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Abstract—In this paper we devise efficient optimization tech-
niques to find optimal routing and scheduling policies for wireless
ad hoc networks in the presence of multi-user interference and
cooperative transmissions. Our focus is to assess the impact of
interference among distinct data flows on optimal routing paths
and related transmission schedules. In our reference scenario,
all nodes have a single antenna and can cooperate in the trans-
mission of packets. Given that, we first model the cooperative
transmission problem using linear programming (LP). Thus,
for an efficient solution, we reformulate the joint routing and
scheduling problem as a single-pair shortest path problem, which
is solved using the A

∗ search algorithm through specialized
heuristics. Simulation results of the obtained optimal policies
confirm the importance of avoiding interfering paths and that
interference-aware routing can substantially improve the network
performance in terms of throughput and energy consumption,
even when the number of interfering paths is small. Our models
provide useful performance bounds for the design of distributed
cooperative transmission protocols in ad hoc networks.

I. INTRODUCTION

In the past few years wireless networks with interference
have been intensively studied, starting from the seminal work
by Gupta and Kumar [1]. In [2] it is proven that computing
optimal paths considering interference between simultaneous
flows is an NP-hard problem. Moreover, [2] points out that
one of the key ingredients of efficient routing protocols in
the presence of interference is a proper transmission schedul-
ing. Hence, most of the existing literature focuses on the
joint optimization of routing and scheduling. [3] provides a
multi commodity flow formulation to maximize interference
separation, while limiting path inflation (i.e., the average
path length). Joint routing and scheduling have been modeled
as a network flow problem both ignoring [4] and consider-
ing [5] interference among nodes. Also, routing and scheduling
models have been combined to route flows with guaranteed
bandwidth in [6] and a greedy algorithm has been derived
in [7] for their optimization. A similar approach is presented
in [8], with a joint optimal design of congestion control,
routing and scheduling. While these papers propose viable
routing techniques in wireless ad hoc networks with multi-
user interference, our focus here is on algorithms that exploit
the cooperation among nodes.

Cooperative transmission has been proposed as an effective
way of increasing the throughput that, if wisely used, has
also the potential of reducing the energy consumption. Early
studies dealt with two-hop communication topologies [9]
where the transmission between two nodes is assisted by

a third node, usually located within them. When multiple
hops are considered, cooperative routing becomes relevant
and various approaches have been investigated. In [10] it
is proposed that a subset of nodes that have received the
information at a given hop cooperate in forwarding it to nodes
placed farther away. However, the routing path is calculated
ignoring cooperation. In [11] the number of cooperative nodes
is computed during the network initialization phase. Although
sub-optimal, these approaches improve the throughput and
reduce energy consumption. Still, further optimizations are
possible through the joint optimization of routing paths and
transmission schedules.

In this work we combine joint routing and scheduling with
node cooperation devising efficient optimization techniques to
find optimal transmission policies for ad hoc networks with
arbitrary topology. A similar problem has been heuristically
addressed in [12], where cooperation policies for multi hop
wireless networks with multiple source-destination pairs are
studied. According to that scheme, a fixed number of nodes
cooperate at each time step. The interference is modeled using
contention graphs, where clusters of nodes interfere only if
they have nodes in common. Note that this assumption may
not hold in practice, as nearby nodes may interfere even
though they belong to different clusters. Instead, in this paper
we model the interference considering the protocol model
introduced in [1].

We hereby consider multi-hop wireless ad hoc networks
with a number of concurrent data flows where, for each differ-
ent flow, nodes decode the message and forward it to the next
hop until it reaches the destination. For the transmission cost
we consider the weighted sum of the normalized consumed
energy and the normalized delay, which we divide by the
probability of successful reception accounting for channel
impairments, e.g., path loss and fading. Hence, we derive
the optimal joint cooperative routing and scheduling policy,
determining at each time step and for each flow, which nodes
must cooperate to minimize the expected cost over all possible
realizations of the data transmission process. To this end,
we first model the cooperative routing problem through a
linear programming (LP) formulation and subsequently derive
an equivalent, but more tractable, single-pair shortest path

problem [13]. Our results confirm the importance of consider-
ing inter-flow interference in the optimization of cooperative
transmission policies and provide useful performance bounds
for the design of practical protocols.
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presents the system model, Section III formalizes the joint
routing and scheduling problem using linear programming
(LP). This LP problem is reformulated as a single-pair shortest
path problem in Section IV. Section V presents some numer-
ical results and Section VI concludes the paper.

II. SYSTEM MODEL

Consider a wireless network consisting of a set N of nodes
spread out according to any distribution. Time is slotted with a
slot corresponding to the fixed transmission time of a packet
and all nodes are synchronized at the slot level. The nodes
are grouped into clusters during the network initialization
phase according to any clustering algorithm. Moreover, only
the nodes belonging to the same cluster can cooperate for
the transmission of a packet. When multiple nodes cooperate
they transmit the same packet simultaneously, i.e., in the
same slot. From the original network nodes, we build a
superimposed structure of virtual nodes on which we perform
our optimization. A virtual node can be of three types: T1) a
single network node, T2) a cluster of network nodes or T3) a
subset of the nodes in a cluster.

We obtain a weighted directed graph G = (V,E), where V
is the set of virtual nodes and E is the set of edges, where
each edge (i, j) ∈ E represents a possible communication
link between any two given virtual nodes in V . Moreover,
each edge (i, j) ∈ E is weighted with a cost cij according to a
metric that takes into account the energy used for transmission,
the reliability of the link and the entangled delay. In G,
transmissions and receptions occur between virtual nodes and
once a packet is successfully received at a given virtual node,
all the actual nodes therein will cooperate for its subsequent
transmission in a future slot. Let pij be the probability that the
packet transmitted by virtual node i is successfully received
by all nodes in j, as detailed in Section II-A. In particular, we
set

cij =







c i = j
βc+ (1− β)wi

pij
i 6= j ,

(1)

where c represents a delay cost for the transmission of one
packet in the corresponding slot, wi is the number of actual
nodes in the virtual node i and β ∈ [0, 1]. Note that i = j
means that the packet is not transmitted during a time slot;
the virtual node will transmit it in a future slot as dictated
by the optimal transmission schedule. In this case, we incur
the positive delay cost c so as to avoid unnecessary self-
loops during the optimization process, which lead to erroneous
solutions. Note that, considering the use of Stop and Wait
ARQ for failed packets, 1/pij is the average number of
transmissions for the successful delivery of a packet over
link (i, j).1 Thus, c/pij and wi/pij respectively correspond
to the average delay and the average energy expenditure for
the successful transmission of the packet over this link.

A demand is a pair of nodes (s, f) with s, f ∈ V and
s 6= f which indicates node s as the source for a packet to be

1We neglect the transmission of acknowledgments.

delivered to the final (or destination) node f . The set of de-
mands is denoted by D = {(s1, f1), (s2, f2), . . . , (sK , fK)}.
We say that a subgraph H ⊆ G connects a demand (s, f)
when it contains a path from s to f , i.e., a sequence of edges
(s, n1), (n1, n2), . . . , (nℓ−1, nℓ), (nℓ, f), where each edge cor-
responds to the transmission in a particular time slot. Note
that source s and destination f are virtual nodes of type T1,
whereas ni with i = 1, 2, . . . , ℓ are virtual nodes which, when
cooperative transmissions occur, can also be of type T2 and
T3. Packet transmissions occur synchronously according to
the slotted time structure. Hence, the transmission of a packet
through a path that is ℓ + 1 hops long, with ℓ ≥ 0, entails
a minimum of ℓ + 1 time slots. Note that more than ℓ + 1
time slots may be needed for the transmission over this path
as the packet may stop at some nodes during certain time slots
to avoid interference with other flows. Finally, it is assumed
that each demand d ∈ D is composed of a single information
packet.

Given any two nodes i, j ∈ N , we indicate with dmax the
maximum distance at which a packet transmitted from i is
received at j with a probability larger than or equal to δth
(with δth > 0 and small), or equivalently having an outage
probability smaller than or equal to 1 − δth. In other words,
dmax is considered as the maximum distance at which two
nodes can reliably communicate. Also, we let αdmax with
α ≥ 1 be the interference range, i.e., the maximum distance
for which the transmission from a node i interferes with a
concurrent reception at a node j.

To quantify the interference among paths in the presence of
cooperative transmissions we need to consider the transmission
of virtual nodes. Specifically, we say that two paths interfere
with one another in a given time slot when the transmission
of one virtual node in the first path interferes with the trans-
mission of another virtual node of the second path. Formally,
let ni → nj and nh → nk be the transmissions on the first
and second path, respectively, where ni, nj , nh, nk ∈ V . In
this work we consider that ni → nj interferes with nh → nk

if either of the following conditions is verified:

C1. There exists at least a pair of nodes with the first being
in ni and the second in nk with distance smaller than
or equal to αdmax. In this case the transmission from ni

would interfere with the reception at nk.
C2. There exists at least a pair of nodes with the first being

in nh and the second in nj with distance smaller than
or equal to αdmax. In this case the transmission from nh

would interfere with the reception at nj .

Following this rationale, we define an interference graph

I = (V,A), having as vertices the virtual nodes in V . The
set A contains the edges and is obtained connecting any two
virtual nodes ni, nj ∈ V if there exists at least a pair of nodes
with the first being in ni and the second in nj with distance
smaller than or equal to αdmax.

We remark that alternative and more precise conditions
for the definition of the interference graph are possible. This
definition of interference is adopted here as it is computation-
ally tractable, while providing a reasonable approximation of
the actual interference among virtual nodes. Note that these
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ρ
, rk − ℓ

)

(3)

conditions do not impact the correctness of our optimization
algorithm, which works for any given interference graph.

A. Calculation of Packet Outage Probabilities

Each node is equipped with one antenna, and when the
nodes of a given virtual node s ∈ V cooperatively transmit,
the total number of transmit antennas is ws, i.e., the number
of nodes in s. We assume that nodes operate in half-duplex
mode and that the same power is used at all transmit anten-
nas. Furthermore, we assume no channel knowledge at the
transmitter, i.e., transmit nodes are not aware of position and
channel conditions of surrounding nodes. In what follows we
compute the outage probability in the presence of path loss and
fading when all nodes in s transmit to a single node j ∈ N .

As transmit nodes are not aware of channel conditions,
messages are encoded with a capacity-achieving code having a
data rate per unit frequency of R. When the channel capacity,
normalized with respect to the bandwidth, is below rate R,
outage occurs. In this case the packet is not decoded at the
receiving node and is discarded. Let C be the capacity of the
channel, normalized with respect to the bandwidth. Then, the
outage probability is

pout = P[C < R] . (2)

In case of a single antenna per node, the capacity turns out to
be the logarithm of a linear combination of central chi square
random variables, i.e., C = log2 (1 + ρy), where ρ is the
average signal to noise ratio (SNR) at the receiving antenna,
y is the sum of ws exponential random variables with means
Σk = (dk/do)

−κ, k = 1, 2, . . . , ws, where ws is the number
of transmitting nodes (antennas), dk is the distance between
the transmitting and the receiving node, do is a constant and
κ is the path loss propagation exponent. In the following and
without loss of generality we assume do = 1.

For the general case where some of the means Σm are equal,
i.e. Σk = Σm for some k and m, the outage probability can
be obtained using the result in [14]. By letting σk, rk and
Nσ be the unique means, their multiplicity and the number
of equality classes, respectively, with k = 1, 2, . . . , Nσ and
∑Nσ

k=1 rk = ws, the outage probability for a receiving node
j ∈ N when all nodes in s ∈ V transmit is found as in
(3) at the top of the page, where f1(a, b) is the cumulative
distribution function of a Poisson variable of parameter a,

φk,ℓ(x) = (−1)ℓ−1
∑

Ω(Nσ,k,ℓ)

∏

j

(

ij + rj − 1

ij

)

τj(x) , (4)

the set Ω(Nσ, k, ℓ) defines partitions of ℓ − 1 through the

positive integer indices ij , such that
∑Nσ

j=1, 6=k ij = ℓ− 1 and

τj(x) = (σ−1
j +x)−(rj+ij). Simpler expressions for the outage

probability hold when all the means are equal or when all the
means are different, i.e., rk = 1, k = 1, 2, . . . , ws, see [15,
Section 3.3.1, p. 47] and [16].

III. JOINT OPTIMIZATION OF ROUTING AND SCHEDULING

The goal of this work is to find the minimum weight set of
non-interfering paths connecting all demands.

For each demand d ∈ D, let sd and fd be its source
and destination nodes, respectively. Moreover, for each edge
(i, j) ∈ E let xd

ij(t) be 1 if the packet associated with demand
d is transmitted over the link (i, j) in time slot t (transmission
i → j with i, j ∈ V ) and xd

ij(t) = 0 otherwise. In formulas,
our minimum weight set problem can be written as:

min
∑

d∈D

∑

(i,j)∈E

∑

t≥0

cijx
d
ij(t) (5a)

subject to:

∑

(j,h)∈E|xd
ij
(t−1)=1

xd
jh(t) = 1, d ∈ D, ∀ t (5b)

xd
ij(t) + xd′

lm(t) ≤ 1, (l, j) ∈ A and (i,m) ∈ A

d, d′ ∈ D, d 6= d′, ∀ t (5c)

∑

(i,j)∈E

xd
ij(t1) = 1, d ∈ D, i = sd, t1 ≥ 0 (5d)

∑

(j,i)∈E

xd
ji(t2) = 1, d ∈ D, i = fd, t2 ≥ 0 (5e)

xd
ij(t) ∈ {0, 1}, (i, j) ∈ E, d ∈ D, ∀ t . (5f)

The objective function (5a) corresponds to minimizing the
total cost incurred by the transmissions along the paths that
connect each demand in D. The constraints are:

• Paths creation: for each demand d ∈ D and for any
time slot t we have the following two cases: (1) the
packet is not transmitted by the current virtual node j,
i.e., xd

jh(t) = 0 for h 6= j and xd
jj(t) = 1 or (2) the

packet is transmitted from j to h 6= j, i.e., xd
jh(t) = 1

for h 6= j and xd
jj(t) = 0. (5b) follows as these two cases

are mutually exclusive.
• Interference avoidance: for each pair of interfering links

and for any time slot t, at most one of the two links can
be active (5c).

• Source: for each demand d ∈ D, there must be a time slot
t1 ≥ 0 from which the path that connects the demand d
starts (5d).

• Destination: for each demand d ∈ D, there must be a
time slot t2 ≥ t1 (this is ensured by condition (5b)) from
which the path that connects the demand d ends (5e).
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• Link: for each demand and time slot a particular link can
only be either active or silent (5f).

The presented optimization problem has a linear objective
function and linear constraint functions, thus it can be solved
using a linear optimization algorithm [17]. The problem has
many variables and constraints so the time and the amount of
memory required to find the optimal solution can be extremely
large. To deal with these facts we derived an alternative for-
mulation of the problem, which can be solved faster requiring
a reduced amount of memory.

IV. SHORTEST PATH FORMULATION

First of all we introduce the notion of state. The sys-
tem state in the generic time slot t is an ordered K-tuple
a(t) = (a1, a2, . . . , aK), ad ∈ V which, for each demand
d ∈ D represents the virtual node ad that: 1) has the packet
associated with demand d and 2) is allowed to transmit
in this slot. A transition from state a = (a1, a2, . . . , aK) to
state b = (b1, b2, . . . , bK) is possible only if the following
two conditions are satisfied: 1) each of the nodes bi can be
reached by a transmission from ai, i.e., (ai, bi) ∈ E and
2) no interference arises, i.e., (ai, bj) /∈ A, ∀ i 6= j. The
cost associated with the transition from state a to state b is
calculated using (1) as

c(a → b) =

k
∑

i=1

caibi . (6)

Using these definitions, the problem of finding the minimum
weighted set of non-interfering paths that connect all demands
in D can be seen as a shortest path problem from the
starting state s = (s1, s2, . . . , sK) to the termination state
f = (f1, f2, . . . , fK). Note that si and fi are all virtual nodes
of type T1, i.e., they all correspond to actual network nodes,
whereas the intermediate virtual nodes along the path can be of
any type. Also, we remark that fi is the termination sub-state
associated with the ith demand, i.e., when the packet of the ith
demand arrives at the virtual node fi this demand is delivered
and no further transmissions occur. Given this, the problem is
equivalent to the single-pair shortest path problem [13] that is
studied in graph theory and can be solved, for example, using
Dijkstra’s algorithm. Due to the large number of states that are
generated (the number of states in a(t), i.e., |V |K ) it is wise
to solve our problem using an adequate algorithm in order
to limit the time complexity and the memory space required
to solve it. A good choice is the A∗ search algorithm [18]
that speeds up the search using heuristics, whilst returning the
optimal policy.

A∗ is a best-first graph search algorithm that finds the
minimum-cost path on a graph from a given initial vertex s

to one final vertex f . Since in our case each vertex is a state
of our problem we will use the two terms interchangeably. A∗

uses a distance-plus-cost heuristic function to determine the
order in which the search visits the states. For any given state
x this function is given by the sum of two functions:

1. The path-cost function: given by the accumulated cost
from s to x, usually denoted by g(x).

250 m

2
5
0
 m

10 m

8 m 50 m

Fig. 1. Network scenario.

2. An admissible heuristic cost: given by an admissible
heuristic estimate of the minimum cost from x to f ,
usually denoted by h(x).

The term admissible means that h(x) must be smaller than
or equal to the minimum actual cost from x to f , calculated
over all possible paths. In our problem, for any given state
x we compute the path-cost function g(x) as the sum of the
costs incurred in the path from s to x. Note that this quantity
can be accumulated during the search. For h(x) we proceed
as follows:

1. Given x = (x1, x2, . . . , xK) and the final state f =
(f1, f2, . . . , fK), for each xi, we compute the minimum
cost-path connecting xi to the corresponding final node
fi. This is accomplished using the Dijkstra’s algorithm.
Let h(xi) be the cost of this path.

2. h(x) is obtained as h(x) =
∑K

i=1 h(xi).

Note that the obtained cost corresponds to the exact minimum
cost when the interference is neglected. Hence, h(x) is a
lower bound of the cost in the presence of interference and
the heuristic is admissible.

As an example of the effectiveness of A∗ in reducing the
number of states to be visited, we considered a network with
9 clusters of nodes with 3 nodes in each cluster and K = 3
demands. For this network we have that |V | = 63 and the total
number of states is |V |K = 250047. A∗ allowed the solution
of this problem visiting less than 6000 states in all our results,
i.e., less than 2.4% of the total number of states.

V. NUMERICAL RESULTS

In this section we discuss some numerical results obtained
using the optimization approach of Section IV on the network
topology of Fig. 1. The considered network is composed
of 9 clusters of nodes with three nodes per cluster, where
clusters are equally spaced in a grid. Therefore from each
cluster we obtain 7 virtual nodes. For the following results
we picked c = 1, β = 0.5, δth = 0.1 (giving dmax =
58.44 m) and α is varied from 1 to 2. Thus, we computed
the optimal joint routing and scheduling solutions for these
settings and we subsequently characterized the performance
of these solutions using a simulator. In this simulator, when
two links interfere in a given time slot we consider that the

106



corresponding transmissions are lost. In Figs. 2 and 3 we plot
the obtained energy and delay performance. For the energy
cost we considered the average total number of transmissions
carried out in the network for each demand. For the delay we
considered the average number of time slots needed to deliver
a given demand.

Fig. 2 shows the performance when cooperation is allowed
considering two cases: (1) “NoInterf”, in this case routing
and transmission scheduling policies are obtained neglecting
the multi-user interference, i.e., solving separate optimization
problems for each demand. The optimal policies for this
case are obtained with the algorithm of Section IV setting
α = 0. (2) “WithInterf”, this second case refers to the joint
optimal routing and scheduling policies of Section IV. As
expected, an increasing number of demands strongly impacts
the performance, leading to a degradation of energy and
delay. However, this performance gap in the case where the
interference is neglected is almost doubled for both metrics.

Fig. 3 illustrates the benefits brought about by cooperating
transmissions (“Coop” in the figure). First of all, considering
the interference in the routing/scheduling policy also leads to
better results for both performance metrics and the benefits
are substantially larger when nodes cooperate. As expected,
the best policies are those accounting for cooperation and
interference (“WithInterf, Coop”) that, when the interference is
high (i.e., α = 2), lead to a three fold reduction of both energy
and delay. Another interesting observation is that cooperation
allows for additional savings in terms of energy and delay
with respect to “WithInterf, NoCoop”, where the interference
is considered but the cooperation is neglected.

In non cooperative systems the interference can be neglected
when interference and transmission ranges are equal (see
Fig. 3 with α = 1). This is no longer valid when nodes
cooperate. In fact, in this case, even when α = 1 the actual
transmission range of multiple cooperating nodes becomes
higher than that of a single transmitting node, leading to a
larger interference area and thus exacerbating the negative
effect of interfering transmissions. On the other hand, when
interference is considered in the optimization process, cooper-
ation can provide further benefits of up to 25% and 58% for
the energy and delay, respectively (see “WithInterf, NoCoop”
versus “WithInterf, Coop” in Fig. 3).

VI. CONCLUSIONS

In this paper we solved the joint routing and transmission
scheduling problem in wireless ad hoc networks in the pres-
ence of multi-user interference and cooperative transmissions.
The problem has been formulated using linear programming
and, for the sake of an efficient implementation, subsequently
solved through a shortest path optimization method exploiting
the A∗ heuristic search [18]. Numerical results show that
cooperative transmissions can respectively provide benefits of
up to 25% and 58% for the energy and delay with respect to
a non-cooperative approach. The obtained results are useful
performance bounds for the design of practical cooperation
schemes, which are the objective of our future research.
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