
simulation and real-life experimentation are two key
steps in the development of network protocols: the
former makes it possible to perform several con-
trolled tests, which may, however, require an ideal-

ized model of one or more system components; the latter is
the ultimate proof that a devised solution is effective or even
feasible at all.

This is especially true for underwater acoustic networks,
where real-world deployments are typically subject to many
non-ideal effects that can hardly be fully reproduced in simu-
lations. In fact, the underwater research community largely
conceives real-life experimentation as the only proof that
physical-layer (PHY) signal processing algorithms and net-
work protocols actually work in practice.

However, while the former can be effectively substituted by
the recording and offline processing of channel signatures, no

data set exists that provides the channel response over time
for several points of a given area and correctly reproduces its
correlation in time and space, as required to properly run
realistic network simulations.

In addition to the lack of a widely accepted model for the
underwater acoustic channel, the above considerations high-
light the need for:
• An easy way to simulate underwater networks over realistic

channel responses
• An efficient method to move from simulations to real-life

experiments
In this article, we present two open source suites that tackle

these two challenges, and together form a complete and orga-
nized solution to approach the study of realistic underwater net-
working. The first suite, called the World Ocean Simulation
System (WOSS) [1], was originally released in 2009 under a
BSD 3-clause license, followed by two other releases that intro-
duced several new features. The second suite is named DESERT
Underwater, where DESERT stands for Design, Simulate, and
Realize Testbeds. It was initially developed in 2012 as an exten-
sion to the ns2/NS-MIRACLE simulator [2] and was released
under a BSD license as well [3]. Building specifically on NS-
MIRACLE, DESERT Underwater provides many modules that
implement medium access control (MAC) protocols, error con-
trol schemes, routing protocols, and other solutions that cover
the remaining layers of the ISO/OSI protocol stack. In addition,
DESERT Underwater implements mobility models to simulate
mobile networks, and includes many examples that showcase
DESERT’s features, in part integrated with WOSS’s functionali-
ties. A conspicuous part of DESERT is devoted to facilitating

S

38 IEEE Network • September/October 2014

Abstract
Simulation and experimentation of underwater networks entail many challenges,
which for the former are mainly related to the accurate modeling of the channel
behavior, while they are typically logistic in nature for the latter. In this article, we
present our experience with WOSS and DESERT Underwater, two open source
suites address both classes of challenges. The suites build on and extend the capa-
bilities of ns2 and NS-MIRACLE, two widely known software packages for network
simulation. WOSS endows NS-MIRACLE with the capability to generate realistic
channel patterns by automatically retrieving and processing the environmental
boundary conditions that influence such patterns; DESERT Underwater makes it pos-
sible to evolve toward at-sea experiments by reusing the same code written for sim-
ulations, thereby minimizing the effort required for network deployment and
control. Both suites have been widely tested and used in several projects: some
examples are provided in this respect, including an account of some experiments
carried out in collaboration with the NATO STO Centre for Maritime Research and
Experimentation.

Open Source Suites for
Underwater Networking:

WOSS and DESERT Underwater
Paolo Casari, Cristiano Tapparello, Federico Guerra, Federico Favaro, Ivano Calabrese,

Giovanni Toso, Saiful Azad, Riccardo Masiero, and Michele Zorzi

S

0890-8044/14/$25.00 © 2014 IEEE

Paolo Casari and Michele Zorzi with the University of Padova and Con-
sorzio Ferrara Ricerche.

Federico Favaro, Ivano Calabrese, Giovanni Toso, and Riccardo
Masiero, are with the University of Padova.

Cristiano Tapparello is with the University of Rochester.

Federico Guerra is with u-blox and Consorzio Ferrara Ricerche.

Saiful Azad is with the American International University — Bangladesh.

CASARI_LAYOUT.qxp_Layout 1 9/10/14 12:42 PM Page 38

the transition from simulations to sea trials via a hardware-in-
the-loop approach that makes it possible to reuse the same code
written for simulations. The user is only required to define an
additional set of rules to convert the internal structures of NS-
MIRACLE into bitstreams and vice versa. Version 2 of
DESERT Underwater was released in April 2014.

The remainder of this article is organized as follows.
WOSS, its main features (which have been available since its
first release), and its subsequent improvements are described
next. Then DESERT Underwater is described, along with the
experiments that showcase its capabilities. Finally, we provide
some concluding remarks.

The World Ocean Simulation System
WOSS [1] is a framework aimed at improving underwater net-
work simulations through a more realistic account of acoustic
propagation. In addition, WOSS provides a set of routines to
facilitate many standard operations, such as mobility manage-
ment, the conversion among different coordinate systems
(e.g., Cartesian to spherical), and the maintenance of the data
structures required for the simulation of acoustic propagation.

WOSS’s main tasks are:
• To provide a means to easily query oceanographic databases

in order to retrieve the environmental characteristics that
simulation software typically requires for the reproduction
of underwater acoustic propagation in a given area

• To provide functions that process the output of such simula-
tors in order to facilitate their employment within network
simulation software

In this context, external libraries have been created to bind
WOSS to the PHY layer of the ns2/NS-MIRACLE simulator
[2], although WOSS could be linked to any other software.
The current version of WOSS includes all interfaces required
to interact with Bellhop [4], a sound propagation simulator
based on ray tracing. In the following, we describe in more
detail how WOSS provides input data to Bellhop and process-
es its output.

Bellhop requires a number of environmental parameters,
including the depth-dependent variation of the speed of
sound, or sound speed profile (SSP, which is related to the
refraction of sound waves), the profile of the sea bottom, and
the acoustic properties of bottom sediments, which influence
the pattern and intensity of the bottom reflections. Optionally,
Bellhop can also take the profile of the ocean surface as an
input in order to model surface reflections more precisely:
WOSS can leverage on this opportunity via functions that
generate random sea surface realizations, according to a given
surface wave spectrum.1

In addition, Bellhop requires the specification of the trans-
mitter-side electro-acoustic transducer’s beam pattern, which
can be modeled in two ways. In the basic case, the user inputs
the angular aperture of the beam emission (i.e., the lowest
and highest angle of departure of the beams from the trans-
mitter) with respect to the azimuthal plane: this is equivalent
to assuming that the transducer has a flat and unit response
over the specified angle span. In the more advanced configu-
ration, the user can input the full shape of the transducer’s
beam pattern. WOSS supports both modes. Later versions
(after v1.2) also allow the user to change the orientation of
the beam pattern arbitrarily in order to simulate the effect of
a node pointing its transducer toward a specific direction.

To retrieve the required environmental data, WOSS inter-
faces the network simulator and Bellhop with oceanographic
databases freely available on the Internet (for reference, also
see the data flow summarized in Fig. 1). In particular, WOSS
reads the location of the nodes (latitude, longitude, and
depth) from the network simulator and then uses this infor-
mation to query the databases. For the SSP, WOSS employs
the World Ocean Atlas (WOA, http://www.nodc.noaa.gov/OC5/
WOA09/pr_woa09.html) database, which collects a wealth of
environmental data measured during several experiments con-
ducted all around the world; these data include salinity and
temperature samples at typically accepted standard depths
(e.g., for sea bottoms with maximum depths of 100 m, the
standard depths are 10, 20, 30, 50, 75, and 100), and can be
used to compute the SSP through standard equations of state
such as the MacKenzie or Del Grosso equations. In the WOA
database, the measurements are divided by location and
month or season of the year when the measurement was per-
formed: WOSS automatically selects the correct dataset and
transfers the related samples to Bellhop. Bathymetry samples
are taken by default from the General Bathymetric Chart of
the Oceans (GEBCO, www.gebco.net), a public database with
a resolution of 30 arc-seconds. To generate a bathymetry pro-
file, WOSS computes the great circle curve that joins the
points of coordinates xT = (qT, fT) and xR = (qR, fR), where
qT, fT, qR, and fR are the latitude and longitude of the trans-
mitter and receiver, respectively. Starting from xT, WOSS
samples the curve in steps of equal distance D s along the
great circle, yielding a set of points xi = (qi, fi). The value of
D s can be selected by the user. For each point x i, the
bathymetry database is queried to retrieve the respective
depth of the sea bottom. If no data is found for the exact
coordinates of xi, the depth belonging to the closest (with
respect to the great circle distance metric) geographical coor-
dinates available is returned. Along with the bathymetry,
WOSS obtains the geophysical parameters of the bottom sedi-
ments from the National Geophysical Data Center’s Deck41
dataset (http://www.ngdc.noaa.gov/mgg/geology/deck41.html).
In addition to standard databases, WOSS supports custom
databases, allowing users to input their own environmental
data and thereby improve the accuracy of WOSS when model-

IEEE Network • September/October 2014 39

Figure 1. Schematic representation of the data flow between
ns2/NS-MIRACLE, WOSS, the oceanographic databases,
and Bellhop: the network simulator provides scenario infor-
mation (the geographical position of the nodes, the season
of the year, etc.) to WOSS, which employs it to query
oceanographic databases for environmental data. Such data
is passed to the channel simulator (in this case Bellhop),
which returns a simulated channel response to WOSS. After
some post-processing, WOSS provides information on chan-
nel attenuation, self-interference, and multiple access inter-
ference to the network simulator.

Channel
simulator
(Bellhop)

WOSS

Attenuation

Interference

Scenario Environmental
data

Deck41
(sediments)

Ray arrival
profile

ns2
NS-MIRACLE

GEBCO
(bathymetry)

WOA
(SSP)

1 The surface waves realization is typically time-varying, and the user
can specify how often a fresh realization should be drawn.

CASARI_LAYOUT.qxp_Layout 1 9/10/14 12:42 PM Page 39

IEEE Network • September/October 201440

ing a specific area.The output of Bellhop is a solution to the
propagation equations over a column of water, or a restricted
section thereof. When performed over a large set of points
throughout the water column, a typical simulation outcome is
shown for reference in Fig. 2. The figure reports the acoustic
attenuation in dB affecting the transmission of a 25 kHz tone
as a function of the depth of the receiver and its planar dis-
tance (or range) from the transmitter, which is located on the
left side of the picture at a depth of 50 m. Red hues represent
a lower attenuation, and hence a stronger signal. The shape of
the sea bottom is rendered in brown. The environmental
parameters employed are representative of Tyrrhenian Sea
waters in summer. Figure 2 shows that a high acoustic signal
level is expected in the proximity of the transmitter, but such
level decreases for increasing range, and beyond a range of 6
km only a minor portion of the water column is actually
insonified.

In fact, the data processed by WOSS is even more detailed
than in this figure as it contains the full set of ray arrivals
computed by Bellhop, characterized by their respective com-
plex amplitude and arrival delay. The latter can be used to
infer the propagation delay of the whole signal from the trans-
mitter. The standard processing applied by WOSS involves
the following steps:
• The power of the arrivals is compared against a reception

threshold: those arrivals that fall below the threshold are fil-
tered out. This models a generic preamble detection process
at the receiver, which is assumed to have finite sensitivity.

• The arrivals are binned by computing the complex sum of all
arrivals within contiguous windows of 50 ms; this models the
fact that very close arrivals are practically indistinguishable.

• The arrivals within a maximum delay tmax concur with the
computation of the useful signal energy, whereas all arrivals
beyond tmax are assumed to cause self-interference. This
models the receiver-side signal processing capability to
extract useful energy from a limited portion of the input
signal, and helps reproduce the receiver performance limi-
tations due to the channel delay spread.
In WOSS, the noise level is determined through the empiri-

cal formulas in [5], a common approach for the
simulation of noise affecting underwater commu-
nications. User-custom noise realization databas-
es are also supported. We recall that both the
noise power calculations and Bellhop’s ray trac-
ing procedure require the frequency of the trans-
mitted signal to be specified. In the current
version of WOSS, this frequency is computed as
the geometric mean of the lower and upper fre-
quency limits of the acoustic spectrum band in
use.2

Advanced WOSS Features
The most recent version of WOSS (v1.3.5) sup-
ports time-varying environmental parameters. In
fact, these parameters, e.g., the temperature of
the water at different depths, may change during
periods of time comparable to that of a typical
networking experiment (e.g., several hours), and
these variations should be tracked in order to pro-
vide more realistic results. As an example, assume
that a user wants to cycle through three different
SSPs, spanning a total duration of one day. This
scenario is depicted in Fig. 3. At time 00:00, the
SSP on the left in the figure is used. This SSP is
substituted by the second SSP at time 08:00 and
by the third SSP at time 16:00. After a further
time interval of 8 h, the SSP is changed back to

the first SSP on the left, and the cycle begins again. WOSS can
be instructed to vary the SSP over time as described above; in
addition, it allows the user to specify how to compute the tran-
sition from the current SSP to the next one.

Another extension of WOSS, presented in the last version,
supports the simulation of mobile networks. These models
affect the computations performed by WOSS, as a position
update may trigger a channel response update.3 Currently,
WOSS natively implements a waypoint mobility model, where-
by the user can specify a sequence of locations that a node
will traverse, the movement speed between any two such way-
points, and an optional pause time when a waypoint is
reached. In addition, WOSS can handle channel simulations
in networks where one or more nodes move according to
either of the following models, embedded in NS-MIRACLE:
• Gauss-Markov [2], which generates random-waypoint trajec-

tories with a given self-correlation factor between 0 (full
randomness) and 1 (linear movement)

• Leader-Follower [6], or group mobility model, whereby one
or more nodes (called followers) can be instructed to “stay
close” to the trajectory of a given node (called leader) via a
tunable attraction factor

Figure 2. Example of attenuation computed by Bellhop. In this particular
case, WOSS replicated Bellhop’s “incoherent” option, which derives the
attenuation from the sum of the powers of all complex arrivals. The simu-
lation environment reproduces summer conditions in north Tyrrhenian
waters west of Italy. The frequency of the transmitted signal is 25 kHz.

Range (m)

Transmission loss (dB) — Source at (42.5°N, 10.4°W)
Destination at (42.4535°N, 10.4708°W)

1000

450

D
ep

th
 (

m
)

400

350

300

250

200

150

100

50

115

120

110

105

100

95

90

85

80

75

70

2000 3000 4000 5000 6000 7000 8000 9000

2 We remark that this approximation is valid only when the system
bandwidth can be assumed to be “narrow” with respect to the carrier
frequency in use. Computing the impulse response at different fre-
quencies would be possible, but would also represent a significant com-
putational burden, and is left for a future extension.

3 WOSS knows exactly where a given transmitter and receiver were
located when the last channel response was computed. If neither node
has moved away from that location farther than a tunable distance
parameter, WOSS assumes that the channel has remained static and
does not update the channel response. The default value of the dis-
tance parameter that triggers the update is 0; however, the user can
fully control the update process by changing this value, and thereby
trade off the reproduction accuracy of a space/time-varying channel for
the network simulation speed.

CASARI_LAYOUT.qxp_Layout 1 9/10/14 12:42 PM Page 40

• Linear+Drift, which assigns to the nodes a determin-
istic speed vector, perturbed by time-varying “noise”
vectors that model the impact of currents on the
movement of the nodes

We remark that the management of node mobility and
of time-varying environmental parameters (including
surface wave realizations) implies that WOSS supports
time-varying channel impulse responses. The user is
given full control over the events that trigger the com-
putation of a fresh channel impulse response.

As a final option to improve the realism of the per-
formed simulations, WOSS can import performance
figures that summarize the physical transmission
schemes in use, e.g., derived from offline simulations of
a full-fledged transmitter-receiver chain. Such figures
are typically provided in the form of tables, and make it
possible to translate metrics that NS-MIRACLE can
measure (e.g., signal-to-noise ratio, interference power,
noise power, and the overlap between interfering and
wanted packets) into the packet error probability of a
given transmission. An example of this procedure has
been used in the “Robust Acoustic Communications in
Underwater Networks” (RACUN) project, and is
described in [7].

WOSS: Summary and Conclusions
WOSS is a powerful tool that makes it possible to
employ realistic underwater channel patterns within
network simulators. It was developed as a complement to
the popular software ns2 and to its NS-MIRACLE exten-
sions, but also lives as a standalone package that can be
interfaced to any simulation tool. Along with Bellhop, it gen-
erates channel realizations that are strongly tied with the
oceanographic parameters of the simulated communications
area, and therefore helps achieve better simulation accuracy
than, for example, simple link-budget equations for under-
water acoustic links. Moreover, WOSS’s support for custom
databases makes it possible for users to input their own
oceanographic measurements, thereby improving the charac-
terization of a specific network scenario. The support for
real transducer beam patterns, for realistic surface wave
realizations and time-varying environmental features
improves such accuracy even further. As such, WOSS allows
the designer to accurately assess the performance of under-
water network protocols before actually moving to sea trials:
without WOSS, the selection of environmental parameters
from public or custom oceanographic parameters, the simu-
lation of underwater acoustic propagation, the derivation
and processing of channel impulse responses, and their
inclusion into underwater network simulators would have to
be done by hand, resulting in a much more cumbersome sim-
ulation process and requiring detailed knowledge of acoustic
propagation phenomena.

The WOSS project kicked off in 2009 and has been contin-
uously supported ever since. Recently, WOSS has been adapt-
ed to the ns3 simulator [8], and is currently undergoing the
code review phase required to make it part of standard ns3
releases.4

Related Work
A first effort to include the output of the Bellhop ray tracing
software into the network simulator ns2 is found in [9], where
Bellhop runs are manually carried out to retrieve the channel

impulse response (CIR) associated with the link between each
pair of nodes. This CIR is then maintained constant through-
out a network simulation run.

The Underwater Acoustic Networks (UAN) framework
released with the ns3 simulator [8] provides PHY, medium
access control (MAC), and mobility and energy consumption
models for autonomous underwater vehicles (AUVs) as well.
The propagation model in UAN is based on link budget
equations involving spreading loss and absorption loss [5]. A
more advanced model, based on Bellhop [9], also used to be
available. However, the user was required to manually enter
all needed environmental parameters, which made it impos-
sible to support dynamical environments, where the nodes
move or the environmental conditions change over time. In
addition, no support for real transducer beam patterns was
provided. The UAN PHY model based on Bellhop is cur-
rently not maintained in the ns3 release and must be request-
ed from its authors. Unlike the work in [9] and the PHY
model of the ns3 UAN framework, WOSS automatically
retrieves environmental features given a user-specified peri-
od of the year and the geographical location of the nodes,
and updates the power-delay profile of the channel among
any two nodes automatically in the presence of mobility or
time-varying environmental conditions. In addition, the
empirical model used by UAN [5] is also available in WOSS
as a fallback solution.

The work in [10] employs the CIRs provided by Bellhop to
test different modulation schemes and receiver-side signal
processing techniques, and provides insight into the perfor-
mance of these techniques in several scenarios.

In [11] , the Mime channel s imulator i s presented,
where the data employed to generate CIRs is recorded
during sea trials. This approach skips the intermediate
step performed by Bellhop (which relates environmental
features to the CIR) and has the further advantage of
incorporating Doppler spread into the generated CIRs.
On the other hand, its main disadvantage is that the sim-
ulator can only replicate what has been actually measured
at sea.

IEEE Network • September/October 2014 41

Figure 3. Example of SSP evolution over time in WOSS. In this case,
the user set three different SSPs, each to be applied for a total simu-
lated period of 8 h. At the end of the last period, WOSS automati-
cally wraps around and re-applies the first SSP; that is, the same set
of SSPs is repeated for each simulated day.

Speed (m/s)
1520 15401500

80

90

D
ep

th
 (

m
)

70

60

50

40

30

20

10

0

Speed (m/s)
1520 15401500

80

90

D
ep

th
 (

m
)

70

60

50

40

30

20

10

0

Speed (m/s)
1520

Time
of day 00:00

15401500

80

90

D
ep

th
 (

m
)

70

60

50

40

30

20

10

0

08:00 16:00

4 In the meantime, the source code of WOSS for ns3 can be requested
from the author directly [1].

CASARI_LAYOUT.qxp_Layout 1 9/10/14 12:42 PM Page 41

DESERT Underwater: A Framework to
Design, Simulate, and Realize Testbeds for
Underwater Network Protocols
DESERT Underwater has been presented in [3] as a collec-
tion of libraries created to support the design and implemen-
tation of underwater network protocols. It has been released
with the objective of distributing several protocols for under-
water networking, while at the same time speeding up the
transition from simulations to sea trials. The latter are
achieved by integrating the commands required to communi-
cate with real modems into specific interface modules, thus
permitting the reuse of the same protocol code already writ-
ten for simulations.

DESERT is based on the well established ns2 simulator
and on its NS-MIRACLE extensions [2]. In particular, it fol-
lows the modular approach of the latter, which has been
designed to simulate nodes the logical architecture of which is
as close as possible to what is typically found on actual
devices. To this end, it provides many modules that imple-
ment protocols at all layers of the ISO/OSI stack, most of
which have also been tested in several sea trials. In addition,
in order to simulate real underwater networks with high fideli-
ty, DESERT Underwater comes with mobility models that
reproduce realistic mobility patterns, and provides many
examples that showcase DESERT’s features, in part integrat-
ed with the functionalities offered by WOSS.

During the first year of use, DESERT has been successfully
tested with several modems (e.g., EvoLogics S2C and White
line modems [12], WHOI micromodems, and Develogic
modems) for real-life implementation of underwater protocols
in both static and mobile networks. Moreover, DESERT has
been successfully used not only on desktop PCs and laptops,
but also on embedded systems such as the Gumstix, Pand-
aboard, IGEPv2, NetDCU, RaspberryPi, and UDOO plat-
forms, making it possible to realize fully distributed and
low-power testbeds. Together, these features make DESERT
an effective solution for realizing experiments by reusing the
same protocol code already written for simulations.

DESERT Underwater has been adopted in several research
projects (e.g., see the Related Work and Acknowledgment
pages on the DESERT web site [3]) and received a positive
consideration from the underwater research community. How-
ever, the size of the source code and initial work required to
install ns2 and the different software on which DESERT
depends can still be perceived as an obstacle by a first-time
user. Given this, we have been working on different aspects of
its implementation and have extended its functionalities,
thanks to the knowledge acquired after one and a half years
of experience with our framework. In the new release, we
overcome the limitations of the previous version and propose
a new set of features that make the software more robust and
user-friendly. In particular, a considerable amount of work
has been done in order to make the installation of the soft-
ware and its dependencies automatic, so it does not require a
lot of effort. At the same time, we have efficiently organized
the installation procedure in separate modules, so experienced
users can easily extend it to accommodate their specific
requirements. Following this approach, we also provide differ-
ent installer modules suitable for different hardware architec-
tures (e.g., the Gumstix, RaspberryPi, and UDOO platforms
mentioned above). Thus, one of the primary objectives of
DESERT Underwater, that is, using the same code in both
simulation and real underwater networks, has been extended
to a broad range of devices. Moreover, we revised the mod-
ules of DESERT v1 to accommodate the features of the new

release, extended the set of network protocols released with
DESERT, and improved the support to acoustic modem
architectures.

Finally, the functionalities offered by DESERT have been
extended with a remote control framework called RECORDS
[13], which provides a set of primitives to remotely control the
hardware modems and thus the network operations.

The improvements and additional features we have imple-
mented have been packaged together into DESERT Under-
water v2, the next public release of our framework, available
for download on the DESERT Underwater web site [3].

In what follows, we focus on the description of the new
control framework for acoustic modems and present two
experiments where DESERT proved itself as a viable solution
to move from simulation to real life experimentation.

RECORDS: A Remote Control Framework for
Underwater Networking Experiments
Since the earliest development of DESERT, while working
with deployed underwater networks, we experienced the need
for a control framework to easily interact with the modems
and provide a backup communication mechanism in case of
ns2 failures. To this end, a first proof of concept with limited
capabilities (broadcast messages and ns2 start/kill) was imple-
mented and successfully used in two sea trials, first during the
test of the SUN protocol in Berlin, Germany, in 2012 in col-
laboration with EvoLogics [14], and then during the Comms -
Net12 trials in La Spezia, Italy, in collaboration with the
NATO STO Centre for Maritime Research and Experimenta-
tion (CMRE). Given these results, in conjunction with the
second major release of DESERT Underwater, we decided to
redesign it and expand its capabilities, resulting in a new soft-
ware called RECORDS, which is thoroughly described and
evaluated in [13]. In what follows, we briefly summarize the
idea behind its implementation.

The control framework is entirely written using scripting
languages — the Tool Command Language (Tcl), and the
Bourne Shell — and is released under a BSD 3-clause license.
It is composed of several independent modules that interact
via TCP sockets, resulting in a portable and stable software
that requires negligible system resources.

The main functionalities offered by the control framework
are strongly related to DESERT and remotely allow one to:
• Start ns2, with the selection of the script to run and its input

parameters
• Get the status of ns2, with detailed indication of the run-

ning instances of ns2 or the state of a specific run (i.e., run-
ning, completed or never started)

• Stop ns2 with the selection of a specific instance or all of
them

Given the broadcast nature of the underwater channel, it is
possible to specify the target of the control message from the
complete network to a single node.

In addition to the DESERT-specific tasks, the control
framework can also send native commands to the modem
either directly or remotely, set several parameters of the
nodes (e.g., the source level, id, system clock, internal frame-
work parameters, enable/disable the error control mecha-
nism), check the status of the nodes (battery level, free space
on the storage devices, temperature, CPU consumption, etc.),
read local and remote log files, start/stop a random traffic
generator for testing purposes (either at boot time or on
demand), as well as reset, reboot, and turn off the modem.

The control framework can be started directly at boot time
and can be configured to be permanent, that is, automatically
restarted in case of errors (socket failures, etc.). By combining

IEEE Network • September/October 201442

CASARI_LAYOUT.qxp_Layout 1 9/10/14 12:42 PM Page 42

all these functionalities, it is possible to use the
control framework to send text messages between
the nodes, thus realizing a chat service between
different users: this service can live in parallel to
DESERT experiments by sharing the same acous-
tic channel. Moreover, the messages can be sent
to the destination either directly or through mul-
tiple hops.

The control framework provides additional
functionalities that make it possible to simulate a
given network topology by forcing specific packet
error rates among selected nodes, and can set
independent packet error rate values for each
link. These parameters can be set before the sim-
ulation and changed in real time. It is also possi-
ble to randomly delay the transmission of control
packets and adapt this time interval dynamically.

To deliver remote messages, the framework
relies on two algorithms that can be selected by
the user. For each message sent, it is possible to
choose between a static source routing protocol
and a flooding mechanism. Different addressing
modes are supported, so each packet can be sent
either by broadcast to all nodes or to a specific
subset of destinations. The amount of traffic in
the network is limited via several mechanisms: a
time to live for the flooding scheme, a user-
defined path for static routing, and duplicate
packet detection and rejection for both of them.

Finally, the control framework offers a module
that simulates the behavior of a user. This mod-
ule can be employed for several purposes, such as
the setting of boot-time modem parameters and
the reset of buffers before an experiment is start-
ed.

Example of an Experiment
In this section we provide further insight on the
effectiveness of the DESERT Underwater libraries for the
field experimentation of underwater protocols. We focus on
two experiments carried out during the CommsNet13 trials,
organized by CMRE in the gulf of La Spezia, Italy, in Septem-
ber 2013. The first experiment tests a controlled access proto-
col named Uw-Polling [15] under different data packet
generation rates, whereas the second experiment involves
MSUN, a multihop forwarding protocol based on source rout-
ing [7]. The typical complete deployment topology for this
experiment is shown in Fig. 4, and involves bottom-mounted
nodes, a gateway buoy, and several autonomous systems.

For the Uw-Polling experiment, we set the gateway buoy to
be the sink and M1–M4 to be sensor nodes, which generate
packets at a rate of 0.75, 1, 1.5, or 2 pkt/min/node, depending
on the specific experiment. Figure 5a reports the throughput
per node (in packets per minute) as a function of the packet
generation rate per node. The histogram shows that the
throughput is almost equal to the packet generation rate per
node for the two lowest traffic values, implying a high packet
delivery ratio. However, after achieving its maximum for an
intermediate packet generation rate per node, the throughput
decreases. The post-processing of the experiment logs reveals
that this is due to a number of packets remaining in the
queues of the nodes at the end of the experiment, and effec-
tively counted as lost. The cause is that the packets have to
wait longer in the queue of the nodes as the packet genera-
tion rate increases, which is a consequence of the controlled
access mechanism. This fact is illustrated in Fig. 5b.

We now consider a multihop routing experiment, which was

carried out during the night between September 15 and 16,
2013. This experiment involved five nodes, and lasted for nine
hours of uninterrupted operations. Two Folaga AUVs were
deployed near the sea bottom approximately at the locations
denoted by the white marks in Fig. 4, and generated packets
at a rate of 1 pkt/min/node. LOON node M3 was the sink;
nodes M1 and M4 acted as relays and did not generate pack-
ets. We remark that the Folagas and the sink do not hear one
another; hence, the packet delivery must happen through one
of the two relays, typically the closest one. During the 9 h of
the experiment, about 1000 packets were generated, leading
to about 3000 transmissions, including relaying and retrans-
missions. The packet delivery ratio achieved in this experi-
ment was around 0.6 for an average throughput of about 1.24
pkt/min. Before the end of the experiment, the modem con-
trol framework was used to query the status of all nodes,
which confirmed that the experiment was still running. This
confirms the robustness of the DESERT Underwater libraries
and of the control framework itself.

Summary of DESERT Underwater
DESERT Underwater is a useful research tool to develop,
test, and analyze real-world applications for underwater com-
munications. Based on the well-known network simulators ns2
and NS-MIRACLE, it provides a comprehensive set of algo-
rithms and tools to simulate various aspects of a general
underwater network. Moreover, thanks to specialized inter-
faces with the modems, it allows the user to employ the same
code for both the simulation and field experimentation of an

IEEE Network • September/October 2014 43

Figure 4. Typical topology of a complete network deployment during the
CommsNet13 campaign carried out in La Spezia, Italy, in September
2013. The yellow pins denote the operational area. Nodes M1–M4 are
bottom mounted nodes forming the so-called Littoral Ocean Observatory
Network (LOON). The gateway buoy is a moored node mounting an
acoustic modem and accessible via a radio interface. The wave glider is an
autonomous system that harvests wave energy for propulsion. Folagas are
GraalTech’s low-cost torpedo-shaped AUVs. Mantas are the University of
Porto’s portable acoustic/radio gateway nodes. The ship node is in fact
also a Manta, connected to an underwater modem hanging off the RV
Alliance.

CASARI_LAYOUT.qxp_Layout 1 9/10/14 12:42 PM Page 43

underwater network. Without this structure, it would be nec-
essary to replicate the network protocol code into a specific
software package to be run by underwater communications
hardware, effectively doubling the development effort and
slowing down the capability to perform a sea trial after com-
pleting network protocol simulations.

The first release of the DESERT Underwater libraries was
presented in 2012, and since then has received positive consid-
eration from the research community and been used in sever-
al research projects. New features and extensions have been
developed during the last year and made part of DESERT
Underwater v2, which was released recently and can be down-
loaded from the web site [3]. Along with DESERT Underwa-
ter, we also released the modem control framework
RECORDS [13]. As explained earlier, RECORDS is key to
several functions, such as checking that the nodes are idle and
ready before starting an experiment, checking the quality of
the links, and starting a given experiment on all nodes. All
these functions can be performed remotely by transmitting the
commands via acoustic communications from a radio-con-
trolled node. Without the framework, these tasks would
require a direct cable or radio link to all underwater nodes.

Related Work
Hardware-in-the-loop experiments reusing code programmed
for simulations constitute a well-known concept, and modern
network simulators such as ns3 [8] were designed to also help
users through this task. In the context of underwater commu-
nications, one of the first systems reusing simulation code in
real experiments is Aqua-TUNE [16], a testbed partially
designed around the code of the University of Connecticut’s
Aqua-Net system, which also provides a simulation mode via a
recent addition called Aqua-Net Mate. In the first implemen-
tation of Aqua-TUNE, the network was composed of radio-
controlled kayaks, which later evolved into buoys. The
micro-controller installed in the nodes employs an embedded
Linux distribution to run the network protocol code and con-
trol the nodes via an external radio link.

The SUNSET framework [17] was developed starting in
2010 and first released in May 2012. Broadly speaking, SUN-
SET and DESERT Underwater have one similar functional
objective (i.e., to help users make the transition from simula-
tion to experimentation with real hardware). However, the
two frameworks are different in several respects. For example,
DESERT Underwater comes with a wide set of protocols and

network modules, some ready for experimentation, some
meant mainly for simulations; comparatively fewer protocols
were released with SUNSET, mainly focused on support for
emulation and experimentation. In any event, both DESERT
and SUNSET are interoperable with NS-MIRACLE, as both
stem from it. SUNSET implements a more efficient real-time
scheduler, which reduces the RAM and CPU usage with
respect to the one provided with ns2, and proves useful on
devices with limited processing capabilities; on the other
hand, this requires the general NS-MIRACLE user to explicit-
ly call SUNSET’s real-time scheduler when interfacing the
code to underwater modems. DESERT is hinged on ns2’s
real-time scheduler, which may be less efficient but requires
no change to the scheduler calls in the protocol code when
moving from simulation to field experimentation. Both
DESERT and SUNSET rely on NS-MIRACLE’s native cross-
layer messages for exchanging information among the layers
of the network protocol stack. Starting from version 2 (June
2013), SUNSET provides support for publish-subscribe inter-
actions. DESERT v1’s functions for converting NS-MIRA-
CLE packet structures into actual bitstreams and vice versa
are embedded within the modem interface, and are thus less
modular than SUNSET’s packet converters. DESERT v2’s
version of the same functions is inspired by the packet con-
verters and complemented by a completely new adaptation
layer module [7], which automatically fragments and re-
assembles the packets whenever the PHY service data unit
(PSDU) is shorter than the packet length. Finally, our dis-
tributed modem control framework, RECORDS, has been
explicitly designed as a standalone module released along with
DESERT in order to create a simple, lightweight module that
is not hinged on ns2. Its SUNSET counterpart, called the
back-seat driver, instead runs a SUNSET instance based on
ns2 [18] and employs the same protocols implemented in
SUNSET to deliver remote commands. The back-seat driver
has not been publicly released yet.

A more recent implementation of an underwater acoustic
testbed has been performed by the University of Buffalo [19],
with system flexibility and modularity in mind. The testbed is
reconfigurable from the network stack down to the transmit
waveform, and the authors plan to make it accessible to the
underwater community at large. The testbed also supports
laboratory experiments via a channel emulator employing
Matlab processing to reproduce the behavior of an acoustic
channel. In October 2013, the National University of Singa-

IEEE Network • September/October 201444

Figure 5. a) Throughput; b) packet delivery delay for a set of experiments involving the Uw-Polling protocol [21]. Each value of the
packet generation rate corresponds to a different experimental run. The experiments involved LOON nodes M1–M4 as packet
generators and the gateway buoy as the sink (Fig. 4).

Packet generation rate per node (pkt/min)

(a)

0.5

0.2

0

Th
ro

ug
hp

ut
 p

er
 n

od
e

(p
kt

/m
in

)

0.4

0.6

0.8

1

1.2

1.4

1 1.5 2 2.5
Packet generation rate per node (pkt/min)

(b)

0.5

50

0

A
ve

ra
ge

 d
el

iv
er

y
de

la
y

(s
)

100

150

200

250

300

350

400

1 1.5 2 2.5

CASARI_LAYOUT.qxp_Layout 1 9/10/14 12:42 PM Page 44

pore’s Applied Research Lab and the SubNero company
released v1.1.1 of UNetStack [20], a Java/Groovy implementa-
tion of an underwater networking stack based on the agent-
oriented programming (AOP) paradigm provided by the
open-source fj°age framework. Roughly speaking, UNetStack’s
agents are equivalent to network layers, with the difference
that agents are not forced into any hierarchy. A UNetStack
simulator makes it possible to test the developed software and
agents. UnetStack-compatible software-defined modems
embed a version of this simulator so that the simulated soft-
ware can be used directly on the modems. No specific com-
patibility with other commercial modems is mentioned: in this
respect, DESERT v2 takes a different approach, so it can be
automatically cross-compiled for use on the embedded com-
puters typically integrated within underwater modems, or
externally connected to them. Another difference between
UNetStack and DESERT is that the former allows the user to
program and test different modulation and coding schemes at
the PHY layer, whereas the latter focuses on the network pro-
tocol stack.

Concluding Remarks
In this article, we have presented two open source frame-
works, WOSS and DESERT Underwater, that address both
the need to bring realistic channel impulse responses into
underwater network simulators, and the need for an efficient
transition from simulations to underwater networking experi-
ments. Both frameworks are based on the widely known ns2
and NS-MIRACLE simulation engines, which are extended to
provide a realistic characterization of the acoustic channel via
WOSS, and to increase NS-MIRACLE’s protocol count with
many underwater network protocols via DESERT Underwa-
ter, which also supports the porting of protocol simulation
code into real experiments. A framework that remotely con-
trols the execution of the experiments via acoustic commands
complements DESERT Underwater in the field.

Our software has been widely tested in collaboration with
major institutions and modem manufacturers, constituting a
complete solution for underwater simulations, laboratory
activities, and at-sea experiments.

Acknowledgments
This work was supported in part by the European Commis-
sion under the 7th Framework Programme (Grant Agreement
258359 — CLAM) and by the Italian Institute of Technology
within the Project SEED framework (NAUTILUS project).

The authors would like to thank Loris Brolo for developing
U-Fetch, a cross-layer MAC/routing protocol that is part of
DESERT Underwater v2.

Some features of DESERT Underwater and WOSS have
been added thanks to several discussions with the partners of
the RACUN project (especially Roald Otnes, Paul van Walree,
and Michael Goetz) and with the partners of the CLAM pro-
ject (especially Arne Lie, Roberto Petroccia, and Daniele Spac-
cini). The MSUN protocol was developed in the context of the
multi-national EDA RACUN project and experimented during
CommsNet13 with the permission of the RACUN consortium.

Special thanks go to the NATO STO CMRE, La Spezia,
Italy, for the organization of the CommsNet12 and 13 trials
and for their invitation to participate.

References
[1] F. Guerra, P. Casari, and M. Zorzi, “World Ocean Simulation System

(WOSS): A Simulation Tool for Underwater Networks with Realistic Propa-
gation Modeling,” Proc. ACM WUWNet ’09, Berkeley, CA, Nov. 2009;
http://telecom.dei.unipd.it/ns/woss/.

[2] N. Baldo et al., “Miracle: the Multi-Interface Cross-Layer Extension of ns2,”
EURASIP J. Wireless Commun. and Networking, 2010, http://www.hin-
dawi.com/journals/wcn/aip.761792.html

[3] R. Masiero et al., “DESERT Underwater: an NS-Miracle Based Framework
to DEsign, Simulate, Emulate and Realize Test-beds for Underwater Net-
work Protocols,” Proc. IEEE/OES OCEANS, Yeosu, Korea, May 2012,
http://nautilus.dei.unipd.it/desert-underwater.

[4] M. Porter et al., “Bellhop code,”, http://oalib.hlsresearch.com/Rays/
index.html, last time accessed: May 2014.

[5] R. Urick, Principles of Underwater Sound, McGraw-Hill, 1983.
[6] M. Rossi et al., “On Group Mobility Patterns and Their Exploitation to Log-

ically Aggregate Terminals in Wireless Networks,” IEEE VTC Fall, Dallas,
TX, Sept. 2005.

[7] C. Tapparello et al., “Performance Evaluation of Forwarding Protocols for the
RACUN Network,” Proc. ACM WUWNet, Kaohsiung, Taiwan, Nov. 2013.

[8] ns3 Network Simulator, http://www.nsnam.org/, last time accessed: May
2014.

[9] N. Parrish et al., “System Design Considerations for Undersea Networks:
Link and Multiple Access Protocols,” IEEE JSAC, vol. 26, no. 9, Dec.
2008, pp. 1720–30.

[10] L. M. Wolff, E. Szczepanski, and S. Badri-Höher, “Acoustic Underwater
Channel and Network Simulator,” Proc. MTS/IEEE Oceans, Yeosu, South
Korea, May 2012.

[11] R. Otnes, P. van Walree, and T. Jenserud, “Validation of Direct and
Stochastic Replay Using the Mime Acoustic Communication Channel Simu-
lator,” Proc. UComms, Sestri Levante, Italy, Sept. 2012.

[12] EvoLogics GmbH, “Underwater SC2R acoust ic modem series,”
http://www.evologics.de/en/products/acoustics/index.html, last time
accessed: May 2014

[13] G. Toso et al., “RECORDS: A Remote Control Framework for Underwater
Networks,” Proc. IEEE/IFIP Med-Hoc-Net, Piran, Slovenia, June 2014.

[14] G. Toso et al., “Field Experiments for Dynamic Source Routing: S2C Evo-
logics Modems Run the SUN Protocol Using the DESERT Underwater
Libraries,” Proc. MTS/IEEE Oceans, Hampton Roads, VA, Oct. 2012.

[15] F. Favaro et al., “Data Upload from A Static Underwater Network to an
AUV: Polling or Random Access?,” Proc. MTS/IEEE Oceans, Yeosu,
Korea, May 2012.

[16] Z. Peng et al., “Aqua-TUNE: A Testbed for Underwater Networks,” Proc.
IEEE/OES Oceans, Santander, Spain, June 2011.

[17] C. Petrioli, R. Petroccia, and D. Spaccini, “SUNSET version 2.0:
Enhanced Framework for Simulation, Emulation and Real-life Testing of
Underwater Wireless Sensor Networks,” Proc. ACM WUWNet, Kaohsi-
ung, Taiwan, Nov. 2013.

[18] R. Petroccia and D. Spaccini, “Implementing A Back-Seat Driver to
Remotely Control the Experiments in an Underwater Acoustic Sensor Net-
work,” Proc. MTS/IEEE OCEANS, Bergen, Norway, June 2013.

[19] H. Kulhandjian et al., “Towards Experimental Evaluation of Software-
Defined Underwater Networked Systems,” Proc. UComms, Sestri Levante,
Italy, Sept. 2012.

[20] NUS ARL and SubNero, “UNET–The Underwater NETworks Project,”
http://www.unetstack.net, last time accessed: May 2014.

[21] F. Favaro et al., “A Study on Remote Data Retrieval Strategies in Under-
water Acoustic Networks,” Proc. MTS/IEEE OCEANS, San Diego, CA,
Sept. 2013.

Biographies
PAOLO CASARI [SM’13] (casarip@dei.unipd.it) received a Ph.D. in information
engineering in 2008 from the University of Padova, Italy, where he is current-
ly a postdoctoral research fellow. He has been actively researching cross-layer
design for MIMO ad hoc networks and wireless sensor networks. After a stay
at the Massachusetts Institute of Technology in 2007, he started working on
underwater acoustic networks, which is now his main research interest. He is
currently involved in several projects related to underwater networking, and
was technical manager of the Italian WISE-WAI and NAUTILUS projects. He
also collaborates with Consorzio Ferrara Ricerche (CFR) as a research fellow.
He has been part of the TPC of several international conferences, and has
been guest editor for the Hindawi Journal of Electronics and Computer Engi-
neering Special Issue on Underwater Communications and Networking.

CRISTIANO TAPPARELLO [M’12] (cristiano.tapparello@gmail.com) received his
M.Sc. degree (with honors) in computer engineering and his Ph.D. degree in
information engineering from the University of Padova in 2008 and 2012,
respectively. In 2011, he visited the Center for Wireless Communication and
Signal Processing Research (CWCSPR) at the New Jersey Institute of Technolo-
gy, Newark, where he performed research on the design of networking proto-
cols for energy-harvesting wireless networks. From January 2012 to October
2013 he has been a postdoctoral researcher at the Department of Information
Engineering at the University of Padova. He is currently a postdoctoral
research associate in the Wireless Communications and Networking Group
(WCNG) in the Department of Electrical and Computer Engineering at the
University of Rochester, New York. His research interests include stochastic
modeling and optimization of wireless systems, energy scavenging solutions
for wireless sensor networks, and the design and implementation of mobile

IEEE Network • September/October 2014 45

CASARI_LAYOUT.qxp_Layout 1 9/10/14 12:42 PM Page 45

cloud computing systems and practical algorithms for constrained embedded
systems.

Federico Guerra (federico@guerra-tlc.com) received his Laurea Specialistica
(M.E.) degree in telecommunications engineering in 2008 from the University
of Padova. Shortly thereafter, he joined the research team of CFR under the
direction of Prof. M. Zorzi. During this time, he was involved in the design of
software for the simulation and performance evaluation of underwater acoustic
networks. He is one of the developers of the MIRACLE libraries, a well-known
extension that brings cross-layer and multi-interface simulation capabilities into
NS2. He is the developer and maintainer of WOSS. He was involved in the
CLAM and NAUTILUS projects, and in collaborations with the NATO CMRE
related to MAC analysis and protocol design. In March 2011 he joined u-
blox, a leading fabless semiconductor provider of embedded positioning and
wireless communication solutions, as a software engineer. Since May 2011
he has also collaborated with CFR as a consultant on underwater acoustic net-
work simulation topics.

FEDERICO FAVARO (favarofe@dei.unipd.it) received both his Bachelor’s and
Master’s degrees in telecommunications engineering in 2008 and 2011,
respectively. Shortly thereafter, he joined the Department of Information Engi-
neering (DEI) of the University of Padova as a research engineer, and worked
on several aspects related to the simulation and experimentation of underwa-
ter networking protocols. His main research interests encompass the implemen-
tation and testing of MAC protocols and software interfaces between
simulation software and actual modems, which he has performed and
employed in the context of several projects and experimental trials at sea.

IVANO CALABRESE (icalabre@dei.unipd.it) received his Bachelor’s and Master’s
degrees in telecommunication engineering from the University of Padova in
2009 and 2012, respectively. Since 2012 he has been working as a
research engineer and software developer for CFR, Italy. In January 2014 he
started a collaboration with Patavina Technologies s.r.l., Italy, within the
AllSeen Alliance consortium (LINUX FOUNDATION collaborative Project). He
actively collaborated in several research projects such as RACUN (European
Defence Agency) and NAUTILUS (IIT Project SEED program), and took part in
several experimental campaigns on underwater communication organized by
the NATO CMRE, La Spezia, Italy.

GIOVANNI TOSO (tosogiov@dei.unipd.it) received his Bachelor’s and Master’s
degrees in computing engineering from the University of Padova in 2009 and
2011, respectively. In 2012, he worked as a research engineer and software
developer for CFR, Italy. In 2013, he joined the School of Information Engi-
neering of the University of Padova, where he is currently a Ph.D. student. His
research interests cover the design, analysis, evaluation, and real-world exper-
imentation of protocols for underwater acoustic networks. He collaborated

actively in several projects related to underwater networks, such as CLAM (EU
FP7), RACUN, and the Italian NAUTILUS project.

SAIFUL AZAD (sazadm684@gmail.com) received his B.Sc. in computer and
information technology at IUT, Bangladesh, his M.Sc. in computer and infor-
mation engineering at IIUM, Malaysia, and his Ph.D. in information engineer-
ing from the University of Padova in 2013. After the completion of his Ph.D.,
he joined the Department of Computer Science at the American International
University — Bangladesh as a faculty member. His work on underwater
acoustic networks started during his Ph.D. program and is still his main
research focus. His interests also include the design and implementation of
communication protocols for different network architectures, QoS issues, net-
work security, and simulation software design.

RICCARDO MASIERO (masieror@dei.unipd.it) received both his Bachelor’s degree
in information engineering and his Master’s degree in telecommunication engi-
neering from the University of Padova in 2005 and 2007, respectively. In
April 2011, he completed the Ph.D. program in information engineering, also
at the University of Padova. During his Ph.D. work, his research activity has
been focused on distributed techniques for data collection in WSNs. In 2010,
he carried out a six-month research activity at INRIA, Sophia Antipolis,
France, as a visiting Ph.D. student within the MAESTRO team. During that
period he focused his activity on distributed optimization techniques for delay
tolerant networks. As a post-doctoral researcher in Padova since 2011, his
research activity focused on underwater networking in the context of the the
NAUTILUS and RACUN projects. He is one of the project leaders and devel-
opers of the DESERT Underwater libraries.

MICHELE ZORZI [F’07] (zorzi@dei.unipd.it) received his Laurea and Ph.D.
degrees in electrical engineering from the University of Padova in 1990 and
1994, respectively. During academic year 1992–1993, he was on leave at
the University of California, San Diego (UCSD). After being affiliated with the
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy, the
Center for Wireless Communications at UCSD, and the University of Ferrara,
in November 2003 he joined the faculty of the Information Engineering
Department of the University of Padova, where he is a professor. His present
research interests include performance evaluation in mobile communications
systems, random access in mobile radio networks, ad hoc and sensor net-
works, energy constrained communications protocols, and underwater commu-
nications and networking. He was Editor - in -Chief of IEEE Wireless
Communications from 2003 to 2005, Editor-in-Chief of IEEE Transactions on
Communications from 2008 to 2011, and Guest Editor for several Special
Issues in IEEE Personal Communications, IEEE Wireless Communications, IEEE
Network, and IEEE JSAC. He served as a Member-at-Large of the Board of
Governors of the IEEE Communications Society from 2009 to 2011, and is
currently its Director of Education.

IEEE Network • September/October 201446

CASARI_LAYOUT.qxp_Layout 1 9/10/14 12:42 PM Page 46

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

