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Abstract—Energy-harvesting wireless sensor networking is an
emerging technology with applications to various fields such as
environmental and structural health monitoring. A distinguishing
feature of wireless sensors is the need to perform both source
coding tasks, such as measurement and compression, and trans-
mission tasks. It is known that the overall energy consumption
for source coding is generally comparable to that of transmission,
and that a joint design of the two classes of tasks can lead to
relevant performance gains. Moreover, the efficiency of source
coding in a sensor network can be potentially improved via dis-
tributed techniques by leveraging the fact that signals measured
by different nodes are correlated. In this paper, a data-gathering
protocol for multihop wireless sensor networks with energy-har-
vesting capabilities is studied whereby the sources measured
by the sensors are correlated. Both the energy consumptions of
source coding and transmission are modeled, and distributed
source coding is assumed. The problem of dynamically and jointly
optimizing the source coding and transmission strategies is for-
mulated for time-varying channels and sources. The problem
consists in the minimization of a cost function of the distortions in
the source reconstructions at the sink under queue stability con-
straints. By adopting perturbation-based Lyapunov techniques,
a close-to-optimal online scheme is proposed that has an explicit
and controllable tradeoff between optimality gap and queue sizes.
The role of side information available at the sink is also discussed
under the assumption that acquiring the side information entails
an energy cost.

Index Terms—Data gathering, distributed source coding, energy
harvesting, Lyapunov optimization, wireless sensor networks.

I. INTRODUCTION

W IRELESS sensor networks have found applications in
a large number of fields such as environmental sensing

and structural health monitoring [1]. In such applications, the
maintenance necessary to replace the batteries when depleted
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is often of prohibitive complexity, if not impossible. Therefore,
sensors that harvest energy from the environment, e.g., in the
form of solar, thermal, vibrational or radio energy [2], [3], have
been proposed and are now commercially available.
Given the interest outlined above, the problem of designing

optimal transmission protocols for energy-harvesting wireless
sensor networks has recently received considerable attention.
In the available body of work reviewed in Section I-B, the only
source of energy expenditure is the energy used for transmis-
sion. This includes, e.g., the energy used by the power ampli-
fiers. However, a distinguishing feature of sensor networks is
that the sensors not only have to carry out transmission tasks,
but also sensing and source coding tasks, such as compression.
The source coding tasks entail a nonnegligible energy consump-
tion. In fact, [4] demonstrates that the overall cost required for
compression1 is comparable to that needed for transmission, and
that a joint design of the two tasks can lead to significant energy
saving gains. Another distinguishing feature of sensor networks
is that the efficiency of source coding can be improved via dis-
tributed source coding techniques (see, e.g., [5]) by leveraging
the fact that sources measured by different sensors are generally
correlated (see, e.g., [6]).

A. Contributions

In this paper, we focus on an energy-harvesting wireless
sensor network and account for the energy costs of both
source coding and transmission. Moreover, we assume that
the sensors can perform distributed source coding to leverage
the correlation of the sources measured at different sensors.
A key motivation for enabling distributed source coding in
energy-harvesting networks is that this enables sensors with
correlated measurements to trade energy resources among
them, to an extent determined by the amount of correlation.
For instance, a sensor that is running low on energy can benefit
from the energy potentially available at a nearby node if the
latter has correlated measurements. This is because, through
distributed source coding, the transmission requirements on
the first sensor are eased by the transmission of correlated
information from the nearby sensor.
We study the problem of dynamically and jointly optimizing

the source coding and transmission strategies over time-varying
channels and sources. The problem consists in the minimization
of a cost function of the distortions in the source reconstructions
at the sink under queue stability constraints. Our approach is

1This reference considers transmission of Web data.
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based on the Lyapunov optimization strategy with weight per-
turbation developed in [7]. It is emphasized that the application
of this strategy to the problem at hand poses significant technical
challenges due to the presence of correlated sources, distributed
source coding, and sensing costs, which were not considered in
previous work. As it will be discussed, this is primarily a conse-
quence of the need to properly design the choice of the weight
vector to be used in the weight perturbation approach: The op-
timal design of the weight vector is problem-dependent and thus
cannot be obtained from [7]. We devise an efficient online algo-
rithm that only takes actions based on the harvested energy; on
the current state of channel, queues, and energy reserves; and
also based on the statistical description of the source correla-
tion. We prove that the proposed policy achieves an average
network cost that can be made arbitrarily close to the optimal
one with a controllable tradeoff between the sizes of the queues
and batteries.
We also investigate the role of side information available at

the sink under the assumption that acquiring the side informa-
tion entails an energy cost. It is shown that properly allocating
the available (harvested) energy to both the tasks of transmis-
sion and side information measurement has significant benefits
both in terms of overall network cost function and queue sizes.

B. Prior Work

We start by introducing related prior work that assumes en-
ergy harvesting. The literature on this topic is quickly increasing
in volume, but it mostly (with the exception of [8]) accounts
only for the energy consumption of the transmission compo-
nent and does not model the contribution of the source coding
part. In this context, [9] and [10] studied the problem of max-
imizing the throughput or minimizing the completion time for
a single link energy-harvesting system by focusing on both of-
fline and online policies (see also [11] and [12]). A related work
is also [13], which finds a power allocation policy that stabi-
lizes the data queue whenever feasible. Still, for a point-to-point
system, using large deviation tools, the effect offinite data queue
length and battery size is studied in [14] in terms of scaling re-
sults as the battery and queue grow large.
We now consider work on multihop energy-harvesting net-

works. As mentioned above, all the works at hand only ac-
count for the energy used for transmission. Moreover, source
correlations and distributed source coding are not accounted for.
In [7], assuming independent and identically distributed (i.i.d.)
channel states and energy-harvesting processes, a Lyapunov op-
timization technique with weight perturbation [15] is leveraged
to obtain approximately optimal strategies in terms of a gen-
eral function of the data rates under queue stability constraints.
The proposed technique obtains an explicit tradeoff in terms of
data queue length and battery size. An extension of this work
that assumes more general arrival, channel state, and recharge
processes along with finite batteries and queues is put forth in
[16]. Also related are [17]–[19] that tackle similar problems,
and [20] that solves the power allocation problem for a multi-
commodity scenario with independent sources, finding the max-
imum average transmission rates for fixed channel states, by ad-
ditionally considering fixed reception, sensing, and processing

energy consumptions, under average energy availability con-
straints. This model substantially differs from ours as we con-
sider correlated sources and time-variant channels and we re-
quire that the energy availability constraint be verified in every
time-slot.
We now discuss work that accounts for the energy tradeoffs

related to source coding and transmission. These works (ex-
cept [18]) do not model the additional constraints arising from
energy harvesting. Moreover, they do not allow for distributed
source coding. The joint design of source coding and transmis-
sion parameters is investigated through various algorithms, for
either static scenarios in [21] and [22] or dynamic scenarios
in [23] and [24]. Specifically, [23] and [24] studied the trade-
offs between energy used for compression, or more generally
source coding, and transmission by assuming i.i.d. source and
channel processes and arbitrarily large data buffer. Using Lya-
punov optimization techniques, a policy with close-to-optimal
power expenditure and an explicit tradeoff with the delay is de-
rived for a given average distortion. The problem of optimal
energy allocation between source coding and transmission for a
point-to-point system was studied in [8].
Finally, distributed source coding techniques for multihop

sensor networks have been studied in [25] and [26]. In [25],
the problem of optimizing the transmission and compression
strategy was tackled under distortion constraints in a central-
ized fashion, whereas [26] proposed a distributed algorithm
that maximizes an aggregate utility measure defined in terms
of the distortion levels of the sources. Both these works do not
consider energy harvesting nor the energy consumption of the
sensing process.

C. Paper Organization

The rest of the paper is organized as follows. In Section II, we
present the system model and state the optimization problem.
In Section III, we obtain a lower bound on the optimal net-
work cost for the proposed problem. In Section IV, we present
the proposed algorithm designed following the Lyapunov op-
timization framework and show how it can be implemented in
a distributed fashion.Section V formalizes the main results of
our paper and provide analytical insights into the performance
of the proposed policy. Section IV proposes an extended ver-
sion of the problem, where the sink node acts as a cluster head
that is able to acquire correlated side information to improve the
system performance. In Section VII, we prove the effectiveness
of our analytical analysis and discuss the impact of the optimiza-
tion parameters.Section VIII concludes the paper.

II. SYSTEM MODEL

We consider a wireless network modeled by a directed graph
, where is the set of

nodes in the network, is the destination (or sink), and
represents the set of com-

munication links; see Fig. 1 for an illustration. We define
as the maximum number of transmission links that any node

can have. As discussed in the following, we allow
for fairly general interference models. We will consider a more
general model in Section VI in which the sink acts as a cluster
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Fig. 1. Set of energy-harvesting nodes communicates correlated sources to
a destination . For the more general model of Section VI, the destination
acts as a cluster head and communicates to a network collector node (shown
in dashed lines). In this latter model, the node can collect side information
correlated to the sources measured by the nodes.

head for the set of nodes and reports to a collector node (see
Fig. 1).
We make the assumption that the network operates in slotted

time, where during each time-slot every node is able to perform
different tasks, as we detail next.

A. Sensor Model

Each wireless sensor node is modeled according to the
diagram of Fig. 2. Specifically, in every time-slot , an amount
of energy is harvested from the environment. A portion

of that energy is stored in a local energy buffer,
depending on its capacity and current state. In the considered
time-slot, node receives an amount of exogenous data at
an overall rate from its neighboring nodes, and also
generates endogenous data at rate through the acquisition
and compression of a spatially correlated signal. The sum of
endogenous and exogenous data is thus stored into a local data
queue, and data are transmitted from this queue at an overall
rate . Note that the node can control the amount of
compression (i.e., the rate ) and the power used for the
transmission in the current slot. Also, compression and trans-
mission activities must be both accomplished using the energy
available in the energy buffer. The choices at different nodes
are coupled by the spatial correlation of the measured sources,
as will be discussed. The transmission model is detailed in
Section II-B, the data acquisition and compression process is
modeled in Section II-C, whereas energy model and queueing
dynamics are specified in Sections II-D and II-E, respectively.
We remark that, in the existing literature, the designs of op-

timal transmission scheduling for harvesting networks [7] and
of dynamic compression and transmission [23] have been in-
vestigated separately. Moreover, unlike [23], we allow for dis-
tributed source coding at the sensors, thus leveraging the spatial
correlation of the sensors’ measurements in order to improve
the energy efficiency of the network. The goal of the analysis
is the design of dynamic distributed compression and transmis-
sion strategies that are able to maximize the fidelity of the re-
constructions at the destination, while maintaining the network
is energetically self-sufficient and ensuring queue stability. We
emphasize that the need to properly balance the use of the avail-
able harvested energy across the nodes for distributed source
coding and transmission creates significant technical challenges
as compared to the previous work [7], [23]. This is because the

Fig. 2. Diagram of a sensor node.

decisions made at the different nodes become coupled by the
constraints imposed by distributed source coding, as discussed
in Section II-C

B. Transmission Model

The transmission model follows the framework of, e.g., [27].
According to this model, at every time-slot , each
node allocates power to each outgoing
link for data transmission. In what follows, we
refer to the number of channel uses (or transmission symbols)
per time-slot as the baud rate multiplied by the slot duration.
At the generic time-slot , we define , with

, as the power allocation matrix and the total trans-
mission power of node , that is

(1)

which is assumed to satisfy the constraint , for
some . The transmission rate on link
depends on the power allocation matrix and on the current
channel state with . The latter
accounts, for instance, for the current fading channels or for the
connectivity conditions on the network links. We assume that

takes values in some finite set , is
constant within a time-slot, but is i.i.d. across time-slots. We
use for . We write

(2)

where is the capacity-power curve for
link expressed in terms of bits per channel use
(transmission symbol). The latter depends on the specific
network transmission strategy, which includes the modu-
lation and coding/decoding schemes used on all links. We
assume that function is continuous in
and nondecreasing in . An example of the function

is the Shannon capacity obtained by treating
interference as noise at the receivers, namely

(3)

where represents the channel power gain on link
and is the noise spectral density. We assume that there ex-
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ists some finite constant such that
for all , any power allocation vector , and channel
state . Moreover, following [7], we assume that the func-
tion satisfies the following properties.
Property 1: For any power allocation matrix , we have

(4)

for some finite constant ;
Property 2: For any power allocation matrix and matrix
obtained by by setting the entry to zero for

a given pair, we have

(5)

for all , with .
Note that both properties are satisfied by typical choices of

function such as (3). In fact, Property 1 is
satisfied if function is concave with respect to

, while Property 2 states that interference due to power
spent on other links cannot be beneficial.2 Finally, we define the
total outgoing transmission rate from a node at
time as

(6)

and the total incoming transmission rate at a node
as

(7)

Note that, in general, the way in which transmission and re-
ception activities are scheduled within a time-slot depends on
the specific channel access and physical-layer technology in use.
In this paper, these aspects are modeled through a suitable ca-
pacity-power curve—see (3)—thus abstracting the operation of
specific transmission protocols, as it is standard practice in this
type of analysis.

C. Data Acquisition, Compression, and Distortion Model

At each time-slot, each node of the network is able to sense
the environment and to acquire spatially correlated measure-
ments. The measurements are then routed through the network
to be gathered by a sink node, as illustrated in Fig. 1. Before
transmission, the acquired data is compressed via adaptive
lossy source coding by leveraging the spatial correlation of the
measurements. Specifically, we define the source state at time
as the spatial correlation matrix describing the signal within
this time-slot, which is referred to as with

. We assume that takes values in some finite set
, remains constant within a time-slot, but

is i.i.d. across time-slots. Additionally, we define the probability
. We remark that in this paper we propose

optimal algorithms considering the evolution of to be
known (causally) by all nodes. As an example, can repre-
sent a particular phase of an industrial process monitored by the
wireless sensor network. The current phase is thus known to all
nodes. In the case where is unknown, suitable solutions

2This may not be the case if sophisticated physical-layer techniques are used,
such as successive interference cancellation (see, e.g., [5]).

must be devised for the distribution of information about
to the nodes. We leave the study of these algorithms for future
work. Each node compresses the measured source
with rate bits per source symbol and targets a
reproduction distortion at the sink of ,
with . Note that imposing
a strictly positive lower bound on is without loss of
generality because the rate is upper-bounded by a
finite constant and therefore the distortion cannot in
general be made arbitrarily small (see, e.g., [5]). The distor-
tion is measured according to some fidelity criterion such
as mean square error (MSE). We define the rate vector as

and the distortion vector as
. Due to the spatial correlation

of the measurements, distributed source coding techniques
can be leveraged. Thanks to these techniques, the rates of
different users can be traded without affecting the achievable
distortions, to an extent that depends on the amount of spatial
correlation [5]. The adoption of distributed source coding
entails that, given certain distortion levels , the rates
can be selected arbitrarily as long as they satisfy appropriate
joint constraints. Under such constraints, a sink receiving data
at the specified rates is able to recover all sources at the given
distortion levels.3

To elaborate on this point, consider the following conditions
on the rates and distortions for

(8)

for all , where denotes the joint conditional
differential entropy of the sources measured by the nodes in
the subset , where conditioning is with respect to the sources
measured by the nodes in the complement .
The case of jointly Gaussian sources is particularly signif-

icant since, for a given covariance matrix, jointly Gaussian
sources require the highest rates to meet a given set of distor-
tion constraints [28]. Thus, the results obtained by considering
the Gaussian source model provide a worst-case analysis for
sources with a given correlation matrix. We finally remark
that the problem of characterizing the set of all achievable
rate-distortion pairs in general is still open [5].
For jointly Gaussian sources with zero mean and correlation

matrix , the conditional entropy in (8) is given by

(9)

where represents the correlation submatrix of the
sources measured by nodes in . If the rates satisfy con-
ditions (8), it is known [29] that for any well-behaved joint
(analog) source distribution, the sink is able to recover all the
sources within MSE levels , for all . Moreover, the
rate-distortion region (8) exhausts all possible achievable rate-
distortion pairs if the distortion levels are small enough [29].
As an example, the rate region for is sketched

in Fig. 3. The rates and at which the two source

3Note that we do not penalize for source coding delay because our concern is
the average distortion perceived at the sink across time.
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Fig. 3. Illustration of the rate region (8) for correlated sources and .
For all rate pairs , there exists a coding scheme that enables the
sink to recover the two sources with distributed distortion (MSE) levels
and , respectively.

sequences are acquired and compressed at the two nodes can be
traded with one another without affecting the distortions of the
reconstructions at the sink, as long as they remain in the shown
rate region (8)
We account for the cost of source acquisition and com-

pression by defining a function that provides the
power spent for compressing the acquired data at a particular
rate . In this paper, we assume a linear relationship
between the rate and , as follows:

(10)

for some coefficient . This can be justified through the
following argument. A vector quantizer of rate , which is re-
quired at each node in order to achieve the rate-distortion per-
formance (8), has a complexity per symbol of ( is the block
length). This is because optimal vector quantization requires to
compare the source vector to all the reconstruction vectors
belonging to the quantization codebook. However, in practice,
various schemes have reported smaller complexity orders (see,
e.g., [30] and [31]). Thus, our assumption can be seen as a small
rate approximation of the exponential order and as a pragmatic
way to capture more efficient algorithms. Furthermore, recent
results point to the possibility for polynomial close-to-optimal
distributed compression strategies [32]. Finally, we remark that
the destination is assumed not to have sensing capabilities,
and thus is not able to acquire any measurements. We will treat
the extension to this setting in Section VI

D. Energy Model

Every node in the network is assumed to be powered via en-
ergy harvesting. The harvested energy is stored in an energy
storage device, or battery, which is modeled as an energy queue,
as in, e.g., [7]. The energy queue size at a node
measures the amount of energy left in the battery of a node
at the beginning of time-slot . For convenience, we normalize
the available energy to the number of channel uses (transmis-
sion symbols) per slot. Without loss of generality, we assume

unitary slot duration so that the amount of power consumed for
transmission and acquisition/compression is equivalent to the
energy spent in a time-slot. Therefore, at any time-slot , the
overall energy used at a node must satisfy the avail-
ability constraint

(11)

That is, the total consumed energy due to transmission and ac-
quisition/compression must not exceed the energy available at
the node.
We denote by the amount of energy

harvestable by node at time-slot , and we define the
vector as the energy-har-
vesting state. We assume that takes value in a finite set

and is constant for the duration of
a time-slot, but i.i.d. over time-slots. Finally, we define the
probability , which accounts for possible
spatial correlation of the harvestable energy across different
nodes.
The energy harvested at time is assumed to be available for

use at time . Moreover, each node can decide how
much of the harvestable energy to store in the battery at
time-slot , and we denote the harvesting decision by ,
with . We define the harvesting decision
vector as . Variable is intro-
duced, following [7], to address the issue of assessing the needs
of the system in terms of capacities of the energy storage de-
vices. In fact, as in [7], we do not make any assumption about the
battery maximum size. However, it will be proved later that per-
formance arbitrarily close to the optimal attainable with no lim-
itations on the battery capacity can be achieved with finite-ca-
pacity batteries.
Remark 2.1: Note that the energy model does not account

for contributions to the energy consumption that are constant
and depend only on whether a node is active or not, such as
the energy used in the transmit and receive circuitry [13], [33].
However, these can be incorporated into the model at the ex-
pense of a more complicated notation and by properly adjusting
the performance analysis. We will not further elaborate on this
aspect here.

E. Queueing Dynamics

We now detail the dynamics of the network queues.We define
to be the vector of the energy queue

sizes of all nodes at time . From the discussion above, for each
node , evolves as

(12)

since at each time-slot , the energy is con-
sumed, while energy is harvested.We assume
for all .
We also define the vector , for

each time-slot , to be the network data queue backlog, where
represents the amount of data queued at node , which

is normalized on the number of channel uses per time-slot for
convenience of notation, which is expressed in terms of bits over
channel uses per slot. Denote as the ratio between the number
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of channel uses per slot and the number of source samples per
slot. Since typically accounts for the ratio of the channel and
source bandwidth, it is conventionally referred to as bandwidth
ratio [5]. We assume that each queue evolves according
to the following dynamics:

(13)
since at any time-slot , each node can transmit, and thus
remove from its data queue, at most bits per channel
use, while it can receive at most bits per channel use
due to transmissions from other nodes and bits per
channel use due to data acquisition/compression. We assume
that for all . Following standard defini-
tions [34], we say that the network is stable if the following
condition holds true:

(14)

Notice that the network stability condition (14) implies that the
data queue of each node is stable in the sense that

.

F. Optimization Problem

Define as the state
of the network at time-slot . A (past-dependent) policy

is a collection of mappings between the
past and current states and the current de-
cision on rates , distortion levels

, harvested energy , and transmission powers .
Moreover, for each node , let denote the cost
incurred by node when its corresponding distortion is .
We assume that each function is convex, finite, and
nondecreasing in the interval . Our objective is to
solve the following optimization problem:

(15)

where

(16)

subject to the rate-distortion constraints (8), the energy avail-
ability constraint (11), and network stability constraint (14).
Note that (16) is the per-slot average cost for node .

III. LOWER BOUND

In this section, we obtain a lower bound on the optimal
network cost of problem (15). This result will be used
in Section V to obtain analytical performance guarantees
on our online optimization policy, presented in Section IV.
The lower bound is expressed in terms of an optimization
problem over parameters and

for all , with en-
tries for each and for all , and

for all . The proof is
based on relaxing the stability constraint (14) by imposing the
necessary condition that the average arrival rate at each data
queue be smaller than or equal to the average departure rate,
and by also relaxing the energy availability constraint (11) by
requiring it to be satisfied only on average. Finally, Lagrange
relaxation is used on the resulting problem.
Theorem 3.1: The optimal network cost satisfies the fol-

lowing inequality:

(17)

for all , where is a
constant and is given by

(18)
with defined in (19) at the bottom of the
page, where the infimum is taken under constraints

for all (20)

for all (21)

for all (22)

Proof: The proof follows from a similar approach as in
[15, Theorem 1]. The complete derivation can be found in our
technical report [35].

(19)
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IV. PROPOSED POLICY

In this section, we propose an algorithm designed following
the Lyapunov optimization framework, as developed in [27]
and [34], to solve the optimization problem (15). In particular,
we aim at finding an online policy for problem (15) with
close-to-optimal performance by using Lyapunov optimization
with weight perturbation. The technique of weight perturbation,
as proposed in [7], is used to ensure that the energy queues are
kept close to a target value. This is done to avoid battery un-
derflow in a way that is reminiscent of the battery management
strategies put forth in [14], and it is further discussed in the
following.
The proposed policy operates by approximately minimizing,

at each time-slot, the one-slot conditional Lyapunov drift plus
penalty [34] of the energy and data queues [(12) and (13),
respectively] of the network. The optimization is done in an
online fashion based on the knowledge of the current channel
state , observation state , data queue sizes , and
energy queue sizes . Note that no knowledge of the sta-
tistics of the states is required, as it is standard with Lyapunov
optimization techniques [27], [34]. Using this approach, we
obtained the following online optimization algorithm.
Algorithm: Fix a weight and a con-

stant . The parameter effectively limits the battery size
of node and is hereby considered as a design parameter. On the
one hand, this parameter has the advantage of allowing to use
Lyapunov optimization techniques, as first demonstrated by [7];
on the other, it enables the evaluation of bounds on the capacity
of the batteries that allow to achieve a performance close to the
optimal attainable with infinite batteries (see Theorem 5.1). At
each time-slot , based on the values of the queues and

, channel states and observation states , perform
the following.
• Energy Harvesting: For each node , choose
that minimizes under the constraint

. That is, if the residual energy that can
be stored in the energy buffer is , perform
energy harvesting and store the harvested energy in the
energy buffer, i.e., set ;
otherwise, perform no harvesting, i.e., set .

• Rate-Distortion Optimization: Choose the source acquisi-
tion/compression rate vector and
the distortion levels to be an op-
timal solution of the following optimization problem:

(23)

subject to the rate-distortion region constraint (8), and to
the constraints and ,
for all .

• Power Allocation: Define the weight of a link as

(24)

where , and choose with
entries for to be an optimal solution of
the following optimization problem:

(25)

where , subject to constraints
, for each ;

• Queues update: Update and according to (12)
and (13), respectively.

Remark 4.1: In the algorithm proposed above, the energy
availability constraint (11) is not explicitly imposed. However,
as discussed in Section V, with a proper choice of the weight
vector , the battery levels are guaranteed to be such that con-
dition (11) is never violated. In other words, the effect of the
weight vector is to ensure that, whenever the algorithm re-
quires to draw energy from the batteries for transmission or
acquisition/compression, there is energy available at the corre-
sponding nodes to satisfy the request.
Remark 4.2: Solving the optimization problems (23) and (25)

requires slot synchronization that, in practical implementations,
can be difficult to achieve. For this reason, the performance ob-
tained in this paper represents a lower bound, in terms of both
average distortion and queue sizes, to any existing implementa-
tion that waives our idealistic assumptions.

A. Discussion About Distributed Optimization and Complexity

Distributed Optimization:While the Energy Harvesting step
can be performed independently by all nodes, the Rate-Dis-
tortion Optimization problem (23) and the Power Allocation
problem (25) require centralized optimization. Decentralized
implementations of the Power Allocation problem (25) are dis-
cussed in many papers—see, e.g., [36]—while it is possible to
solve the Rate-Distortion Optimization problem (23) in a dis-
tributed fashion via dual decomposition [37], [38] as discussed
in [25] and [39]. It is noted that the dual decomposition solu-
tion, due to the rate-distortion constraints (8), would require the
centralized update of the dual variables, which might be chal-
lenging in practical implementation.
Complexity: It can be noticed that the Rate-Distortion opti-

mization (23) is computationally intensive since it involves an
exponential number of constraints to be satisfied [i.e.,(8) ]. A
general approach to keep this number of constraints as small
as possible would be to divide large networks into clusters of
fixed maximum size and apply the distributed source coding
technique within the cluster. Moreover, in the Rate-Distortion
optimization (23), for fixed , the polyhedron described by the
constraints in (8) is a contra-polymatroid [40], and thus from
[40, Lemma 3.3], a greedy algorithm solves (23) optimally (see,
e.g., [25] and [26]).
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V. PERFORMANCE ANALYSIS

In this section, we provide analytical insights into the perfor-
mance of the policy proposed in Section IV. To this end, we
define the parameters [recall (10)] and

, which is finite under the
given assumptions.
Theorem 5.1: Under the proposed algorithm with

, where ,
we have the following.
1) The data queue and the energy queue of all nodes are
bounded as

(26)

(27)

respectively, for all nodes and all times .
2) When a node allocates a nonzero power to any of
its outgoing links (i.e., ), and/or when it chooses
a nonzero source acquisition rate (i.e., ), thus
expending energy for source acquisition/compression, we
have that

(28)

This condition guarantees that the energy availability con-
straint (11) is satisfied for all nodes and all times
(see Remarks 4.1 and 5.2).

3) The overall cost (15) achieved by the proposed scheme
satisfies the bound

(29)

where is the optimal cost of problem
(15) and the finite constant is

.
Proof: See Appendix A.

Remark 5.2: The fact that (28) implies that the proposed al-
gorithm satisfies the energy availability constraint (11) at each
time-slot follows since each node cannot consume an en-
ergy larger than in a time-slot. In fact,
is the maximum energy spent for compressing the acquired data,
and is the maximum transmission energy consumption.
Remark 5.3: Following [16], under the modified stability re-

quirement for all the

proposed algorithm can be proven to guarantee near-optimal
performance with probability one.
Remark 5.4: To elaborate on the technical challenges solved

in the proof of Theorem 5.1, we observe that a key step is the de-
termination of a suitable vector of thresholds that allows the
desired performance described by (26)–(29) to be attained. We
recall that the parameters are used by each node to
manage its energy queue. This problem was tackled in [15] for
the case where the sources have to be delivered losslessly and
are independent, so that distortion constraints are not an issue
and distributed source coding is not applicable. The scenario

considered here is instead more involved due to the fact that
the rate-distortion constraints (28), arising from the use of dis-
tributed source coding, couple the rate-distortion optimization
and the power allocation problem at all nodes. We have tackled
this problem by relaxing the rate-distortion constraints (8) and
finding a way to bound the optimal Lagrangian multiplier of the
corresponding dual problem. This is discussed in Lemma A.1 in
Appendix A [see conditions (41) and (42)].

VI. EXTENSION WITH SIDE INFORMATION AT THE SINK

We now consider an extended version of the problem studied
thus far, in which the sink node , rather than being the final
destination for the sources measured at the sensors, acts as a
cluster head and communicates to a network collector node
(see Fig. 1), on a communication link modeled as for any other
pair of nodes (see Section II-B). The key novel aspect of this ex-
tendedmodel is that node canmeasure a source correlated with
that of the sensors and use such side information to improve the
system performance. Specifically, thanks to the side information
available at node , the rate requirements for communication
from the sensors to can be reduced. However, node , which is
powered by energy harvesting as are all the sensors, also needs
to communicate with node . Therefore, a new tradeoff arises
between the energy allocated by to acquire side information
and that used by to communicate with . With the following
extension, we investigate the impact of allowing the acquisition
of side information at the sink, where the amount of side infor-
mation can be controlled subject to the sensing and compression
costs.
We now discuss how the model discussed in Section II needs

to be modified in order to account for the different setting of
interest here. First, the destination acquires a source signal
that is correlated with the sensor’s measures with a rate .
This affects the rate-distortion constraints (8) in that the en-
tropy function should now be conditioned on the
side information available at the receiver (see, e.g., [41]). This
leads to modified rate-distortion constraints (8) with a function

that also depends on . An example of
this function will be given in Section VII. The energy used
for acquiring the side information is given by

and the slot duration, similar to all other nodes. More-
over, the data queue at node evolves as

(30)

where and represent, respectively, the trans-
mitted and received data at time , and transmission is to the
collector node . Note that no other node is connected to the
network collector apart from . The energy queue ,
instead, evolves according to (12). Finally, and are
extended to consider the additional link and the rate
achievable on that link is given by , which is
assumed to have the same properties as for all other links (see
Section II). We refer to the power used for transmission by
node as .
In what follows, we modify the algorithm proposed in

Section IV in order to address the new setting outlined above.
The modified algorithm works as follows.



TAPPARELLO et al.: DYNAMIC COMPRESSION-TRANSMISSION FOR ENERGY-HARVESTING MULTIHOP NETWORKS 1737

• Energy Harvesting: Follow the same procedure as for the
algorithm discussed in Section IV, for all nodes including
node .

• Rate-Distortion Allocation: Choose and ,
, and to be the optimal solution of the fol-

lowing optimization problem:

(31)

subject to
, and

, and ;
• Power Allocation: Define the weight of a link

as4 (24) and choose with entries for
to be an optimal solution of the following

optimization problem:

(32)

subject to , for each .
• Queues Update: Update and according to (12),

according to (13), and using (30).
The algorithm proposed above is a simple modification of
the algorithm proposed in Section IV that accounts for the
need to allocate rate and power also for node . It can
be proven that this algorithm has similar optimality prop-
erties as the algorithm of Section IV, as summarized in
Theorem 5.1.We omit a formal statement of this result here
since it is a straightforward extension of Theorem 5.1.

VII. NUMERICAL RESULTS

In this section, we provide further insights into the perfor-
mance of the system under study, via some numerical results.
We consider the network topology of Fig. 1, where the set
of nodes gathers spatially correlated data and transmits them
to the sink node . We first consider the setup without side in-
formation at the sink described in Section II. We assume that
nodes collect the measurements, while nodes
are only used as relays (or equivalently measure zero-power
sources). The signal samples measured at nodes are
jointly Gaussian with zero mean and time-independent correla-
tion matrix

(33)

where is the spatial correlation coefficient. The
channel-state matrix has independent entries that for every

4We remind that is extended to consider the link .

Fig. 4. versus maximum and average network queue size for
. Each pair of values for sum-distortion and queue size is obtained for a

different value of , from 1 to 10 000, with step length 500. ( ).

link are Rayleigh distributed with the same fading power
, while the energy-harvesting vector has

independent entries that are uniformly distributed in ,
with . Both channel and energy-harvesting statistics
are i.i.d. across time-slots.
For the channel capacity function, we consider the Shannon

capacity given by (3), while the entropy function is given
by (9) and the cost function is for all

. Moreover, we set the numerical values for
all , , and , with

. In what
follows, we refer to network queue size as the sum of the queue
sizes of all nodes in .
We first examine the effect of constant , which was shown

in Theorem 5.1 to characterize the tradeoff between
the network queue size and the additive gap with respect to the
lower bound of Theorem 3.1. To this end, in Fig. 4, we set

and plot the average sum-distortion as a func-
tion of the maximum and average network queue size for dif-
ferent value of . Confirming the results of Theorem 5.1, we
observe that the sum-distortion gradually converges to the
lower bound set by the optimal value for increasing . A
closer inspection of the results also reveals an almost linear in-
crease of the maximum and time average network queue size
with respect to , as suggested by Theorem 5.1 (not shown).
Next, we evaluate the impact of the spatial correlation pa-

rameter . As discussed, an increasing is expected to lead to
a reduction in the energy consumption for the same reconstruc-
tion accuracy at the sink thanks to the spatial energy tradeoffs
enabled by distributed source coding. This is confirmed by the
results in Fig. 5, where we plot the sum-distortion versus the
average and maximum network queue size, where each point is
obtained for a different value of the correlation in . We
note that an increasing leads to a reduction of both the network
queue size and . Note that the performance with corre-
sponds to that of a conventional source coding system (i.e., not
leveraging distributed source coding) as, in this case, distributed
source coding does not offer any advantage and reduces to con-
ventional compression. Thus, comparison between the perfor-
mance with and reveals the gain of leveraging
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Fig. 5. versus maximum and average network queue size for different
values of source correlation , from 0 to 0.99, with step length 0.1. (

).

distributed source coding. Note that this gain is quite substan-
tial, leading in the best case ( ) to a decrease of a factor
3.7 in terms of distortion and of a factor 2.6 in terms of queue
size at the nodes.
Finally, we evaluate the performance in the scenario of

Section VI, where the sink node acts as a cluster head, that
measures a source correlated with that of the remaining sensors
and communicates the gathered data to node (see Fig. 1).
To this end, we replace the entropy function with
a function that takes into account the side
information obtained by with rate . We recall that
is a decision variable of the new problem; see (31). Following
[41], the function is given by (9) where the
correlation matrix (33) should now be conditioned on the side
information available at the destination [41]. According to the
simple source model described in Appendix C, we assume that
this conditional covariance matrix is given by

(34)
where . We consider the same simulation
parameters as above and we additionally set and, only
for node , .
Fig. 6 shows the sum-distortion and the average network

queue size versus . As a reference, we compare the
performance of the proposed algorithm to that of a scheme that
sets . This scheme, therefore, does not acquire side
information at the sink and instead utilizes all the available en-
ergy at the sink for transmission to node . As expected, having
additional side information at the sink is beneficial in terms of
overall performance gains (queues size and distortion). From the
results of Fig. 6, it can be seen that this leads to improvements
of 44% and 32% in terms of queue size length and distortion
, respectively.

VIII. CONCLUSION

Energy harvesting poses new challenges in terms of energy
management of wireless networks. In sensor networks, these

Fig. 6. and average network queue size versus source correlation . (
).

challenges are compounded by the need for balancing the en-
ergy consumed by source coding tasks (i.e., data compression)
against that used for transmission. Moreover, the correlation
among the data readings collected by different sensors, if
leveraged via distributed source coding, makes it possible
to exploit spatial energy tradeoffs across the sensors, thus
allowing for better performance in terms of memory usage
and distortion at the sink. Based on the above, this work has
proposed a dynamic online optimization strategy for multihop
wireless sensor networks with energy-harvesting capabilities.
This strategy jointly optimizes source coding and data trans-
mission activities for time-varying sources and channels by
ensuring queue stability at the nodes and energy neutrality. The
proposed technique, based on Lyapunov optimization, has been
analytically shown to be characterized by a tradeoff,
revealing a linear relationship for queue and battery size ( )
and an inverse proportionality in terms of optimality gap ( ),
where is a tunable parameter of the algorithm. Numerical
results have demonstrated the key role of source correlation
and distributed source coding in the system performance. In
addition, they have shown substantial room for improvement in
terms of reduction of queue sizes and corresponding increased
data reconstruction accuracy when distributed source coding
is applied in conjunction with transmission scheduling tech-
niques. These facts motivate the design of practical algorithms
to achieve such goals. An aspect that calls for further research
is, for instance, the design of algorithms that operate with
partial information about the source correlation structure. As
further possible avenues for future work, one can consider
the distributed implementation of the proposed strategies,
compression techniques that aggregate data at intermediate
nodes, and joint source-channel coding transmission techniques
exploiting analog transmissions [42], [43].

APPENDIX A
PROOF OF THEOREM 5.1

Proof:
1) From the energy-harvesting part of the algorithm, we

have that since harvesting is performed only when
and the maximum amount of harvested energy
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in that case is . This proves (26). We now prove
(27) by induction on . Inequality (27) holds for since

for all . Then, assuming that (27) is satisfied for all
at time , we show that it holds also for time . To this end,

we consider separately the different possible cases in which
a node receives or does not receive data from other nodes
(i.e., endogenous data) and/or acquires or does not acquire its
measurement (i.e., exogenous data). First, if node receives
neither endogenous nor exogenous data, then we have that

, which proves the claim.
Second, assume that node receives endogenous, but
not exogenous, data. It follows from (25) that, for some node

, with , we must have

(35)

However, since any node can receive at most bits per
channel use of endogenous data, we have from (35) and the
definition of that , which
proves the claim.
We now analyze the case where node receives exogenous,

but not endogenous, data. This implies that is obtained
from the solution of problem (23). We define the corresponding
Lagrangian function as

(36)

where we have relaxed the constraints (8) and constraints
. The Lagrange dual function is given by

(37)

where the infimum is taken with the constraints
and , and the dual problem is given by

(38)

LemmaA.1: Any dual optimal vector [i.e., a vector max-
imizing (38)] satisfies the conditions

(39)

for all . Moreover, any primal optimal satisfies the
condition

(40)

The proof of Lemma A.1 can be found in Appendix B.
According to (40), we have that is an optimal solution

of problem (23) only if the value of the right-hand side of (40)

evaluated at is larger than the value obtained by evalu-
ating it at , which can be expressed, using (10), as

(41)

From (26), (39), and (41), we further obtain

(42)

which implies that a node receives exogenous data from out-
side the network only when . Hence, recalling
that , we obtain the desired result

.
Finally, if a node receives both endogenous and exogenous

data, we have from (35) that . Since
a node can receive at most bits per channel use of
endogenous data and bits per channel use of exogenous
data, we have the desired inequality ,
which completes the proof of part 1).
2) To prove the claim, we need to show that if

(43)

then the following two conditions must be satisfied.
a) The Rate-Distortion problem (23) is minimized by
choosing (which implies ) for
all .

b) The Power Allocation problem (25) selects a power ma-
trix such that for all .

From Lemma A.1, and in particular from (40), condition a) is
verified if

for all (44)

where we recall that is any optimal dual vector of problem
(38). This is proved by the following inequalities:

where the first inequality follows from (43) and the assumption
of Theorem 5.1 that ; the second
from (39); and the last inequality follows from ,
and from the definition of . This proves (44) and thus that

condition a) is satisfied if (43) holds.
To prove b) we first note that the bound (27) implies that the

weight (24) satisfies the inequality

(45)

for all and for all time .
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We now show by contradiction that condition b) holds when
(43) is satisfied. To this end, assume that the power allocation
vector that maximizes (25) at time is such that some entry

is positive. Starting from , we now obtain a new power
allocation vector , in which we set . Clearly, the
power matrix is also feasible. We demonstrate that the objec-
tive function of (25) when evaluated at is smaller than at ,
thus leading to a contradiction. Denoting as the objective
function of (25), this is shown by the following inequalities:

where the first inequality derives from
for all (Property 2), the second

from (45), the third from Property 1 and the fourth from (43).
This shows that is not optimal for (25), thus leading to a
contradiction, which completes the proof of 2).
3) The proof of 3) is a relatively simple application of the

general theory of [27] and [34]. The complete derivation can be
found in our technical report [35].

APPENDIX B
PROOF OF LEMMA A.1

Proof: Let and be an optimal solution of the dual
problem (38), and and
be an optimal solution of the (primal) problem (23). Existence
of and is guaranteed by Weierstrass theorem
[44, Proposition 2.1.1] and by Slater’s condition [44, Proposi-
tion 3.5.4, part a)]. By [44, Proposition 6.1.1], the following
conditions must be satisfied by and : primal fea-
sibility, namely , and the complementary slack-
ness conditions for all , and

where the minimization is
taken under the constraints and for
all . From (36), the given conditions imply that

(46)

must be satisfied. This is because the Lagrangian
when evaluated at should be no larger than that evalu-
ated in . We thus have the inequalities

where the second inequality follows since ,
and the third from the definition of .

APPENDIX C
SOURCE MODEL

Here, we present a simple source model for which we deter-
mine numerical results in Section VII. Let the source signals
measured at sensors in be spatially correlated with param-
eter . Since the measurements are Gaussian, we can write for
the th sensor , with and inde-
pendent Gaussian random variables with zero mean and uni-
tary variance. Moreover, we assume that the sink is able to
measure with an accuracy that depends on the rate used
for acquisition. From standard rate-distortion theory, we have
the relationship , where is the side informa-
tion available at the sink. By choosing the optimal test channel

, where denotes the correlation be-
tween the measurement at the sink and (see, e.g., [5]), we
obtain the conditional covariance matrix (34) and the associated
entropy function .
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