similar to the task time model defined in the previous

section, distributing a task entails a communication energy

consumption and the task execution energy consumption. In

order to define the communication energy model, we first

define P tx
l and P rx

l to be the transmission and reception power

consumption of a particular ad hoc communication link l,
respectively. We note that a particular link l actually represents

a pair of nodes (h, k), where h is the device transmitting

the data and k is the device receiving the data. Thus, with

a little abuse of notation we can write P tx
l = P tx

h and

P rx
l = P rx

k , where P tx
h represents the power consumption of

mobile device h during transmission, and P rx
k represents the

power consumption of mobile device k during reception. In the

same way, we define P ex
i to represent the power consumption

of mobile device i during task computation.

As a result, we define the total energy expenditure when

assigning a task (t, c, r) to device i as

Ei(t, c, r) =

Hi
∑

l=1

[

t

T tx
l

(P tx
l + P rx

l ) +
r

T tx
l

(P tx
l

+ P rx
l
)

]

+

Hi−1
∑

l=1

2Esw
l + P ex

i ei(c),

(2)

where, similar to Eq. (1), l represents the communication hop l
in the reverse path (e.g., if l represents the pair of nodes (h, k),
l refers to the pair (k, h)), and Esw

l represents the amount of

energy required for switching when routing the data between

two subsequent communication links.

IV. OPTIMAL TASK DISTRIBUTION

The goal of our analysis is to find the optimal task distribu-

tion policy that minimizes an overall cost metric by utilizing

all the available nodes in a multi-hop network. In the following

sections, we first formulate the optimal tasks distribution



problem, and then we present an iterative algorithm that is

able to find the optimal task assignment.

A. Optimization Problem

Let N be the number of mobile devices participating in the

distributed computation and M be the number of homoge-

neous tasks1 to be distributed. We define φ to be a vector such

that φ = [φ0, φ1, . . . , φN ], where φi represents the number of

tasks assigned to a particular device i, such that φi ∈ Z
+,

0 ≤ φi ≤ M and
∑N

i=1 φi = M , and Φ to be the set of

all the possible task assignments that satisfy these conditions.

Moreover, let C = [C1, C2, . . . , CN ] be a cost vector, where

Ci with i = 1, . . . , N represents the cost of assigning a task

to device i.
Given the above, our objective is to solve the following

optimization problem:

min
φ∈Φ

F(φ), (3)

where F(φ) = maxi=1,...,N {φiCi} represents the cost of a

particular task assignment φ ∈ Φ. We note that F(φ) accounts

for the assignment of tasks to bottleneck nodes and is suitable

for, e.g, finding the minimum time required to perform the

distributed computation of the M tasks.

B. Proposed Policy

The optimization problem defined in Eq. (3) can be seen

as a variation of the Linear Bottleneck Assignment Problem

(LBAP) [19]. Different from a traditional LBAP, we consider

the possibility of assigning to a particular agent (i.e., device)

more than one task. We note that while different algorithms

for solving the LBAP problem have been proposed in the

literature, e.g., [20], allowing an agent to execute more than

one task adds additional complexity to the problem. At the

same time, the assumption of homogeneous tasks allows us

to simplify the problem, which can be optimally solved with

an iterative algorithm. In what follows, we first propose an

algorithm to solve problem (3), and then prove the optimality

of the solution determined by our algorithm.

In particular, we aim to find an optimal policy φ for problem

(3). To this end, let Xα be a vector of length N , so that

Xα
i represents the number of tasks that have been assigned

to device i up to the assignment of task α, with α ≤ M . In

addition, let Y be a decision vector of length N , so that all

but one of the elements of Y are zero. Given the above, the

algorithm for finding the optimal task assignment is defined

in Algorithm 1.

C. Performance Analysis

To prove that Algorithm 1 is able to determine an optimal

solution to the optimization problem defined in Eq. (3), we

first show that starting from an optimal task assignment for

K tasks, it is possible to construct an optimal task assignment

for K + 1 tasks.

1The extension of the results of this paper to the case of non-homogeneous
tasks is considered as future work.

Algorithm 1 Cost–Optimal Task Distribution

1: X0={0, 0, 0, ..., 0}
2: for Each Task α ∈ [1, ...,M ] do

3: Y={0, 0, 0, ..., 0}

4: i = argmin((Xα−1 +
−→
1 ) ◦C)

5: Yi = 1
6: X

α = X
α−1 +Y

7: end for

Theorem IV.1. Given an optimal K tasks assignment ΓK , an

optimal K + 1 tasks assignment ΓK+1 can be obtained as

ΓK+1 = argmin
ψ∈ΨK+1

[ maxi{ψiCi|i = 1, ..., N}],

where ΨK+1 = {ψi}, ψi = ΓK + ǫi and ǫi is an all-zeros

vector with a one in position i, for each i = 1, . . . , N .

Proof. We will prove this in two steps. In the first step,

we consider the case where ΓK is the only optimal task

assignment for K tasks, while in the second step, we consider

the case of multiple K task assignments that have the same

optimal cost.

For the case where there is a unique optimal solution to

distribute K tasks, let’s assume by contradiction that ΓK+1

determined according to the above definition is not optimal.

This, in turn, means that there exists a K+1 tasks assignment

ΘK+1, such that ΘK+1 /∈ ΨK+1 and

F(ΘK+1) < F(ΓK+1). (4)

Moreover, we can consider ΘK+1 to be derived from a K
tasks assignment ΘK , such that F (ΓK) < F(ΘK) and

F(ΘK) ≤ F(ΘK+1). (5)

As a result, by combining (4) and (5), we obtain

F(ΘK) < F(ΓK+1). (6)

On the other end, assuming that F (ΘK) = ΘKmCm (i.e.,

device m is the bottleneck device that determines the overall

cost of the non-optimal task assignment ΘK), we have that

ΓKm < ΘKm. Thus, ΓKm+1 ≤ ΘKm. Now, if ΓKm+1 < ΘKm, then

F(ΓK + em) = F(ΓK) < F(ΘK+1), which contradicts the

hypothesis in (4). If ΓKm + 1 = ΘKm, instead, F(ΓK + em) =
F(ΘK) ≤ F(ΘK+1), which still contradicts the hypothesis

in (4). As a result, if ΓK is the unique optimal K tasks

assignment, then the K + 1 task assignment ΓK+1 obtained

by Theorem IV.1 is an optimal K + 1 tasks assignment.

For the case where F(ΓK) = F(ΘK), there exist at least

one ΓKm, m = 1, . . . , N such that ΓKm < ΘKm since ΓK 6= ΘK .

Thus, ΓKm+1 ≤ ΘKm which, following an argument similar to

the one describe above, results in F(ΓK+1) = F(ΓK + em) ≤
F(ΘK+1), which contradicts the hypothesis in (4).

Therefore, ΓK+1 obtained by Theorem IV.1 is an optimal

K + 1 tasks assignment.



We will now use the result of Theorem IV.1 to show that

the algorithm presented in Section IV-B returns an optimal

solution to the optimization problem (3).

Theorem IV.2. Algorithm 1 yields an optimal solution to the

optimization problem defined in Eq. (3).

Proof. In what follows, we will prove by induction on the

number of tasks M that the solution determined by Algo-

rithm 1 is an optimal solution to the optimization problem

defined in Eq. (3). For the case M = 1, the set of all

possible tasks assignment is represented by Φ = {[1, 0, ..., 0],
[0, 1, ..., 0], ..., [0, 0, ..., 1]}; as a result, we can easily see that

C1
opt = min

φǫΦ

[

max
i=1,...,N

{φiCi}

]

= min(
−→
1 ◦C), (7)

where
−→
1 is a vector of all ones. Thus, C1

opt can further be

simplified to

C1
opt = Ci, (8)

where i = argmin(
−→
1 ◦C).

Now to prove that our algorithm is capable of yielding an

optimal solution for M = 1 task, let Calgo be the cost of the

solution produced by the algorithm, defined as

C1
algo = max

i=1,...,N

{

X1
i Ci
}

. (9)

Since X
0 is initialized to a vector of zeros, as shown in

step 2 of our algorithm, C1
algo simplifies to

C1
algo = max

[

{(X 0
i + 1 )Ci}

⋃

{(X 0
j + 0 )Cj |∀j 6= i}

]

,

(10)

where X0
i is the device which is chosen at steps 4 and 5 of our

algorithm, and X
0
j is the subset of X

0 that were not chosen

at step 4 (i.e., by the argmin function). Eq. (10) can further

be rewritten as

C1
algo = max

[

{1 · Ci}
⋃

{0 · Cj |∀j 6= i}
]

= Ci, (11)

which, compared with Eq. (8), shows that C1
algo=C1

opt.

Let’s now assume that CKalgo = CKopt up to M = K , and that

XK = ΓK , where ΓK is the optimal solution for M = K .

For the case where tasks M = K + 1 we can write

CK+1
opt = min

φǫΦ

[

max
i=1,...,N

{φiCi}

]

. (12)

However, as shown in Theorem IV.1, we can restrict the search

of the optimal solution to the set ΨK+1, which has reduced

cardinality to N . This means that we can rewrite Eq. (12) as

CK+1
opt = min

ψǫΨK+1

[

max
i=1,...,N

{ψiCi}

]

, (13)

which in turn can be expanded and ultimately yields three

possible outcomes, i.e.,

CK+1
opt = min

[

ΓK
g Cg|∀lS.T.(Γ

K
l +1)Cl=ΓK

g Cg

(ΓK
g +1)Cg

(Γh+1)Ch|∀hS.T.(Γ
K
h +1)Ch>ΓK

g Cg

]

, (14)

where ΓKg Cg = CKopt, which can be rewritten as

CK+1
opt = max

i=1,...,N

[

{(ΓKi + 1)Ci}
⋃

{(ΓKj + 0)Cj |∀j 6= i}
]

,

(15)

where (ΓKi + 1)Ci, i = argmin((ΓK + 1)C).
Now for the solution determined by the algorithm, we can

write:

CK+1
algo = max{XK+1

i Ci|i = 1, ..., N}, (16)

which in turn can be simplified to

CK+1
algo = max

i=1,...,N

[

{(XK
i + 1)Ci}

⋃

{(XK
j + 0)Cj |∀j 6= i}

]

,

(17)

which, combined with Eq. (15), returns CK+1
algo = CK+1

opt .

Thus, according to Theorem IV.1, the K+1 tasks assignment

determined by the algorithm is guaranteed to be optimal,

which concludes the proof.

V. NUMERICAL RESULTS

Using the testbed described in Section II, we compared the

task distribution found using the algorithm presented in Sec-

tion IV-B with both the greedy and uniform task distribution

algorithms described previously. Each trial was started after

the correct task distribution, if applicable, was found and was

stopped when the last result of the computation was received.

We note that, when optimizing for energy, the optimization

problem presented in Section IV can be simplified to minimize

the total energy consumption of the task assignment. Neverthe-

less, the cost-optimal task distribution presented in Section IV

minimizes the maximum energy consumption required for

assigning tasks to each device, thus fairly distributing the tasks

throughout the network.

A. Performance Evaluation

For all the results presented in this section, we con-

sider a homogeneous network and define the cost vector

C = [C1, C2, . . . , CN ] of the optimization problem in

Eq. (3) such that Ci = Di(t, c, r), where t = 13B, r ∈
{10KB, 100KB, 1MB} and c is determined so that ei(c) ∈
{10ms, 100ms, 1s, 10s}. While we do not include the energy

consumption at each device (i.e.,Ei in Eq. (2)) in the definition

of the cost vector C , when our algorithm finds multiple task

assignments that result in the same delay cost, we select the

task assignment that minimizes the overall network energy

consumption. Finally, we note that different definitions of the

cost vector C are also possible. As an example, the cost Ci
defined above can additionally include a level of reliability

Ri ∈ [0, 1], thus becoming Ci = Di(t, c, r)/Ri.
1) Offloading Results: In order to validate our model, in

Figures 2-4 we plot the time required to compute a set of 50
tasks as a function of different computation/communication

time ratios, for both an Android implementation of the task

distribution as well as a simulation of the task distribution

using the model described in Section III. In these figures, the

dashed lines represent the simulated performance of the task

distribution obtained through the iterative algorithm described
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Fig. 2. Implementation and Simulation results for different computa-
tion/communication ratios. Result size is 1 MB.

in Section IV-B, while the continuous lines represent the sim-

ulated performance of a uniform task distribution for different

values of transmission throughputs. In particular, we set T tx
l =

T tx
l

∈ {72Mbps, T avgr , 0.5Mbps} in Eq. (1), where T avgr is the

average experimental throughput measured for the different

data size r (i.e., T avg10KB = 0.87Mbps, T avg100KB = 8.4Mbps and

T avg1MB = 30Mbps). The squares, diamonds and stars, instead,

represent the results obtained by implementing the Iterative,

Uniform and the Greedy task distribution policies in our real

network of Android devices, respectively.

The results in Figures 2-4 show that when the computa-

tion takes about 40 times longer than the communication, a

uniform task distribution provides the same performance as

the optimal task distribution. Below this point, there are clear

benefits in using the task distribution found with our iterative

algorithm, with gains that become more evident when the

time spent computing is comparable to the communication

time. When the communication takes significantly longer than

the computation, the optimal task distribution can complete

the set of tasks about twice as quickly as the uniform task

distribution (i.e., result size of 1MB and computation time of

10ms). Moreover, these results validate the model presented in

Section III, and show that the simulated results can provide a

good approximation of the implementation results so long as

the appropriate average link throughputs are used. Hence, our

iterative algorithm can be used to explore the performance of

computation offloading in multi-hop ad hoc networks.

The simple Greedy task distribution described in Section II

is able to adapt to the instantaneous variations in computa-

tional time (due to, e.g., operating system operation unrelated

to the actual task execution), as well as to the channel

impairments that can severely affect the actual throughput

of the communication links. As a result, the Greedy task

distribution is able to attain performance very close to the

simulated performance of the optimal task assignment with

the high WiFi Direct throughput. When minimizing the total

completion time, thanks to its adaptability to the instantaneous

system variations, the Greedy task distribution outperforms the

implementation of the optimal task assignment, thus making

it the de-facto choice for real device implementations.

To gain further insight into the differences between the
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10
-1

10
0

10
1

10
2

10
3

Ratios (Computation/Communication)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T
im

e
 [
m

s
]

10
5

Iterative Average Throughput
Uniform Average Throughput
Iterative High Throughput
Uniform High Throughput
Iterative Low Throughput
Uniform Low Throughput
Implemented Iterative
Implemented Uniform
Implemented Greedy

e (c)=10ms
i

e (c)=1s
i

e (c)=10s
i

e (c)=100ms
i

Experimental Results

Fig. 4. Implementation and Simulation results for different computa-
tion/communication ratios. Result size is 10 KB.

Greedy task distribution and our iterative algorithm, in Fig-

ure 5 we compare the average task assignments that were used

in each case. As can be seen in Figure 5(a), both the iterative

and Greedy task distribution schemes start assigning tasks in a

uniform way when the computation time (10s) is much longer

than the time spent communicating. When the situation is

reversed (i.e., communication is much longer than the 10ms

computation), instead, in some cases no tasks are actually

assigned to the furthest node (see Figure 5(d)). Overall, these

results show that the throughput used to compute the optimal

task assignment is over estimated, which is particularly evident

by the fact that the device that is generating the tasks (i.e, the

device at 0 hops), is most of the time computing fewer tasks

than when using the Greedy approach.

2) Benefits of Offloading to Multi-hop Neighbors: The

results presented in the previous section show that a Greedy

task assignment can adapt to changing computation and com-

munication environments and hence can return all the tasks

in the least amount of time. However, our iterative algorithm

provides a task distribution that is close to that provided

by the Greedy algorithm. Additionally, the results in the

previous section show that the simulated results match the

implementation results and, as a consequence, simulations

based on the model from Section III can be used to provide

insight into the performance of the system. Thus, in what

follows we use the analytical model and the iterative algorithm

described in Sections III-IV to further explore the gains that

can be achieved by extending the distributed computation to
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Fig. 5. Task distribution for the Greedy and Iterative approach with result
size fixed to 1 MB.
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all the available network resources.

In particular, in order to highlight the benefits of offloading

the computation to all the mobile devices in a network, in

Figure 6 we compare the gain in time to complete all 50 tasks

relative to a task distribution that only utilizes one additional

device (i.e., single-hop task distribution as considered in the

literature [9]–[11]) with: a) offloading the computation to all

of the nearest neighbors of the device that is generating the

tasks (i.e., Single Group), and b) offloading the computation to

a multi-hop network (i.e., 2-hops, 3-hops and 4-hops network).

As shown in Figure 6, in this simulation we consider a tree-

like network with the root node generating the tasks having

four children nodes, and each subsequent child servicing one

additional node. This network extends for 2, 3 or 4 hops,

resulting in a total of 4 devices in the source node’s group

that can be used for group task distribution, and 8, 12 and 16
devices that can be used for network task distribution.

Finally, Figure 6 clearly shows the benefit of offloading to

a multi-hop network. In particular, offloading to the larger

network provides up to 30% faster computation time than

offloading the tasks only to the first group, and a gain of up to

88% against offloading to only a single device (as is currently

supported in the literature).

VI. CONCLUSIONS

In this paper we explored the benefits of enhancing mobile

to mobile computational offloading in multi-hop cooperative

networks. By implementing a multi-hop computational of-

floading system, we were able to implement different task

distribution algorithms and verify the accuracy of an analytic

model and implemented different task distribution strategies.

Using this model, we were able to show the overall benefit

of enabling offloading to multi-hop neighbors in a network,

which can be quite large when the time to compute is much

higher than the time to communicate the data. In our future

work, we will explore the inter-relation between relay nodes

and nodes that are assigned tasks. In this way, we can avoid

routing data through computation bottlenecks, as well limiting

the number of tasks assigned to nodes that are pertinent for

facilitating communication.
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