
Enabling Multi-hop Ad Hoc Networks Through
WiFi Direct Multi-group Networking

Colin Funai, Cristiano Tapparello, Wendi Heinzelman
Department of Electrical and Computer Engineering, University of Rochester,

Rochester, NY, USA (firstname.lastname@rochester.edu)

Abstract— With the increasing availability of mobile devices
that natively support ad hoc communication protocols, we are
presented with a unique opportunity to realize large scale ad
hoc wireless networks. Recently, a novel ad hoc protocol named
WiFi Direct has been proposed and standardized by the WiFi
Alliance with the objective of facilitating the interconnection of
nearby devices. However, WiFi Direct has been designed following
a client-server hierarchical architecture, where a single device
manages all the communications within a group of devices. In
this paper, we propose and analyze different practical solutions
for supporting the communications between multiple WiFi Direct
groups using Android OS devices. By describing the WiFi Direct
standard and the limitations of the current implementation
of the Android WiFi Direct framework, we present possible
solutions to interconnect different groups to create multi-hop
ad hoc networks. Experimental results show that our proposed
approaches are feasible with different overhead in terms of
energy consumption and delay at the gateway node. Additionally,
our experimental results demonstrate the superiority of tech-
niques that exploit the device ability to maintain simultaneous
physical connections to multiple groups, enabling multi-hop ad
hoc networks with low overhead.

I. INTRODUCTION

The growing popularity of mobile devices such as tablets
and smartphones, combined with their native support of ad
hoc communication protocols, has brought forth research and
development of new ad hoc communication techniques. For
instance, starting from Android 4.0, Google has introduced
a WiFi peer to peer framework [1] to its mobile operating
system, while Apple has introduced a framework for en-
abling ad hoc mesh networking among iOS devices [2]. The
idea of extending the cellular infrastructure through ad hoc
communication has also been proposed, and a standard for
allowing direct communication between nearby mobile devices
has recently been added to LTE [3]. It is easy to imagine a
future where cellular service providers capitalize on ad hoc
communications to extend the cellular coverage.

The diffusion of these new paradigms for ad hoc communi-
cation has in turn encouraged researchers to investigate their
impact on the users’ experience. Several studies showed that
using an ad hoc communication technology has the potential to
improve both the spectral efficiency and the device battery life
while, at the same time, providing better resource utilization
for infrastructure-communications protocols like WiFi [4].

Over the years there have been many attempts to enable
direct communications between IEEE 802.11 radio devices,
such as IEEE 802.11 DCF, 802.11s, and 802.11z. While these

protocols each have their application areas, their diffusion is
quite limited. Recently, a new IEEE 802.11 based protocol
named WiFi Direct [5] has been released by the WiFi Alliance
to address the shortcomings of IEEE 802.11 DCF. WiFi Direct
is now natively included in most of the modern mobile devices
and, due to its diffusion and promising performance, it is
receiving considerable attention from the research commu-
nity [6]–[8]. WiFi Direct aims to enhance WiFi based ad hoc
communications [7] and has been designed with energy saving
mechanisms leading to higher energy efficiency. With WiFi
Direct, devices are organized in groups, where one member of
the group is the Group Owner (GO) and all the other devices
are Group Members (GM). Being built on top of WiFi, groups
are able to also support legacy clients, devices that do not
support WiFi Direct but support WiFi.

Multi-hop wireless networks have been largely devel-
oped to meet the needs of a variety of applications where
infrastructure-based wireless networks are difficult to deploy
and maintain. Most applications require the participating nodes
to be able to route data to help extend network connectivity.
These protocols have mainly been used for tactical military
communications, first responder applications and sensor net-
work operations.

Given the wide availability of WiFi Direct devices, multi-
group WiFi Direct communications can be used to create
multi-hop ad hoc networks, greatly benefiting many scenarios
where the communication infrastructure is either overloaded,
damaged or not present. However, the WiFi Direct standard [5]
defines only intragroup communications, with the GO being
at the center of all the communications, but does not preclude
a WiFi Direct device from simultaneously operating as a
member of more than one group.

In this paper, we explore different practical methods for
allowing the communication among devices that belong to
different WiFi Direct groups. Starting with stock Android and
its implementation of WiFi Direct, we shed some light on the
limitations and design considerations for realizing multi-group
communication on mobile devices running Android 4.4.2. To
overcome these limitations, we first propose and analyze a
TCP-based time sharing mechanism where the device that
connects multiple groups, referred to as the gateway node,
is required to iteratively switch between different WiFi Direct
groups in order to relay data from one group to the other.
We then exploit a particular configuration that allows for a
device to be simultaneously connected to two different groups,



to implement and analyze the performance of a UDP-based
broadcast technique as well as a UDP/TCP hybrid solution.
In addition, we consider how to implement intergroup com-
munication when not limited to a stock version of Android,
and present a few changes that can be made to the current
WiFi Direct implementation in order to facilitate intergroup
communication. Finally, we discuss the tradeoffs in terms
of both energy and time when implementing these different
approaches. Our simple, yet effective approaches can be used
as building blocks for realizing a WiFi Direct based Mobile
Ad Hoc Network by interconnecting Android devices.

A similar idea has recently been proposed in [9]. The
authors in [9] propose a multi-group data dissemination pro-
tocol in which Android devices belonging to different groups
collaborate with each other by broadcasting UDP packets, as
in our UDP-based solution. However, the protocol presented
in [9] is based on a particular logical topology that requires,
in addition to the gateway node, the presence in every group
of an additional relay node. We will examine the benefits and
issues with this approach in Section III-C.

The rest of the paper is organized as follows. Section II
provides some background on the WiFi Direct standard. Sec-
tion III briefly describes the current Android implementation
of WiFi Direct, its limitations, and our solutions to realize
multi-group networking with Android devices. In Section IV
we discuss our experimental results, highlighting the energy
consumption and evaluating the delay of the different methods
considered. Section V concludes the paper.

II. WIFI DIRECT

A. Single-group Communications

WiFi Direct [5] is a standard released by the WiFi alliance
that enables ad hoc communication between nearby devices,
without requiring a wireless Access Point (AP). WiFi Direct
utilizes IEEE 802.11 a/b/g/n infrastructure mode, and can
transmit either at 2.4 GHz or 5 GHz.

During ad hoc communication, devices form a group were
one of them is the Group Owner (GO) and all the others
are considered Group Members (GM). It is important to note
that these roles are not predefined but are negotiated during
the construction of the group and remain fixed for the entire
duration of the group. Additionally, WiFi Direct groups can
also include standard IEEE 802.11 nodes that do not support
WiFi Direct and are referred to as Legacy Clients (LC).

The nodes that support WiFi Direct go through a group
formation process in order to determine the roles of the GO
and the GMs. There are three group formation cases: standard,
persistent and autonomous [5], [7]. During the standard group
formation, the nodes listen on channels 1, 6, and 11 in the
2.4 GHz band and, after finding another device, they negotiate
as to which will act as the GO. This is done in a handshake
process, where the devices exchange an intent value, and the
device with the highest value becomes the GO. After the roles
have been established, the devices go through a WiFi Protected
Setup (WPS) Provision phase and, after completion, the GO
assigns an IP address using the Dynamic Host Configuration

Protocol (DHCP). The persistent group formation process
allows for a faster reconstruction of previous groups. During
the persistent group formation, the GO negotiation phase is
replaced by an invitation exchange, and the WPS Provisioning
process is significantly reduced by reusing the stored network
credentials. In autonomous group formation, a node assigns
itself the role of GO and creates its own group.

According to the standard [5], the GO represents an AP-
like entity that provides basic service set (BSS) functionality
and services for the associated clients. Acting as a soft AP,
the GO advertises and allows nodes to join the group. The
advertisement and group maintenance are performed through
beacon packets, just like a typical IEEE 802.11 AP, and the
GO is responsible for giving control of the channel to nodes
in its network as well as routing data through clients in its
group1. As a result, the group topology is a 1 : N hierarchical
structure, where multiple clients (i.e., GMs and LCs) are
connected to one GO.

WiFi Direct devices can operate concurrently with an in-
frastructure wireless network, through multiple physical or
virtual MAC entities. Moreover, the specification [5] does not
preclude a WiFi Direct device from simultaneously operating
as a member of more than one group. However, both the
multiple MAC functionalities and the simultaneous operations
in multiple groups are out of scope of the standard.

B. Multi-group Communications

Our focus is to investigate the feasibility and relative per-
formance of different techniques for allowing communication
between different WiFi Direct groups. In this regard, in order
to act as a gateway between two (or more) WiFi Direct groups,
a device can use the MAC virtualization functionality de-
scribed earlier. Thus, the physical radio interface can be shared
by multiple separate MAC entities that independently use the
hardware. Following the same principle, a device can act as
a gateway between a local ad hoc network and the Internet,
through the simultaneous connection to an infrastructure AP.
We note that, when connected to a standard WiFi AP, the
device is in fact acting as a LC since it is not leveraging the
WiFi Direct protocol.

Given the above, we envision two possible scenarios in
which a device can act as a gateway between two separate
groups: the first where the gateway node acts as a client in
both groups (see Figure 1), and the second scenario in which
the gateway is the GO of one group and a client in the other
(see Figure 2). Extensions of these scenarios to more than two
groups or the case in which the GO hosts more than one group
are also possible. However, the case in which the GO hosts
more than one group only allows for an increase in the number
of clients that the GO can simultaneously serve.

III. MULTI-GROUP NETWORKING ON ANDROID DEVICES

As described in the previous section, a traditional WiFi
Direct network topology is represented by a hierarchical struc-

1Routing data between clients in a group is allowed but not defined by the
standard.



GM

GMGO

GO

GOGM

LC GO

LCGO LC GO

Node A Gateway Node B

a)

b)

c)

Figure 1. Multi-group communication scenarios where the gateway node acts
as a client in two groups.

GO GM

GO LCGM GO

GOLC

GO GMGM GO

GO LC GOLC

Node A Gateway Node B

a)

b)

c)

d)

Figure 2. Multi-group communication scenarios where the gateway node acts
as the GO in one group and as a client in the other.

ture, where the GO is at the center of all the communications,
but multi-group communications are allowed by the standard
specification. In principle, it is therefore possible to realize
a multi-group wireless network where some of the devices
are clients, or simultaneously a GO and a client, of more
than one group. However, the MAC virtualization and the
simultaneous operations in multiple groups are not required
by the standard, and thus their availability depends on the
actual implementation.

In what follows, we first provide a high level description of
the Android implementation of WiFi Direct, we then present
the limitations of using stock Android, and we finally describe
our proposed methods for realizing intergroup communications
with stock and non-stock Android devices.

A. WiFi Direct on Android

Android has included support for WiFi Direct since version
4.0 (API level 14), within the Android’s Wi-Fi P2P frame-
work [1]. This framework complies with the WiFi Alliance’s
WiFi Direct certification program. Using the Android APIs,
a developer can discover and connect to other devices that
support WiFi Direct and then communicate over an ad hoc
connection. The WifiP2pManager class provides all the meth-
ods that allow the interaction with the WiFi hardware, like
discover, connect and disconnect to peers. Due to the interac-
tion with the hardware, all these methods are asynchronous,
and the framework uses listeners to notify the application of
the status of a call.

In order to use the WifiP2pManager functionalities, an
Android application needs to have access to the hardware and
run on a device that supports the WiFi Direct protocol. If both
these conditions are satisfied, the WifiP2pManager undergoes
an initialization process, where all the WiFi Direct related
services are started. This allows the device to react to WiFi
Direct events, like client discovery and connection.

For establishing an ad hoc connection, a device needs
to discover nearby peers that support WiFi Direct and are
available for connection. After a device is discovered, the
actual connection can be made. If one of the two devices
is already a GO of an existing group, the other joins the
group as a GM, while if none of them is a GO or a GM,
according to the WiFi Direct protocol described earlier, the
devices negotiate their role within the group. Moreover, if a
GO sends a connection request to the GM of another group,
the connection is refused, and if a device sends a request to a
GM, the GM forwards the request to its GO. We note that a
device can be a GO of a group without any connected clients.

After the connection, the GO acts as a DHCP server and
assigns an IP address to the clients. The DHCP scope is fixed
by the framework and cannot be modified by the developers.
As a result, GOs of different groups always have the same IP
address (192.168.49.1), while the connected clients receive an
IP address at random from the same range (192.168.49.2-254).

The GO advertises its group through a unique Service Set
ID (SSID), that can be used by devices that do not support the
framework (i.e., LC) to join the group. In Android, standard
WiFi operations, like scanning for available networks and the
connection to infrastructure APs, are handled by the WiFi
framework. Developers can use the WifiManager class to
perform WiFi specific functionalities.

For a detailed description of the WiFi and WiFi Direct
frameworks and the relative APIs, we refer interested readers
to the Android API guides [10].

B. Limitations of Stock Android
Even though Android is an open-source operating system,

it provides a certain set of limitations in the way in which the
developer can interact with the different services and hardware.
We acknowledge that these limitations can be removed by
reprogramming the operating system (e.g., rooting the device).
However, this operation is non trivial for an average user and
its legality is still controversial in several countries. Thus, we
first focus on devices that run stock Android so that we can
provide a general methodology for allowing WiFi Direct multi-
group networking on a broader set of devices.

Using stock Android, intergroup communications need to
be handled at the application layer, and all the transport and
network layer functionalities, like setting the IP address and
managing the routing table, cannot be performed natively.
Moreover, the developer is not allowed to create either custom
virtual network interfaces nor multiple virtual MAC entities.
As a result, the methods described in Section II-B, where a
device simultaneously operates in multiple WiFi Direct groups
either as a GO or a GM, cannot be implemented directly.



Nevertheless, our experiments show that the WiFi Direct
functionalities are able to concurrently operate with an infras-
tructure wireless network2, through the simultaneous utiliza-
tion of the WifiP2pManager and WifiManager. In this case, we
infer that the OS is in fact virtualizing the network interface
(or the MAC). Following the same rationale, we exploited
the GO group advertisement process and connected a device
participating in a WiFi Direct group to a second group as a LC,
using the WiFiManager. While this operation was allowed and
the connection between the devices was correctly established,
we were not able to create a unicast communication to and
from the gateway node. In particular, for the scenario b) of
Figure 1, the gateway was able to receive data from both
Node A and Node B, but was not able to communicate with
either one of them; for the scenarios a) and d) of Figure 2,
instead, the gateway was able to communicate with Node
A, while the communication with Node B was not allowed.
According to our experiments, this is due to the fact that
the DHCP protocol assigns the same IP address to multiple
GOs, thus creating routing problems. A flooding like UDP-
based communication protocol can overcome this limitation,
as described in Section III-C.

C. Proposed Solutions
Time Sharing. Given the limitations of the current Android

implementation of WiFi Direct and the restrictions on imple-
menting routing functionalities at the application layer, we
propose a time sharing mechanism in which the gateway node
switches between two (or more) groups. In this way, all the
scenarios presented in Figures 1 and 2 can be successfully
implemented. We note that there is no built in switching
functionality, rather switching is comprised of a disconnection
from the current group, a request to scan for active nodes, and
a request to connect to a new group. In what follows, we
describe the main differences between the different scenarios.

We start by analyzing the scenarios in Figure 1. In these
cases, the gateway node acts as a client in both groups and
iteratively connects to and disconnects from the two groups.
Scenarios a) and b) are limited to devices that support WiFi
Direct: while in case a) the gateway can fully exploit the
WiFi Direct protocol, case b) can potentially provide some
gains in terms of switching time since it is using both the
WiFiManager and the WiFiP2pManager. A special case is
represented by case c), where the gateway is a LC in both
groups. This method relies solely on the WiFiManager, thus
allowing devices that do not support WiFi Direct to take on the
role of routing information between different groups. By acting
as a LC, the gateway cannot capitalize on the WiFi Direct
power saving mechanisms, but it follows the same process
required for switching connections between traditional WiFi
APs. While methods described in a) and b) have the potential
for a faster and seamless bridging of groups, the method in c)
allows for any device to act as a gateway node, allowing for
a more inclusive network.

2We note that this functionality is not described in the Android APIs [10].

The scenarios in Figure 2, instead, consider the situation
in which the gateway node is a client in one group and acts
as a GO of the other. In these cases, the switching process
potentially requires more time then the methods described in
Figure 1 because all of the operations required to create one of
the groups need to be performed every time the gateway node
ceases to be the GO. The role and responsibilities of being a
GO are negotiated during the group formation and cannot be
transferred [5]. Scenarios b) and c) in Figure 2 fully exploit
the WiFi Direct protocol, while scenarios a) and d) use both
WiFi Direct and the standard WiFi functionalities.

Simultaneous Connections. As described in Section III-B,
by combining standard WiFi and WiFi Direct functionalities
into the gateway node, it is possible for the gateway node
to simultaneously maintain a physical/MAC layer connection
to two groups. However, this imposes some restrictions on
the actual application data exchange. We thus explored the
different scenarios presented in Figures 1 and 2 that utilize
both WiFi Direct and WiFi, with the objective of finding a
suitable configuration and communication protocol that allow
for intergroup data exchange.

To this end, we ran several experiments by implementing
the different scenarios from Figures 1 and 2 with the different
network sockets (e.g, stream, datagram and multicast sockets)
provided by Android. We found that when combining a
LC/GM (or, equivalently, GM/LC) gateway node with a mul-
ticast socket, a specific implementation of the UDP datagram
socket, the gateway node is able to forward data between
the two groups. This is because the multicast socket allows
the node to specify the particular interface to be used by the
socket for receiving and transmitting data packets. We note that
this functionality is not available for a traditional datagram or
stream socket, and Android follows a weak end system model
(i.e., routing decision are based only on the destination IP
address and type of service) [11]. Moreover, it is important
to note that the multicast socket encapsulates a one-to-many
unicast communication and, as a result of this, cannot fully
utilize the total available WiFi and WiFi Direct bandwidth.

From our experiments, the same gateway configuration
allows the gateway node to receive and send data over the LC
link (i.e., the standard WiFi) while simultaneously connected
to both groups also with a unicast socket, while no data can
be routed with a unicast socket over the WiFi Direct link.
This is due to the fact that Android prioritizes the WiFi link
over the WiFi Direct link. We thus propose a simple protocol,
referred to as Hybrid, that exploits this functionality and uses
the multicast socket as a control channel that, if necessary,
triggers a gateway node configuration change. According to
this protocol, the group that has data to send to the other
group, uses the control channel to notify the gateway node.
After the reception of the control message, the gateway node
checks if it is connected to this group as a LC or a GM. In
the first case, the gateway is allowed to receive data, thus it
notifies the source and it starts receiving data. After receiving
the data, the gateway disconnects from the first group and
forwards the data to the second group using a TCP connection.



In the second case, instead, the gateway node is not allowed
to receive data from the WiFi Direct link. Thus, it notifies
the source, disconnects from both groups and connects back
with the right configuration (i.e., it switches from GM/LC to
LC/GM). At this point the communication continues as in the
previous case. We note that this change in configuration can be
avoided if a second gateway node is present (i.e., one gateway
node is a GM/LC while the other gateway node is an LC/GM).

A data dissemination protocol that follows a similar ap-
proach has recently been proposed in [9]. The protocol pre-
sented in [9] operates under the assumption that an additional
relay node is present in each group. This protocol uses the
configurations a) and d) of Figure 2, and exploits the additional
relay node to forward information from the GO to the gateway
node. By doing so, the method presented in [9] mitigates the
fact that the gateway node has the same IP address as its
GO. However, this does not provide seamless communication
between two groups, since a TCP connection defaults to the
WiFi interface (i.e., only the LC link can use TCP sockets).
As a result, the gateway node transmits data to the other
nodes in its group by broadcasting UDP packets. While this
protocol does not require any configuration change, it requires
the presence of an additional relay node in every group
(which cannot always be guaranteed), and adds an additional
communication hop.

In order to fully explore the WiFi Direct protocol for multi-
group networking, we downloaded the source code of Android
4.4.2 and modified the existing implementation of WiFi Direct
to assign a unique IP address to the GOs and change the
DHCP range accordingly (the IP address and DCHP range
are statically defined inside the WifiP2pService). This simple
modification allows the simultaneous operation of a gateway
node that uses both the WiFi and WiFi Direct interfaces.
Further modifications are required for creating multiple WiFi
Direct interfaces. This requires changing the WifiP2pService to
instantiate different NetworkInterfaces as well as to change the
SystemServer and the Context to instantiate a new WiFi Direct
Service and a new identifier for this service, respectively.

IV. PERFORMANCE EVALUATION

In this section we evaluate the impact at the gateway node of
allowing multi-group WiFi Direct communications. We mea-
sured both the time and the energy required to forward data
between two groups. Our proposed schemes were implemented
using three second generation Asus Nexus 7s, which were
released in 2013. The 2013 Nexus 7 has 16 GB of storage, 2
GB of memory, and a 1.5GHz quad-core Snapdragon S4 Pro
8064 CPU [12]. Each of our devices are running Google’s
Android version 4.4.2.

A. Test Environment
Similar to the work in [13], we measured the current from

the battery for each of our experiments using an Arduino
Uno [14]. To this end, we added a 0.005Ω±1% shunt resistor
in series with the battery and measured the voltage across the
resistor to obtain the current. However, the voltage drop across
this resistor was too small to be read by the Arduino Uno [14].

We therefore configured an op-amp to act as a non-inverting
amplifier with a gain of 977. This allowed the Arduino’s
analog input to read the voltage across the resistor throughout
the tests. Additionally, due to the non-linear properties of
lithium-ion batteries [15] [16], like the one used in the Nexus
7, we restricted our experimental measurements to battery level
above 70%. [16] has shown that for battery levels between
60% and 100%, the internal impedance of lithium-ion batteries
scales almost linearly with regard to the state of charge.

All of the measurements were taken in an indoor workspace,
and the nodes were stationary during these experiments. We
acknowledge that in real life, nodes are generally mobile,
and may enter or leave a network. However, to accurately
determine the impact of the switching process on the gateway
node and to limit the variability across different experiments,
we kept the nodes stationary. Moreover, all the results of this
section have been obtained with the screen turned off.

For all the scenarios presented in Figures 1 and 2, we
consider a situation in which the gateway must relay 10 MB
of data between Node A and Node B. Thus, the gateway
first receives all the data from one node, and then sends
the data to the other node following one of the techniques
described in Section III-C. For the Time Sharing experiments,
we measured the energy and time required for the switching
process, from the disconnection from the first group to the
actual availability of the second link. We assumed that the
gateway is able to communicate with the second node as
soon as the operating system updates the ARP table with its
address. For the Simultaneous Connections solutions, instead,
we measured the total time and energy consumption required
to relay the data between Node A and Node B, since there is
no actual switching between groups. Moreover, all the groups
are considered to be persistent to allow for a faster switching
between the two groups, that we assume to be known by
the gateway. This accounts for the situation in which the
gateway node switches between the groups multiple times3.
All the results presented in this section are obtained over
50 runs of the same experiment, where the gateway node
forwards the data between Node A and Node B. However,
we also performed some continuous tests where the gateway
node exchanges data back and forth between the two groups
and found consistent results (i.e., the total time and energy
consumption of the continuous tests were simply the sum of
the time and energy for the isolated tests).

B. Numerical Results - Time Sharing
To measure the amount of energy and time required to

switch between the two groups, we performed isolated tests
to determine the impact that the switching process has on a
particular node. We first established some baseline measure-
ments for the transmission and reception energy consumptions.
Using the experimental setup described above and Iperf [17],
we measured the average energy required to send (and receive)
10 MB of data between devices, when acting as a GO, a GM or

3We acknowledge that, when creating the groups for the first time, the
energy and time required are on average higher.



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

GO-GM/GM-GO

GO-LC/GM-GO

GM-GO/GM-GO

LC-GO/GM-GO

GO-GM/LC-GO

GO-LC/LC-GO

GM-GO/LC-GO

LC-GO/LC-GO

GO-LC/GO-GM

GO-GM/GO-GM

GO-GM/GO-LC

GO-LC/GO-LC

Ti
m

e 
[s

]
Group Creation

WiFi Scan and Connect

WiFi Direct 
Scan and Connect

Figure 3. Experimental Measurements. Time required to switch between two
groups for the different scenarios described in Section II-B.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

GO-GM/GM-GO

GO-LC/GM-GO

GM-GO/GM-GO

LC-GO/GM-GO

GO-GM/LC-GO

GO-LC/LC-GO

GM-GO/LC-GO

LC-GO/LC-GO

GO-LC/GO-GM

GO-GM/GO-GM

GO-GM/GO-LC

GO-LC/GO-LC

En
er

gy
 [J

]

WiFi Direct Scan and Connect

WiFi Scan and Connect

Group Creation

Figure 4. Experimental Measurements. Energy required to switch between
two groups for the different scenarios described in Section II-B.

a LC. We then logged the total energy required at the gateway
node to receive the 10 MB data, switch and transmit the data
to the other group. Finally, we subtracted the reception and
transmission energy from the total energy to determine the
energy required for switching between the groups.

In Figures 3 and 4, we plot the time and energy, respectively,
required to switch between the two groups, for all the scenarios
described in Section II-B. Figure 3 shows that the switching
time depends only on the method used by the gateway node
for connecting to the second group. In particular, the lower
switching times are achieved by the gateway that connects to
an existing group as a LC. This is because the Android API
that manages the standard WiFi connection allows to scan and
connect to an existing AP faster than the WiFi Direct API,
that instead relies on a combination of asynchronous call and
event notifications. As a result, when connecting as a GM,
the gateway is either able to join the second group in less
than 500ms (see the minimum values of cases */GM-GO in
Figure 3) or, in other cases, the switching process can require
even more than 8s. We note that these variable connection
times are due to the WiFi Direct protocol that requires, during
the group formation process, an initial discovery phase where
each device iteratively searches and listens over channels 1, 6

and 11 for nearby clients [5] [7].
When the gateway creates the second group and acts as a

GO, instead, the average switching time is around 4s, with
lower connection times for the case in which it is connecting
to a LC. It is important to notice that when the gateway node
acts as a GO for the second group, it cannot send connection
requests to the LC. In this case, instead, the LC is constantly
scanning for the second group and, as soon as the gateway
creates the group, it will connect to the group.

Our results are in line with the experimental evaluations of
the WiFi Direct protocol presented in [7] and [8]. For exam-
ple, [8] showed that the average time required for a device to
autonomously create a group and immediately become a GO
(autonomous group formation) is 3s, while the average time
required for a node to join an existing group is 6s.

Regarding the energy, Figure 4 shows that the energy
required to switch between two groups is similar across the
different scenarios, with the exception of the cases in which
the gateway is required to switch from a LC to a WiFi
Direct node, e.g., a GO or a GM. This is due to the fact
that the Android WiFi Direct implementation is built on top
of the standard WiFi APIs but it requires some additional
initialization (i.e, starting the WiFi Direct services) before the
device can actually use the WiFi Direct protocol. For the same
reason, switching between WiFi Direct roles or from a WiFi
Direct role to a LC, instead, does not provide any significant
impact on the energy consumption of the node. In addition, we
note that even if the energy consumed by the gateway node
when switching as a LC is comparable and, in some cases,
lower than the energy required by the other scenarios, this
energy is consumed in a short amount of time (i.e., around
500ms in Figure 3) and thus the power consumption of this
operation is much higher. This is because the LC implements
a more aggressive approach for scanning and connecting to
an existing group, that causes the higher power consumption
when compared to the other methods.

C. Numerical Results - Simultaneous Connections
We now focus on the gateway node configurations that allow

for simultaneous connections in two WiFi Direct groups. In
this regard, in Figures 5 and 6 we plot the time and energy,
respectively, required to transfer 10 MB of data between the
two groups, for the scenarios in which the gateway node acts as
a LC in one group and a GM in the other (i.e., scenarios GO-
LC/GM-GO and GO-GM/LC-GO). We remind the reader that
in these configurations (except for the Time Sharing scenarios
that are included for comparison), the gateway node is allowed
to maintain a simultaneous physical connection to both groups
(see Section III-C). Figures 5 and 6 show that substantial gains
in both time and energy can be achieved by the techniques
that allow for simultaneous connection in both groups. As
expected, the best performances are attained by the non-stock
Android implementations, which represent the lower bound
on the performance achievable by any scheme. Nevertheless,
both the UDP Multicast and the Hybrid approaches perform
very close to the lower bound, with the exception of the



 0

 5

 10

 15

 20

 25

 30

 35

Time Sharing - LC/GM

Time Sharing - GM/LC

UDP Multicast - LC/GM

UDP Multicast - GM/LC

Hybrid - LC/GM

Hybrid - GM/LC

Non-Stock - LC/GM

Non-Stock - GM/LC

Ti
m

e 
[s

]
GMGO LC GO

Time Sharing

Simultaneous Connection

(data tx + switching)

Figure 5. Experimental Measurements. Time required to transfer 10 MB of
data between two groups for a gateway node acting as LC and GM.

 0

 2

 4

 6

 8

 10

 12

Time Sharing - LC/GM

Time Sharing - GM/LC

UDP Multicast - LC/GM

UDP Multicast - GM/LC

Hybrid - LC/GM

Hybrid - GM/LC

Non-Stock - LC/GM

Non-Stock - GM/LC

En
er

gy
 [J

]

GMGO LC GO

Time Sharing

Simultaneous Connection

(data tx + switching)

Figure 6. Experimental Measurements. Energy required to transfer 10 MB
of data between two groups for a gateway node acting as LC and GM.

GM/LC configuration that requires a higher time and energy
consumption. This is due to the encapsulation of a one-to-
many unicast communication protocol that impacts the data
reception over the WiFi Direct link of the UDP Multicast
approach, and to the configuration switch of the Hybrid
scheme. Moreover, we note that while the Time Sharing,
Hybrid and Non-Stock implementations use TCP sockets for
reliable data transmission, the UDP Multicast communication
does not implement any retransmission mechanism and, as
such, is subject to a variable data loss (in our experiments, an
average of 93% of the total data was successfully delivered).

Finally, while all the results presented in this section were
obtained using a 2013 Nexus 7 [12], similar conclusions can
be drawn when changing to a different device. In particular,
we ran the tests presented in this section on a 2012 Nexus
7, which has a completely different hardware configuration
(e.g, different memory, processor and wireless chipset), with
Android 4.4.2 and found similar relative results in term
of transmission/reception and switching time, but an overall
higher (almost doubled) energy consumption for all schemes.
These results suggest that similar conclusions can be drawn
for different Android devices.

V. CONCLUSIONS

In this paper, we propose and explore different practical
methods for enabling multi-hop ad hoc networks using the
WiFi Direct standard. We present the limitations of enabling
WiFi Direct multi-group communication, and we propose and
analyze different simple, yet effective mechanisms to allow
the communications between devices belonging to different
groups. For all the proposed methods, we discuss the achiev-
able tradeoffs in terms of both time and energy.

Our experimental results show that a faster switching time
can be achieved by connecting to an existing group as a
legacy client, at the expense of a higher power consumption.
In addition, switching from standard WiFi to WiFi Direct
entails a higher energy consumption, when compared to all
the other scenarios. Better performance can be achieved by
techniques that exploit the device ability to maintain simulta-
neous physical connections to two groups. In particular, the
Hybrid approach, where a UDP multicast communication is
used as a control channel for triggering a configuration switch,
allows for a reliable data transfer between groups and attains
performance close to a non-stock Android implementation.

Future work includes the inclusion of a routing protocol, and
further modifications to the Android OS to allow simultaneous
communication over multiple WiFi Direct interfaces.

REFERENCES

[1] “Android Developers - Wi-Fi Peer-to-Peer.” [Online]. Available:
http://developer.android.com/guide/topics/connectivity/wifip2p.html

[2] “iOS Developer Library - Multipeer Connectivity Framework.” [Online].
Available: https://developer.apple.com/library/ios/

[3] “3GPP Release 12.” [Online]. Available: http://www.3gpp.org/release-12
[4] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device

communication in cellular networks,” ArXiv e-prints, Apr. 2014.
[5] Wi-Fi Alliance, P2P Task Group, “Wi-Fi Peer-to-Peer (P2P) Technical

Specification, Version 1.2,” Dec. 2011.
[6] D. Camps-Mur, X. Pérez-Costa, and S. Sallent-Ribes, “Designing energy

efficient access points with Wi-Fi Direct,” Comput. Netw., vol. 55, no. 13,
pp. 2838–2855, Sep. 2011.

[7] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, “Device-to-device
communications with Wi-Fi Direct: overview and experimentation,”
IEEE Wireless Commun., vol. 20, no. 3, pp. 96–104, Jun. 2013.

[8] M. Conti, F. Delmastro, G. Minutiello, and R. Paris, “Experimenting
opportunistic networks with WiFi Direct,” in Wireless Days (WD),
Valencia, Spain, Nov. 2013.

[9] C. Casetti, C. F. Chiasserini, L. Curto Pelle, C. Del Valle, Y. Duan,
and P. Giaccone, “Content-centric routing in Wi-Fi Direct multi-group
networks,” ArXiv e-prints, Dec. 2014.

[10] “Android API Guides.” [Online]. Available: https://developer.android.
com/guide/index.html

[11] “RFC1122, Requirements for Internet Hosts – Communication Layers.”
[Online]. Available: http://tools.ietf.org/html/rfc1122

[12] “Asus Nexus 7 (2013).” [Online]. Available: http://www.asus.com/
Tablets Mobile/Nexus 7 2013/

[13] R. Friedman, A. Kogan, and Y. Krivolapov, “On power and throughput
tradeoffs of WiFi and Bluetooth in smartphones,” IEEE Trans. Mobile
Comput., vol. 12, no. 7, pp. 1363–1376, Jul. 2013.

[14] “Arduino uno.” [Online]. Available: http://arduino.cc
[15] D. Rakhmatov and S. Vrudhula, “Energy management for battery-

powered embedded systems,” ACM Trans. Embed. Comput. Syst., vol. 2,
no. 3, pp. 277–324, Aug. 2003.

[16] M. Coleman, C. K. Lee, C. Zhu, and W. Hurley, “State-of-charge
determination from EMF voltage estimation: Using impedance, terminal
voltage, and current for lead-acid and lithium-ion batteries,” IEEE Trans.
Ind. Electron., vol. 54, no. 5, pp. 2550–2557, Oct 2007.

[17] “Iperf.” [Online]. Available: https://iperf.fr


