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Abstract—Pitch is one of the essential features in many speech
related applications. Although numerous pitch detection algo-
rithms have been developed, as shown in this paper, the detection
ratio in noisy environments still needs improvement. In this paper,
we present a hybrid noise resilient pitch detection algorithm
named BaNa that combines the approaches of harmonic ratios
and Cepstrum analysis. A Viterbi algorithm with a cost function
is used to identify the pitch value among several pitch candidates.
We use an online speech database along with a noise database to
evaluate the accuracy of the BaNa algorithm and several state-
of-the-art pitch detection algorithms. Results show that for all
types of noises and SNR values investigated, BaNa achieves the
best pitch detection accuracy. Moreover, the BaNa algorithm is
shown to achieve around 80% pitch detection ratio at 0dB signal-
to-noise ratio (SNR).

Index Terms—Pitch detection, noise resilience, harmonics,
Viterbi algorithm.

I. INTRODUCTION

Subjective pitch is defined by the relative highness or
lowness of a tone as perceived by the human ear, and is
caused by vibrations of the vocal cords. For perfectly periodic
speech signals, pitch is the same as fundamental frequency
(F0), which is the inverse of the speech signal’s largest period.
However, due to the aperiodicity of the glottal vibration itself
and the movement of the vocal tract that filters the source
signal, human speech is not perfectly periodic, making the
detection of speech pitch rather difficult. Therefore, pitch
detection has always been an important challenge of speech
signal analysis.

Among the modern state-of-the-art pitch detection algo-
rithms, YIN [1] and Praat [2] are based on the well-known au-
tocorrelation method in the time domain, while the Cepstrum
method [3] [4] and Harmonic Product Spectrum (HPS) [5] are
based on the spectrum in the frequency domain. YIN uses a
difference function to search for the period, and further refines
the pitch detection result by two error-reduction steps. Praat,
on the other hand, considers the maxima of the autocorrelation
of a short segment of the sound as pitch candidates, and
chooses the best pitch candidate for each segment by finding
the least cost path through all the segments using the Viterbi
algorithm. Cepstrum is found by taking the Fourier transform
of the log-magnitude Fourier spectrum, which shows a peak
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corresponding to the period in frequency. HPS multiplies the
original signal with downsampled signals, to line up the peak
at the pitch value for isolation.

A variety of applications can benefit from a more precise
and robust pitch detection algorithm. For example, pitch detec-
tion is essential in speech recognition, where homophones can
be differentiated by recognizing tones [6]. Also, music notation
programs use pitch detection to automatically transcribe real
performances into scores [7]. Moreover, in emotion detection
or other affective measurement, it has been found that prosodic
variations in speech are closely related to one’s emotional
state, and the pitch information is crucial to identification of
this state [8]. Some health care providers and researchers even
put pitch detectors and other behavior sensing technologies on
mobile devices, such as smart phones, for patient monitoring
or behavioral studies [9].

When performing pitch detection in real scenarios, the
quality of the input speech signal may be greatly degraded,
due to noise introduced by the recording devices or audible
background noise. As existing pitch detectors do not perform
well for noisy input data, we are motivated to design a
noise resilient pitch detection algorithm that is better suited
for practical uses. In this paper, we propose a hybrid pitch
detection algorithm named BaNa, which combines the idea
of using the ratios of harmonic frequencies and the Cepstrum
approach to find the pitch from a noisy signal. We test our
BaNa algorithm on real human speech samples corrupted by
various types of realistic noise. Evaluations show the high
noise resiliency of BaNa compared to the state-of-the-art pitch
detection algorithms.

II. BANA PITCH DETECTION ALGORITHM

A. Preprocessing

Given a digital audio signal, preprocessing is performed be-
fore the extraction of the pitch values. In the BaNa algorithm,
we filter the speech signal with a bandpass filter. Since human
speech is normally higher than 50 Hz, and lower than 600 Hz,
the lower bound of the bandpass filter is set to 50 Hz. The
upper bound is set to 3000 Hz, which is 5 times the normal
range of human speech at 600 Hz, in order to capture enough
harmonics that will later be used for pitch detection.



TABLE I
TOLERANCE RANGE FOR HARMONIC RATIOS.

Ratios F0 F1 F2 F3

F1 [1.9 2.1]
F2 [2.8 3.2] [1.42 1.59]
F3 [3.8 4.2] Discarded [1.29 1.42]
F4 [4.8 5.2] [2.4 2.6] [1.59 1.8] [1.15 1.29]

B. Determination of the pitch candidates

Since harmonics are regularly spaced at integer multiples
of the fundamental frequency F0 in the frequency domain, we
use this characteristic of the speech in the proposed BaNa
algorithm to achieve the noise resiliency. If we know the
frequency of a harmonic and its ratio to F0, then F0 can be
easily obtained. However, even if a harmonic is discovered,
its ratio to F0 is unknown. Therefore, we propose a pitch
detection algorithm that looks for the ratios of potential
harmonics and finds the the pitch based on them by applying
the following steps.

Step 1: Search for harmonic peaks
Spectral peaks with high amplitudes and low frequencies are

preferred to be considered for pitch candidates, since peaks
with high amplitudes are less likely to be caused by noise,
and peaks with low frequencies are easier to be identified to be
harmonics by calculating the ratios. Therefore, we consider the
five peaks higher than a certain threshold and with the lowest
frequencies to derive pitch candidates. The absolute value of
the Fourier transform of the windowed digital signal is given

by |H (k)| =
∣∣∣∣N−1∑
n=0

x (n) · w (n) · e−j2πk n
N

∣∣∣∣, where w (n) is a

Hann window, and N is set to 216 to provide a good frequency
resolution. We use the peak detection algorithm provided in
[10] to search for the peaks in the spectrum. We set 1/15th
of the maximum amplitude as the amplitude threshold and
40Hz as the bandwidth parameter for smoothing in the peak
detection function.

Let F̂i and
∣∣∣Ĥi

∣∣∣ represent the frequencies and magnitudes of
the 5 spectral peaks with the lowest frequencies, respectively,
where i = 0, · · · , 4. We place the 5 peaks in ascending order
of F̂ . For most human speech, energy concentrates in the low
frequency part, thus some or all of the 5 peaks are likely to be
at the first 5 harmonics, which are at m× F0, m = 1, · · · , 5,
where F0 is the fundamental frequency, i.e., pitch. For each
frame, pitch candidates are derived from the ratios of F̂ using
the following algorithm.

Step 2: Calculate pitch candidates
∀F̂i, F̂j , where i < j, i, j = 0, · · · , 4, we calculate ratio

Rij = F̂j/F̂i. If the calculated ratio Rij falls into any
tolerance range of the harmonic ratios shown in Table 1,
whose values were found by tests, we are able to find to
which harmonics F̂i and F̂j correspond. Thus, a potential pitch
candidate can be obtained by dividing the harmonic by its ratio
to F0: F̃ = F̂i/m, where m = 1, · · · , 5. Note that due to the
imperfect periodicity of human speech, the harmonics may
not be exactly on integer multiples of F0, and we observed
that higher order harmonics have even larger drift than lower
order harmonics in practice. Therefore, we set a smaller ratio
tolerance range for lower order harmonics, and we set a larger

ratio tolerance range for higher order harmonics. In total,
C5

2 = 10 ratio values are calculated between every pair of F̂ .
Since both ratios of F1/F0 and F3/F1 are equal to 2, it is not
trivial to differentiate to which harmonics this ratio belongs.
In our algorithm, we assume it belongs to F1/F0 and calculate
the pitch candidate based on that. In addition, we include the
peak with the smallest frequency value as one of the pitch
candidates, since we have noticed that in some cases only the
F0 peak is high enough to be detected.

In the BaNa algorithm, we also include the pitch value found
by the Cepstrum method as an additional candidate to the ones
derived by the harmonic ratio analysis. The reason is that the
five spectral peaks we choose mainly belong to low frequency
values. For some rare cases, the higher order harmonics (e.g.,
5th to 10th harmonics) are found to yield higher spectral peak
values compared to the low order harmonics. In that case,
the spectral peaks at low frequencies are more vulnerable to
noise. However, since cepstrum depicts the global periodicity
of the spectrum, and considers all spectral peaks, it can help
to detect the pitch in those rare cases. In Section III, we show
the benefit of including the detected pitch from cepstrum as a
candidate.

Let K denote the number of candidates that are derived,
where K ≤ C5

2 . Pitch candidates that are out of the 50-
600 Hz human voice range are discarded, and the number
of candidates is reduced from K to K ′. If no candidate is
derived from any ratio, we set the pitch value to 0 Hz. Then
for the K ′ candidates, if two or more candidates are within
10 Hz of each other, those close candidates are considered to
be one distinctive candidate. We set the number of such close
candidates to be the confidence score V for the corresponding
distinctive candidate. Among the D distinctive candidates, the
ones with higher confidence scores are more likely to be the
pitch.

C. Selection of the pitch from the candidates

In II-B, the distinctive candidates of each frame are ob-
tained independently. However, the pitch values of neighboring
frames may correlate, since the pitch values of human speech
exhibit a slow time variation, and hence, large pitch jumps
among subsequent frames are rare. Therefore, we use the
Viterbi algorithm [11] for post-processing to go through all the
candidates in order to correct pitch detection errors. We aim to
find a path that minimizes the total cost. The cost consists of
two parts: the frequency jumps between the candidates of two
consecutive frames, and the inverse of the confidence score of
each distinctive candidate.

Let F̃ni denote the ith pitch candidate of frame n, and
let F̃n+1

j denote the jth pitch candidate of the next frame.
Let Nframe denote the number of frames in the speech
segment. For every frame n, pn is the index of the chosen
candidate. Thus, {pn|1 ≤ n ≤ Nframe} defines a path through
the candidates. For each path, the path cost is defined to be

PathCost ({pn}) =
Nframe−1∑

n=1

Cost
(
F̃ni , F̃

n+1
j

)
, (1)
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Fig. 1. Speech waveform and hand-labeled pitch values.

where Cost is used to calculate the cost of adjacent frames.
We define the function Cost by using the pitch differences
between the adjacent frames and the confidence score of
the candidates. Since the perceived pitch difference has a
logarithm relation with frequency difference, as defined by the
Mel scale for pitch, we also model that in the cost function.
The larger the pitch difference, the higher the Cost should be.
Also, we should assign a lower cost to candidates with higher
confidence score, thus we use the inverse of the confidence
score in the expression of the cost. A weight w is introduced
to balance the two parts. We set its value to 0.2 as determined
by tests. Then, Cost is defined mathematically as

Cost
(
F̃ni , F̃

n+1
j

)
=

∣∣∣∣∣log2 F̃ni
F̃n+1
j

∣∣∣∣∣+ w × 1

V n
i

. (2)

We use the Viterbi algorithm to find the minimum cost path,
i.e., the path that reduces the pitch jumps the most while giving
priority to the pitch candidates with higher confidence scores.
The optimal path is found for each voiced part in the speech.
Whenever the Viterbi algorithm meets an unvoiced part or
irregularly voiced portion of the speech (diplophony, creak),
the path cost is reset to 0 and the Viterbi algorithm starts
all over again from the next voiced part. The complete BaNa
algorithm is given in Algorithm 1.

III. PITCH DETECTION EVALUATION

We use real speech samples to evaluate the pitch detection
accuracy of the proposed BaNa algorithm and compare it with
Praat, YIN, HPS, and Cepstrum, for different types of additive
background noise and for a wide range of signal-to-noise ratio
(SNR) values.

A. Parameter settings

The frame length is set to 60 ms, with a frame shift set to
10 ms in order to obtain smooth pitch detection results.

Ten speech samples from the prosody database [12] are used
for the pitch detection test, with one male English speaker and
four female English speakers. The sampling rate of the ten
audio files is 22.05 kHz. Since these original speech samples
are clean, with very little background noise, we use the hand-
labeled pitch values of the original speech as the ground-
truth pitch values and the voiced/unvoiced delineation. Hand-

Algorithm 1 The BaNa Pitch Detection Algorithm
1: // For each frame:
2: // Select harmonic peaks
3: select F̂ : the 5 peaks with lowest frequencies
4: // Calculate pitch candidates
5: F̃1 ← 0, number of candidates K ← 1
6: for i =1 to 5, j = i+ 1 to 5 do
7: ratio Rij = F̂j/F̂i
8: for m =1 to 5, n = m+ 1 to 5 do
9: if Rij falls in Table 1 and close to n

m then
10: F̃K ← F̂i/m, K ← K + 1
11: end if
12: end for
13: end for
14: add spectral peak with the lowest frequency F̃K = F̂1,

K ← K + 1
15: add Cepstrum pitch, F̃K = CepstrumPitch , K ← K+1
16: discard F̃ that are out of 50-600Hz
17: K ′ ← number of remaining pitch candidates F̃
18: if K ′ ≥ 1 then
19: number of distinctive candidates D ← 1
20: for k =1 to K ′ do
21: if F̃k 6= null then
22: conf. score VD ← 1, F̃D ← F̃k, D ← D + 1
23: for l = k + 1 to K ′ do
24: if

∣∣∣F̃l − F̃k

∣∣∣ ≤ 10Hz then
25: F̃l ← null, D ← D−1, VD ← VD+1
26: end if
27: end for
28: end if
29: end for
30: else
31: F0 ← 0
32: end if
33: // For all frames within a voiced segment:
34: // Choose pitch from pitch candidates
35: for n =1 to number of frames Nframe do
36: for i, j =1 to D do

37: Cost
(
F̃ni , F̃

n+1
j

)
=

∣∣∣∣log2 F̃n
i

F̃n+1
j

∣∣∣∣+ w × 1
V n
i

38: end for
39: end for
40: return {pn} of min {PathCost} ← V iterbi (Cost),

where path {pn} denotes F0 for all frames

labeling is performed by manually labeling the frequency of
the first spectral peak, i.e., the first harmonic for every voiced
frame. Fig. 1 shows an example of a clean speech record with
hand-labeled pitch values as the ground truth. When evaluating
the accuracy, pitch values that differ by more than 10% from
the ground truth values are counted as errors.

To test the noise resilience of the proposed algorithm, 8
types of noise are added to the original signal with different
SNR values. The noise database we use is [13]. We chose 6
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different types of real life background noise: speech babble,
destroyer engine room noise, destroyer operations room noise,
factory floor noise, vehicle interior noise, HF radio channel
noise and 2 common types of noise: white noise and pink
noise. To generate noisy speech with a certain SNR value,
signal energy is calculated only on the voiced part, and the
noise is amplified or attenuated to a certain level to achieve the
target SNR value. The synthetic noisy speech data we generate
as well as the source code we use to test the algorithms are
available on our research group’s website [14].

B. Pitch detection performance

Pitch detection accuracies of all the algorithms are evaluated
as a function of SNR value, where the detection ratios are
averaged over all types of noise for each SNR value. Fig. 2
depicts the results, which shows that the BaNa algorithm
achieves the best accuracy among all algorithms in terms
of detection ratio. It achieves the highest overall average
detection ratio of 92.1%. The BaNa algorithm without the
Cepstrum candidate is also shown in the results, and has an
overall detection ratio of 89.8%, which is still higher than
YIN’s 85.6% and Praat’s 75.4% accuracies. Similar to the
BaNa algorithm, the HPS algorithm is also based on the
ratios of the potential harmonics. However, in real speech,
the harmonics are not integer multiples of the fundamental
frequency, which may greatly affect the detection ratio. The
Cepstrum method performs the worst and its performance is
easily affected by the noise. From Fig. 2, we can see that the
BaNa algorithm has a very high resiliency to noise, as it can

correctly detect about 80% of pitch values accurately with 0dB
SNR, which is 12% higher than YIN and at least 30% higher
than the rest of the algorithms.

For a head to head comparison, we present the performances
of the BaNa algorithm and the YIN algorithm under 8 different
types of 0dB SNR noise in Fig. 3. We can see that BaNa has
a better detection ratio for all 8 types of noise. Especially for
the speech babble noise, which is a common background noise
when a crowd of people are talking at the same time, the BaNa
algorithm has 68% detection ratio over YIN’s 55% even when
the speech is only slightly audible by the human ear.

IV. CONCLUSIONS

In this paper, we presented BaNa, a noise resilient hybrid
pitch detection algorithm. BaNa was designed to detect pitch
in a noisy environment, for example on a mobile phone.
This would enable the wide deployment of voice-based ap-
plications, such as the ones that use emotion detection. We
were able to show that BaNa achieves the best detection rate
among all the algorithms investigated from the literature, for
different types of background noise, and under different SNR
levels from 0dB to 20dB. Even for the very noisy scenario of
0dB SNR, BaNa can still correctly detect about 80% of the
pitch values, outperforming the most competitive state-of-the-
art reference algorithm YIN by 12%.
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