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ABSTRACT

Emotion classification is essential for understanding human
interactions and hence is a vital component of behavioral
studies. Although numerous algorithms have been devel-
oped, the emotion classification accuracy is still short of what
is desired for the algorithms to be used in real systems. In this
paper, we evaluate an approach where basic acoustic features
are extracted from speech samples, and the One-Against-All
(OAA) Support Vector Machine (SVM) learning algorithm
is used. We use a novel hybrid kernel, where we choose
the optimal kernel functions for the individual OAA classi-
fiers. Outputs from the OAA classifiers are normalized and
combined using a thresholding fusion mechanism to finally
classify the emotion. Samples with low ‘relative confidence’
are left as ‘unclassified’ to further improve the classifica-
tion accuracy. Results show that the decision-level recall of
our approach for six-class emotion classification is 80.5%,
outperforming a state-of-the-art approach that uses the same
dataset.

Index Terms— Emotion classification, support vector
machine, speaker independent, hybrid kernel, thresholding
fusion.

1. INTRODUCTION

Emotion is an essential organizing force of human commu-
nication, directing non-linguistic social signals such as body
language, facial expression, and prosodic features in the ser-
vice of communicating wants, needs, and desires. Existing
methodologies for assessing behavioral data for emotions are
subjective and error-prone. In particular, traditional methods
require the use of trained observational coders who man-
ually decode the different parameters in the signal. Such
procedures are costly from a time and financial standpoint.
While automatic emotion classification has been recently
introduced, the classification accuracy is still not adequate.

1This research was supported by funding from National Institute of Health
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Furthermore, while prosodic features are easy to capture, and
thus have been widely used in automatic emotion classifica-
tion, mining useful emotion information solely from prosodic
features is still a challenging task. Therefore, improved emo-
tion classification methods are needed.

There are a variety of applications that can benefit from
improved emotion classification. In the healthcare field, emo-
tion classification can be used by clinicians for online assess-
ment of psychological disorders arising from emotional dif-
ficulties. Emotion classification may also be an entry point
for elaborate context-aware systems for future consumer elec-
tronics or services. For example, since smartphones interface
heavily with voice, they may be customized to automatically
choose songs based on the user’s current emotion.

To address the accuracy gap in existing emotion classifica-
tion approaches, we propose an emotion classification method
based on speech prosodic features and an enhanced Support
Vector Machine (SVM) with a novel hybrid kernel function
and a fusion mechanism with a relative confidence classifica-
tion threshold. The proposed emotion classification solution
extracts the speech signal’s pitch, energy and other acoustic
features, and the widely employed SVM learning algorithm
is used for individual one-against-all (OAA) emotion classifi-
cation, with a novel hybrid approach for the individual kernel
selections. These individual OAA classifications are then nor-
malized and combined using a thresholding fusion algorithm
to improve the classification accuracy.

Thus, the contributions of this work are: 1) we optimize
the SVM kernel functions for each OAA classifier to achieve
the optimal performance; 2) we apply the z-score normaliza-
tion and a fusion approach to combine the individual OAA
classifications; and 3) we introduce a threshold parameter
in our fusion mechanism, such that only classifications with
high enough relative confidence are considered, and those
without high relative confidence are left as ‘unclassified’.
We apply our approach to emotion classification to the LDC
database [1]. The average classifier-level accuracy of previ-
ous work [2] that also uses the LDC dataset is only 55.8% for
six-class emotion classification. Our method has improved

455978-1-4673-5126-3/12/$31.00 ©2012 IEEE SLT 2012



the accuracies to 96.4%, with an overall decision-level recall
of 80.5%. The emotion classification performance is further
improved when we increase the relative confidence threshold.

2. RELATED WORK

Speech-based emotion classification applications have al-
ready been used to facilitate interactions in our daily lives.
For example, call centers apply emotion classification to
prioritize impatient customers [3]. As another example, a
warning system has been developed to detect if a driver ex-
hibits anger or aggressive emotions [4]. Emotion sensing has
also been used in behavior studies [5][6].

We survey existing emotion classification techniques ac-
cording to their acoustic features and classifier(s). As
discussed in [7], acoustic features have been extensively ex-
plored in both the time domain (energy, speaking rate, dura-
tion of voiced segments, zero crossing rate, etc.) and the fre-
quency domain (pitch, formant, Mel-frequency cepstral coef-
ficients, etc.). In our work, we only choose the most basic
features: pitch, energy, and formants. This reduces the com-
putational complexity of the approach and can lead to both
energy and bandwidth savings when the voice is captured on
mobile devices.

Commonly used classifiers for emotion classification in-
clude Support Vector Machines (SVM) [2], Gaussian Mixture
Models (GMM) [8], and k Nearest Neighbors (kNN) [9]. We
choose SVM as our basic classifier due to its ease of train-
ing and its ability to work with any number of attributes. The
One-Against-All (OAA) approach is one of the approaches
used for multi-class SVM. This strategy consists of construct-
ing one SVM per class, with each SVM trained to distinguish
the samples of one class from the samples of all remaining
classes. Conventional OAA approaches combine these binary
decisions from multiple OAA classification models in differ-
ent ways, such as anding binary decisions [10], or choosing
the class with the largest confidence value [11]. We use an ap-
proach that considers the relative confidence level of the two
classes with the highest confidence values, and considers an
emotion ‘unclassified’ if this relative confidence is not higher
than a pre-set threshold. Relative confidence has been used
in standard SVM approaches [12] as well as in classification
for biomedical applications [13]. However, to the best of our
knowledge, this is the first study that uses relative confidences
for emotion classification.

For problems solved by using SVM, kernel functions are
used to map data to a higher dimensional feature space with-
out losing the originality. The conventional method of using
kernel functions in SVM is to run simulations on training sets
and find the kernel function that attains the highest averaged
classification accuracy for the given problem. The most com-
monly used kernel function for SVM is radial basis function
(RBF) [14]. Recently, researchers have concluded that no sin-
gle kernel function provides an optimal solution. Thus, Mul-

tiple Kernel Learning (MKL) was proposed in [15], where the
decision rule is a weighted linear combination of multiple sin-
gle kernel function outputs. However, all the previous work
only uses one type of kernel for all OAA classifiers, either a
single kernel or a weighted kernel. In our approach, on the
other hand, we choose the best kernel function for each indi-
vidual OAA classifier in a multiclass classification method. In
this paper, we also use an SVM normalization method called
z-score [16] in the emotion classification problem to trans-
form individual OAA classifier outputs to comparable values,
which further improves the speech-based emotion classifica-
tion accuracy.

3. ACOUSTIC FEATURES EVALUATED

We classify the emotion of each speech utterance in the LDC
database [1]. Each utterance is between one and two seconds
in length. We separate each utterance into 60 ms segments
with 10 ms time shifts. Since human speech consists of au-
dible and inaudible segments, we only analyze the acoustic
features for the audible segments, and we ignore the inaudi-
ble ones. A segment is selected to be an audible segment if a
certain percentage of the samples’ absolute amplitudes in that
segment are above a certain threshold.

Digital signal processing methods are applied on each au-
dible segment to extract the acoustic features. In order to re-
duce the computational complexity of the approach, we only
choose the most basic features: pitch, energy, and formant
(frequency and bandwidth for the first four formants). Since
the change in acoustic features is also related to emotional
states, we include the pitch difference and energy difference
as additional features. The 12 acoustic features employed are
as follows:

• Pitch: pitch is defined as the relative highness or low-
ness of a tone as perceived by the ear. It depends on
the number of vibrations per second produced by the
vocal cords. We use cepstrum in the frequency domain
to extract pitch values.

• Energy: energy represents the loudness of the speech.
We calculate the energy for each segment by taking the
summation of all the squared values of the samples’
amplitudes.

• Pitch difference and energy difference: the dif-
ference of pitch or energy values between two neigh-
boring segments. More fluctuations may indicate active
emotions, such as happiness and anger.

• Formant (frequency and bandwidth for the first four
formants, thus eight features): formants are determined
by the shape of the vocal tract, and are influenced by
different emotions. For example, high arousal results
in higher mean values of the first formant frequency
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Fig. 1. The proposed emotion classification approach using
OAA SVM with hybrid kernel and thresholding fusion.

in all vowels, whereas positive valence results in higher
mean values for the second formant frequency [17]. We
use the popular linear predictive coding method [18] for
formant calculation.

We find these 12 features for each 60 ms segment of the
speech sample, and then we calculate the mean, the maxi-
mum, the minimum, the range, and the standard deviation for
each feature, resulting in 12 × 5 = 60 attributes that are sent
to the classifier.

4. EMOTION CLASSIFICATION USING
MULTICLASS SVM WITH HYBRID KERNEL AND

THRESHOLDING FUSION

In this section, we present an enhanced one-against-all (OAA)
support vector machine (SVM) classification method with a
hybrid kernel and a thresholding fusion method, shown in
Figure 1. The acoustic attributes described in Section 3 are
used as inputs (training dataset and testing samples) to the
SVM classifier.

4.1. Support vector machine

SVM uses binary classification based on statistical learning
theory [10], where data are represented in a higher dimen-
sional space using kernel functions to achieve a maximum
margin hyperplane. Although many kernel functions exist,
only one function can satisfy the maximum margin condition
with minimal classification error. SVM uses the structural
risk minimization (SRM) principle [10], which avoids over-
fitting of training models. Therefore SVM has the ability to
generalize new data accurately using trained models designed
in the learning phase.

4.2. Classification method: One-against-all (OAA)

For multiclass classification problems, methods such as
one-against-all, multi-class ranking and pairwise SVM ap-
proaches can be applied. A one-against-all (OAA) SVM was
proposed in [10], where a data point can be classified only if
one of the SVM classes accepts the data point while all other
SVMs reject it at the same time, thus making a unanimous
decision. In order to reduce the amount of unclassified data
in the OAA approach, the author in [11] chooses the class
with the largest confidence value.

4.3. Our approach: OAA SVM with hybrid kernel and
thresholding fusion

Using the ‘largest confidence value’ fusion approach, the
classification accuracy in OAA SVM is dependent on the
highest confidence value among the SVM classes, and can
therefore increase the misclassification rate when two or more
SVM classes have relatively similar confidence values. For
example, in an emotion classification application, opposing
emotions such as sadness and happiness can be easily clas-
sified, while similar emotions such as anger and disgust can
be misclassified using the OAA approach. Thus ‘relative
confidence’ needs to be considered to evaluate the level of
confidence in classifying a data point.

Figure 1 illustrates our proposed OAA SVM classification
with fusion, which comprises of learning and testing phases.
In the learning phase, for each utterance, the 60 attributes and
the emotion labels are used to train the OAA SVM models
Xi, where i = 1,2,...,m, and m denotes the number of emo-
tion classes. The ‘best’ kernel function among linear, radial
basis function (RBF), quadratic, polynomial, and multi-layer
perceptron (MLP) is found for each training model, resulting
in a hybrid kernel for the classifiers. The statistical values
including the mean µi and the standard deviation σi for the
confidence values of the training data are calculated.

In the testing phase, attributes of the testing utterance j are
sent to each trained model Xi, resulting in confidence mea-
sure CXi(j), where j = 1,2,...,n, and n denotes the number of
testing utterances. The confidence measure CXi(j) is normal-
ized using the z-score normalization N(µi, σ

2
i ) [16], resulting

in the normalized confidence:

C∗
Xi

(j) =
CXi(j)− µi

σi
(1)

The normalized confidence measure C∗
Xi

(j) is then sent
to the fusion center, where the values from each model Xi

are sorted in a descending order, and their relative confidence
measure R(j) is calculated as C∗

Xp
(j) - C∗

Xq
(j), where mod-

els Xp and Xq yield the first and the second highest normal-
ized confidence C∗

Xi
(j), respectively. R(j) is then compared

against the user-controlled relative confidence threshold γ to
attain minimal misclassification error. For example, opposing
emotions tend to have data points that can be easily separable
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using a hyperplane, whereas similar emotions such as anger
and disgust are more likely to be misclassified, hence setting
γ above 0.1 can lead to fewer type I errors (false positives)
at the expense of an increased amount of unclassified data. If
the relative confidence threshold γ is set to 0, our threshold-
ing fusion mechanism is the same as the ‘largest confidence
value’ fusion mechanism proposed in [11].

5. EVALUATION

5.1. Speech prosody database

The LDC speech database [1] is a standard benchmark library
for emotion and speech processing research. This corpus con-
tains speech performed by professional actors and actresses
speaking semantically neutral number and date utterances
(e.g., 2001, December 8) with different emotions. There are
three male speakers and four female speakers in the LDC
database. For every emotion category, there are about 15-25
utterances spoken by each speaker.

The advantage of using this library is that emotional ut-
terances generated by professionals are more easily recog-
nized. An alternative is to use speech material from movies
or recordings of everyday life. However, it is difficult to de-
termine appropriate reference labels, since many natural ut-
terances are emotionally ambiguous.

5.2. Experimental results and analysis

In our experiments, the SVM toolbox in MATLAB with built-
in kernel functions is used. The optimized parameter setting
for SVM is based on sequential minimization optimization
(SMO) applied on the training set.

5.2.1. Hybrid kernel selection

In our first set of experiments, we train classifiers for the fol-
lowing emotions: disgust, happiness, anger, sadness, neutral
and fear. In this set of experiments, the threshold parameter γ
is set to 0. We run 7-fold cross-validation tests on the entire
dataset for all of the built-in kernels (kernel parameters in the
parentheses): linear, quadratic, polynomial (polyorder=3),
MLP (default scale [1 -1]), and RBF (sigma=200). We call
the recall and accuracy derived from the binary decisions
of OAA classifiers as ‘classifier-level recall (CL-recall)’ and
‘classifier-level accuracy (CL-accuracy)’, respectively. Note
that these values are not used for the final emotion classi-
fications, which are derived after fusing the OAA binary
decisions. The ‘CL-recall’ and ‘CL-accuracy’ for classifier
Xi, i.e. for the classification of an instance as ‘Emotion i or
Not’ are defined as:

CL-recallXi =
Ctpi

Ctpi + Cfni
, (2)

and

CL-accuracyXi =
Ctpi + Ctni

Ctpi + Ctni + Cfpi + Cfni
, (3)

where Ctpi, Ctni, Cfpi, Cfni denote the number of
classifier-level true positive, true negative, false positive, and
false negative utterances, respectively. We use CL-recallXi

to select the ‘best’ kernel for classifier Xi.
Table 1 shows the CL-recall values for the different ker-

nels. For each OAA classifier, we choose the kernel with the
highest CL-recall (numbers in bold in Table 1). For exam-
ple, we choose the polynomial kernel for the ‘Happy or Not’
OAA classifier in our hybrid kernel approach. Note that when
training individual SVM OAA classifiers, we make sure that
there are a comparable number of training utterances for both
classes, otherwise, the trained model will provide biased clas-
sification results. For example, when training the ‘Happy or
Not’ OAA classifier, ‘not happy’ utterances consist of all of
the other five emotions. Therefore, we need to sample utter-
ances from the five emotions with the same number as that of
happy utterances. The selected kernel functions for the indi-
vidual OAA classifiers are shown in Table 1.

Kernels Anger Sadness Disgust Neutral Happiness Fear
Linear 76.9 95.4 98.7 100 70.5 73.0
Quad. 96.2 98.2 95.5 98.0 96.2 93.1
Poly. 94.0 99.4 98.7 100 98.1 92.0
MLP 54.4 53.7 69.5 77.3 43.8 39.8
RBF 69.8 86.7 84.4 82.6 75.2 32.8
Hybrid Quad. Poly. Poly. Linear Poly. Quad.

Table 1. Hybrid kernel selection based on classifier-level recall (%).

5.2.2. One-against-all for six emotion categories

To investigate the effect of our approach of multiclass SVM
with hybrid kernel functions, output normalization and
thresholding fusion, we compare the performance of our
approach with the results in [2], which also uses the OAA
multiclass SVM approach and the same LDC dataset. In this
set of experiments, the threshold parameter γ is set to 0. We
compare our approach with the results when using utterance-
level prosodic features from [2]. The performance metric
used in [2] is the classifier-level accuracy defined in Eq. (3).
Therefore, we also show our results in terms of CL-accuracy.
Also, 7-fold cross-validation was used in [2], which is the
same as ours. As shown in Table 2, the proposed approach
improves the mean classifier-level accuracy by 73%.

Compared with classifier-level accuracy or recall, we are
in general more concerned with the decision-level results,
which are derived after fusing the decisions from the individ-
ual classifiers. Therefore, we use the metric ‘decision-level
recall (DL-recall)’, which is defined as:

DL-recallEmotioni =
Dtpi

Dtpi +Dfni
, (4)
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where Dtpi and Dfni denotes the number of decision-level
true positive and false negative utterances, respectively. The
DL-recall of the proposed approach is also listed along in Ta-
ble 2.

Emotions Reference[2] Proposed
Anger 63.6 96.2
Sadness 53.2 99.4
Disgust 51.6 97.4
Neutral 53.5 97.1
Happiness 56.7 95.2
Fear 55.9 93.1
Average 55.8 96.4

(a)

Emotions DL-recall
Anger 80.8
Sadness 79.6
Disgust 71.4
Neutral 81.5
Happiness 83.8
Fear 86.1
Average 80.5

(b)
Table 2. a) Comparison of classifier-level accuracy (%) of the results
in [2] and the proposed approach; b) decision-level recall (%) of the pro-
posed approach.

5.2.3. Tradeoff between emotion classification accuracy and
rejection rate

In the previous experiments, we set the relative confidence
threshold γ to 0 such that the classifier with the highest nor-
malized confidence was selected as the classified emotion,
and there were no ‘unclassified’ utterances. As the relative
confidence threshold γ increases, more testing instances with
low relative confidence values are considered to be ‘unclassi-
fied’. We define the ratio of unclassified instances in the test
set as rejection rate. To measure the average classification
performance for all emotions, we define the metric ‘decision-
level % of correct classification’ as:

DL-%correct =

m∑
i=1

Dtpi

m∑
i=1

(Dtpi +Dfni)
, (5)

where m denotes the number of emotion classes.
With a higher rejection rate, the emotion classification

performance can be further improved. To show this, we run
3-fold cross-validation on all utterances from the 6 emotion
classes, and determine the decision-level % of correct classi-
fication as we vary the threshold γ. Note that we use 3-fold
instead of 7-fold cross-validation because that as the rejec-
tion rate increases, less data is classified. Thus, there is not
enough data for testing if we use the 7-fold cross-validation.
As shown in Figure 2, for small relative confidence threshold
values, the decision-level % of correct classification increases
as the threshold increases, but more instances are rejected.
However, for large relative confidence threshold values, very
few instances remain. Thus, any misclassification will greatly
reduce the % of correct classification value. Therefore, there
is a maximum value beyond which γ should not be increased.
In Figure 2, if we set the threshold γ to 0.7, we achieve 87.4%
decision-level correct classification, an increase from 80.5%
when γ is set to 0. However, this increase is achieved by

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

78

80

82

84

86

88

X: 0.7
Y: 87.4

C
o

rr
e

c
t 
e

m
o

ti
o

n
 c

la
s
s
if
ic

a
ti
o

n
 (

%
)

X: 0
Y: 78.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

 

 

X: 0.7
Y: 67.5

R
e

je
c
ti
o

n
 R

a
te

 (
%

)

Relative Confidence Threshold
X: 0
Y: 0

Rejection Rate

% of Correct Classification

Fig. 2. Rejection rate and decision-level % of correct classification vs.
relative confidence threshold γ.

leaving 67.5% of the instances unclassified. Therefore, the
thresholding enables the users to exploit the trade-off between
the decision-level % of correct classification and the rejection
rate.

5.2.4. Speaker-independent emotion classification

To test the performance of the proposed emotion classification
method for any new speakers, we run a speaker-independent
test (leave-one-subject-out), in which data from the target
speaker is unseen in the training phase. We run the test
in a Round Robin fashion to test on each speaker with the
model trained on all the other six speakers using 3-fold cross-
validation. Therefore, we obtain different hybrid kernels for
each round of the tests. Finally, the accuracy of each emotion
is averaged over all seven speakers. In this set of experi-
ments, the relative confidence threshold parameter γ is set
to 0. Additionally, we run cross-validation on all the seven
speakers. Both speaker-independent and speaker-dependent
DL-recall values are presented in Table 3. Note that the
speaker-dependent DL-recall values here are slightly differ-
ent from those in Table 2(b), which are obtained from 7-fold
cross-validation. We can see that speaker-independent DL-
recall values are only less than half of the speaker-dependent
DL-recall values. It has been proposed in [8] that we should
use different feature sets to improve the accuracy of speaker-
independent emotion classification.

Emotions Speaker-independent Speaker-dependent
Anger 25.9 77.5

Sadness 29.7 79.9
Disgust 27.8 75.9
Neutral 49.6 76.2

Happiness 22.0 79.3
Fear 25.4 81.0

Average 30.1 78.3

Table 3. Comparison of speaker-independent and speaker-dependent
decision-level recall (%) of the proposed approach.
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6. CONCLUSIONS

In this paper, we present a speech-based emotion classifica-
tion method using multiclass SVM. In order to achieve a high
emotion classification accuracy, we propose a novel hybrid
kernel and we apply a thresholding fusion mechanism. Addi-
tionally, SVM outputs are normalized using z-score. The av-
eraged emotion classification accuracy achieved by the hybrid
kernel is higher than any of the single built-in kernel functions
in the MATLAB SVM toolbox. By comparing with related
work that also uses the same LDC dataset for six-class emo-
tion classification, we see that our method has improved the
classifier-level accuracy from 55.8% to 96.4%, and achieved
a decision-level recall of 80.5%. We also show that by in-
creasing the relative confidence threshold, we can further im-
prove the decision-level % of correct classification to as high
as 87.4% for six class emotion classification, at the expense
of 67.5% of the data being left unclassified. Finally, we show
the benefit of using speaker-dependent emotion classification.
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